本发明涉及一类适合在高温氧化环境下使用的改进的涂层,其中所述涂层含有最好混以如氧化铝的氧化物分散体的诸如NiCrAlYTa或NiCrAlYPt或其任意组合的合金。 已有许多具有良好抗氧化和腐蚀性的涂层用于工业中的各种用途和各种环境。现已研制出由铁基、钴基或镍基高温合金构成的制品,用于诸如航天用途以及用做燃气轮机中使用的叶片、叶轮、密封件或其它组件。在这类用途中,重要的是使该制品具有充分的抵卸过分氧化和硫化的防护能力,因这样的腐蚀会影响该制品的有效寿命,导致低劣的性能并可能发生安全问题。虽然各种高温合金具有高度的抗腐蚀性,但当高温合金处于或暴露于高温环境下运作时,这种抗性要降低。
为提高由合金和高温合金制成的部件的有效寿命,已研制出了多种涂层。最初使用铝化物涂层来构成抗腐蚀外层,但当经受机械或热致应变时,发现这种涂层断裂。研制出的另一类涂层为MCrAlY覆面涂层,其中M代表一过渡金属元素,如铁、钴或镍。该涂层被认为在延长高温环境下合金部件有效寿命方面比铝化物涂层更为有效。
现代燃气轮机在超过2000°F的高温环境下运行,其中膨胀的热气穿过涡轮叶片的行列间。这些涡轮叶片一般选择具有优良的高温蠕变抗性和热疲劳抗性的镍基合金。通常,叶片合金设计时为达到优化的机械性能要损失氧化抗性和热腐蚀抗性。因此,将叶片涂覆一薄层材料,该材料的设计仅在于提供高抗氧化性或抗热腐蚀性,基本不考虑涂层的机械性能。这一通常为3-8密耳厚的薄涂层的涂覆方式,一般为氩气保护等离子喷涂、真空室内等离子喷涂,或为物理汽相沉积法。
在燃气轮机领域,设计者一直关注地是提高发动机的操作温度来提高效率。而较高的温度又导致涡轮叶片及叶轮上施用涂层的寿命缩短。燃气轮机部件还要经受热腐蚀。这会发生在有盐经进气吸入发动机时,或在燃料含即使低浓度的硫时,或在这两种情况兼有之时。在有硫及盐可于表面上形成液体化合物之处,无涂层叶片或即便是叶片上的涂层受热腐蚀的冲击都会很快,因该化合物能够溶解基底上否则将有保护性的氧化物皮层。当叶片温度下降在该复合盐一硫化合物熔点温度与该化合物蒸发的温度之间时,这一热腐蚀作用最为剧烈。在该区间温度范围内,基底表面上会存有一层腐蚀剂液态膜且该膜是非常有害的。即使是在通常于超过这些液体腐蚀剂的蒸发温度的高温下运行的发动机中,也会有使这些组分通过低温区域的状况,诸如航空发动机在降低功率操作期间或在空转等待起飞之时。若有腐蚀剂存在于空气或燃料中,其会提高这些阶段内的侵蚀速率。
涡轮叶片在运行中随着需用功率的提高或下降而经历一定范围的温度变化。随着叶片旋转速度的增大或减小,叶片还经受一定范围的轴向应力变化。当然,温度变化和应力变化二者同时发生在旋转叶片上。一种形式即为:随着需用功率的提高,温度和拉应力两者同时提高,且随着功率的降低,二者也同时降低。若将X-Y坐标系的横坐标表为叶片温度且纵坐标为应力,则上一方式在应力和温度为正的象限内的关系曲线象一简单的上行斜线。有可能当温度变化频繁或叶片表面的加热或冷却快于其芯部时,整个能量周期的图线并非相同的加热及冷却的简单曲线。更确切地说,应力-温度曲线的加热和冷却段会有不同,整个循环看上去像一个敞开的回路。这表明了该体系内应力和温度间的滞后现象。
若现将一薄涂层施加到叶片表面,且该涂料具有不同于该叶片合金的热膨胀速率。这种状况就变得更加复杂。人们可以预见该涂层和叶片合金在相同能量循环下各自的应力-温度曲线。许多情况下,MCrAlY涂层的热膨胀速率高于典型的镍基叶片合金。从涂层的应力-温度曲线考虑,对其应力状态的贡献有二。一为提高叶片旋转速率引起的径向拉应力。由这一作用引起的涂层中的应力与基底叶片中的相同。此外,由于设定涂层的膨胀快于叶片合金,涂层要变得比叶片长但又要很好地粘合在基底上,所以因受迫而在涂层中产生了压应力。该涂层的全部应力便为这两种贡献的总和。由于有压力分量,涂层曲线升温段的拉应力便低于叶片曲线,所以其曲线会越来越多地低落于假设为无涂层叶片的简单曲线之下。若全部高温应力能够储存在涂层中,当其经历该循环的冷却段时,将会沿该涂层升温段的轨迹返回。然而,多数MCrAlY涂层在高温下比叶片合金强度低,且由于退火或蠕变,涂层中某些应力会降低。该情况下,当出现该周期冷却段时,涂层的应力在最终低温时终结在低于其起始时的应力值。这是因为低强度涂层在高温下有应力松驰效应。取决于与热膨胀差所致应力作用相比,叶片旋转所致应力的相对贡献以及加热和冷却周期的次数涂层受压会变得越加严重。这里所述的机理可解释这样一种现象,即经多个周期后一些涂层会逐渐皱曲并开裂。
在高温合金基底上涂用常规MCrAlY涂层的另一现存问题,是在长时间暴露于高温后涂层元素向基底及基底元素向涂层的互扩散。从涂层中铝化物贫化层可发现涂层铝向基底的散失。已发现某些基底元素(如钛)穿过MCrAlY涂层向外表面氧化皮扩散,并使所述氧化皮保护性降低。这就希望改进现行的MCrAlY涂层来降低这一互扩散作用。
尽管总的来说MCrAlY一直成为用于高温合金的具有良好抗氧化性和耐腐蚀性这类成功的涂层,对MCrAlY涂层还是做了一些改进。
美国专利No.3676085中记载:通过使用由Co、Cr、Al及诸如Y这种活性金属组成的涂层,特别是当重量组成为15-40%Cr、10-25%Al、0.01-5%Y,余为Co时,显著地改进了镍基及钴基高温合金的抗氧化-侵蚀性及抗硫化性。
美国专利No.3754903记载了用于燃气轮机高温合金的一种涂层合金,其主要组成为Ni、Al和诸如Y的活性金属,特别是重量百分组成为:14-30Al、0.01-0.5活性金属、余为Ni。一优选实施方案还包括15-45%(wt)Cr。
美国专利No.3928026记载了一种用于镍基及钴基高温合金的高延性涂层,具有长期高温下的氧化-侵蚀抗性和硫化抗性以及扩散稳定性,该涂层基本重量组成为:11-48%Co、10-40%Cr、9-15%Al、0.1-1.0%选自Y、Sc、Th、La及其它稀有元素的活性金属、其余基本为Ni,Ni含量至少为约15%。
美国专利No.3993454记载了一种特别适用于保护高温下镍及钴高温合金制品的涂层。该涂层具有保护性质是因为在涂层的表面形成一氧化铝层,起着减少氧化/腐蚀的作用。该涂层含有Al、Cr,以及选自Ni和Co的一种金属,或其混合物。该涂层还含有少许控制百分含量的Hf,起着显著改善该涂层表面上氧化铝保护膜的附着性和耐久性的作用。美国专利No.4585481记载了一类似涂层,不同的是使Y及Hf与Si一同使用。
美国专利No.3918139记载了一种改善了热腐蚀抗性的镍、钴、及镍-钴合金涂层组合物。特别是一种改进的MCrAlY型合金涂层组合物,基本重量组成为:约8-30%Cr、5-15%Al、至多1%的选自Y、Sc、Th及其它稀土元素的活性金属和3-12%的选自Pt或Rh的贵金属、余量为选自Ni、Co、及Ni-Co的金属。
美国专利No.4677034公开了一种其中添加了Si的MCrAlY涂层。美国专利No.4943487公开了一种其中添加了Ta的NiCrAlY或NiCoCrAlY涂层。美国专利4743514公开了一种用于保护燃气轮机组件,诸如单晶涡轮叶片和叶轮,表面的涂层,其中该涂层组成(重量百分比)基本为:15-35Cr;8-20Al;0-10Ta;0-10Ta+Nb;0.1-1.5Si;0.1-1.5Hf;0-1Y;0-10Co;及使总量达100%的余量的Ni。一种尤其适宜用于单晶涡轮叶片及叶轮的较佳涂层的基本组成为17-23Cr;10-13Al;3-8Ta+Nb;0.1-1.5Si;0.1-1.5Hf;0-0.8Y;0-痕量的Co;及使总量达100%的余量的Ni。其中还记载了制备涂覆部件的方法。
美国专利No.4615864公开了用于铁基、镍基、及钴基高温合金的涂层。施加该涂层在于使施加涂层的基底获得良好的氧化抗性和/或硫化抗性及热疲劳抗性。该涂层的基本组成(重量)为:10-50%Cr、3-15%Al、0.1-10%Mn、至多8%Ta、至多5%W、至多5%选自La、Y、及其它稀土元素的活性金属、至多5%稀土和/或难熔金属氧化物颗粒、至多12%Si、至多10%Hf、及余量的选自Ni、Co及Fe、及其组合的物质。另外还设想添加至多5%的Ti及至多15%的贵金属,诸如Pt。
美国专利No.4101713公开了一种由带有Al2O3、ThO2或Y2O3弥散体的物理合金化的MCrAl制成的涂层。
本发明的一个目的在于提供一种具有良好高温抗氧化性特征的改进涂层。
本发明的再一个目的在于提供一种用于欲在高温氧化及硫化环境中运行的基底材料上的涂层。
本发明的又一目的在于提供一种用于高温合金基底的涂层,其热膨胀速率低于该基底,且具有可抵抗应力松弛的更高的高温强度。
本发明的另一目的在于改善涂层向镍及钴基合金基底扩散的稳定性。
本发明涉及一种包括RCrAlR′R″合金的涂层组合物,其中R为选自Fe、Co、及Ni的至少一种元素,R′为选自Y和Hf的至少一种元素,而R″为选自Ta、Pt或Re的至少一种元素,所述的合金混有一种氧化物弥散体,诸如氧化铝、氧化钍、氧化钇与稀土氧化物,氧化铪及氧化锆。
涂层合金中R、R′及R″的量取决于该涂层的特定组成及该涂层的使用环境。对多数用途来说,该组分适于采用以下的量。
表1
*Bal=余量
**当以Hf代替Y或与Y一同使用时,其加入量可为约0.1-0.2%(wt)。
通常,本发明涂层组合物的R为合金重的19-83%;Cr为合金重的10-50%;Al为合金重的4-14%;R′为合金重的0.1-3%;且R″为合金重的3-14%。
涂层混合物中氧化物弥散体的添加量,可为以涂层混合物体积计的5-20%(V),较佳为8-12%(V)。较佳的氧化物弥散体为氧化铝。制备涂层组合物时,应以定量的元素成分制备合金,获得如表1中所示的合金组合物。较佳的是,可采用真空熔融法制造合金,其中粉末颗粒以惰气雾化法制成。然后可以适当的量向合金中加入氧化物组分并利用球磨、碾磨或其它任意技术使之混合制成复合粉。粉末粒度优选为约5-100微米,且更佳为10-44微米。然后可用任意热喷装置将制成的复合粉沉积在基底上。用来沉积涂层的优选热喷法为惰气保护等离子喷涂、腔室内低压或真空等离子喷涂、高速氧气-燃料火焰喷涂、爆炸喷枪喷涂等等。最佳的方法为惰气保护等离子喷涂。采用适宜的时间和温度对涂层进行热处理,以使涂层与基底达到良好结合并使涂层的烧结密度提高,然后对涂层喷丸处理,这些也是有益的。一些适宜的基底为镍基高温合金、含钛的镍基高温合金、钴基高温合金、及含钛的钴基高温合金。较佳的是,镍基高温合金含镍高于50%(重量)且钴基高温合金含钴高于50%(重量)。表2示出了具体的基底样品。
图1为穿透单独添加MCrAlY涂层时燃烧器装置的周期数图线。
图2显示各种涂成样品的热膨胀系数。
图3显示各种经热处理的涂层试样的热膨胀系数。
图4为各涂层试样在800℃的拉伸屈服强度。
图5为各涂层试样在1000℃的拉伸屈服强度。图6为穿透各种涂层时燃烧器装置的周期数图线。
图7为穿透各种涂层时燃烧器装置的周期数图线。
图8为数种涂覆样涂层向CMSX-4基底的扩散区的穿透性随时间的关系图线。
实施例1
向含有Ni和/或Co+CrAlY的熔体中,加入单种元素Ta或Pt,制成数种不同的合金,而后氩气雾化成粉末。添加了钽或铂则要相应量地抵消合金组合物中的钴。通过加入一种氧化物弥散体而制备另一些涂层。使合金粉混以0.3微米直径的氧化铝,并碾磨制成通过-325目泰勒筛(44微米)的粉末混合物。使用150安培下操作的氩气保护等离子体电弧枪,将各种粉末组合物以各种厚度等离子喷涂在各种基底上。各种粉末组合物示于表3。
表3
*组成中余量为其它次要元素
将各种涂层组合物在Mar M-002基底上涂至约6密耳厚。在特征参数如下的燃烧器装置中测试该涂层:
空气质量流量 60磅/分
气速 650呎/秒
燃料 标准航空煤油
硫含量 燃料中含0.2%
合成盐 0.5ppm进入预燃器区段
试样温度 1050℃
热温时间 每周期13分钟,有1分钟冷却然后1分钟下一周期的加热
所得的数据示于图1。如图1可见,样品B、C、D和E的涂层寿命比样品A提高达40%或更多。同样,样品G和H的涂层寿命比样品F提高40%或更多,且样品J和K也比样品I提高了寿命。每种情况下,向基体试样A、F及I添加Pt、Ta或氧化物都显著改善了涂层的燃烧器装置寿命试验效果。
在一均由相同的蓝宝石单晶制成的三脚支架和一中心顶杆构成的立式膨胀仪中,测量表3中样品的热膨胀。加热速率恒定保持在5℃/分,同时计算机记录试样温度和来自连接于顶杆的线性变换差动变压器(LYDT)的长度信号。将25-1050℃的平均系数示于图2。样品在涂覆状态下测试,且第二组预先经过1080℃下4小时的真空热处理。比较来看,Mar-M-002、Rene′80及Mar-M-200+Hf的典型涡轮叶片用镍基高温合金,其达1050℃的CTE值分别为16.6、17.0和16.1 uin./in./℃。对多数涂层而言,涂覆后测试的图2结果与经热处理再测试的图3结果仅略有不同,这可能因为残余应力松弛的缘故。样品A、F和I涂层的CTE值约为18uin./in./℃,而发明的目的之一在于使之降至接近于叶片合金之值。加入钽并不改变CTE。不过,添加铂后热处理可根本性地降低涂层的CTE。这才是涂层在涡轮叶片上的一种正常状态。可能是热处理使得铂铝化物或某种CTE低的其它相形成,便降低了涂层的总CTE值。这一发现是一种意想不到的添加铂所带来的益处,因直至今日,铂的主要贡献一直在于改善热腐蚀抗性。最后,发现添加氧化物对降低CTE是非常有效的。结果表明,10%(V)氧化铝使CTE从约18降至17uin./in./℃,而20%(V)氧化铝可将CTE降至约15.7uin./in./℃。
对各应选材料的厚涂层进行4小时1080℃的热处理,磨平并加工成拉伸试样外形,在量测面上减小条形宽度。拉伸试验在800℃和1000℃下进行,采用的应变速率为0.005-0.006 in./in./min.,残余变形屈服应力至多达0.2%。这些数据示于图4。涂层样品A和F也包括在内。我们发现,向CoNiCrAlY(样品B)加入Ta,当添加3%(重量)时,800℃下的屈服强度提高到两倍多,当添加8%Ta时(样品C),则提高到三倍多。向样品D中添加Pt,屈服强度适当提高40%以上。当向CoCrAlY中添加氧化铝弥散体时,添加10%(V)(样品G)时屈服强度提高到三倍,而添加20%(V)(样品H)时提高到5倍。从图5明显看出,1000℃下可见,添加Ta或Pt对提高屈服强度不再有贡献,但添加氧化物却继续起着其强化作用。对CoNiCrAlY(样品A)和CoCrAlY(样品F)基合金来说,添加10%(V),屈服强度提高到约两倍,添加20%(V)提高到约4倍。
实施例2
如上例方式制备样品涂层粉,但组成有所不同。各种粉末组成示于表4。本例的目的在于探索多重添加,并将实施例1单组分添加相结合,寻找更加全面地改善涂层性能的方式。
表4
将示于表4的涂层粉涂在光滑基底上,以使样品在独立测量密度时能够易于移动。将涂层样品于真空和1080℃下热处理4小时,然后用浸水法(ASTM B-328)测密度。理论密度为材料在无孔状态下的密度。这可根据组成用Hull法(F.C.Hull,“Estimating Alloy Densities”,Metal Progress,Nov.1969,P.139)计算,并对添加了氧化物的表4中某些涂层值进行校正。密度测量结果示于表5。发现全金属涂层(Ⅰ和Ⅱ)达到约95-96%的较高理论密度值。发现热处理后氧化物弥散的涂层仅达到较低的密度,为理论密度的88-90%。
使用0.6kg负载的维式压头测量最高达900℃温度下各涂层的热硬度。结果示于表5。发现带有氧化物及Pt和/或Ta添加剂的涂层通常比试样Ⅰ涂层要软,现认为这一结果与其较低的涂层密度密切相关。虽然如此,却发现添加三种添加剂的涂层样品Ⅷ在高温下比样品Ⅰ具有显著更高的硬度。发现样品Ⅶ的热硬度与样品Ⅰ基本相同,且尽管样品Ⅰ和Ⅱ的密度相当接近,样品Ⅱ却比样品Ⅰ软。添加Ta+Pt软化了涂层,而添加氧化物产生的变化很小,不过,Ta+Pt+氧化物则具有实质性的硬化效果,因此,出乎意料的配合作用发生在三元添加时,获得了显著改善热硬度的结果。
将表4的涂料在Mar M-002细杆基底上沉积成6密耳的额定厚度,于1080℃下热处理4小时,使之平整并以12N Almen强度喷丸。对其进行暴露在1050℃空气中的周期性氧化试验,50分钟在炉内及10分钟冷却期。分别将样品试验共达100小时和共达300小时。将测试的细杆镀金及镍,然后固定横断面测量外表面以下的铝化物贫化层的宽度。我们将该贫化层厚度看作为消耗涂层寿命的一种度量,因而对相同的时间和暴露温度来说,贫化层越薄标志着涂层寿命越长。观察所得数据示于表5,数据表明,100小时后,数种涂层的贫化低于样品Ⅰ,而这些涂层都含Ta作为添加剂之一。我们还发现,当添加剂单为氧化物时,贫化层厚度较样品Ⅰ高,这可能是由于密度低的结果。然而,当Ta+Pt再加至含氧化物涂层时,贫化则显著减弱。这些具体数据表明,Ta是氧化状态下降低铝化物贫化的最有效的添加剂,且Ta或其与Pt结合会提高添加氧化物涂层的氧化抗性。这种结合使得添加氧化物的手段在不牺牲氧化抗性的同时产生了另外的效果,诸如抗蠕变性。考虑100小时及300小时时的全面性能,Ta+Pt+氧化物三元添加产生的效果最佳。
将表4的涂料沉积在7mm直径、85mm长的条棒上,用于燃烧器装置试验。将该涂层热处理、精整和喷丸。本试验中,装置操作如实施例1,但将温度升至1100℃。破坏时周期数的结果示于表6。本试验没有用样品Ⅰ的涂层,但我们可从实施例1看出,仅添加氧化物的涂层优于样品Ⅰ涂层。数据表明,氧化物+Pt及氧化物+Ta+Pt的多元添加方式是显著优越的。其在燃烧器装置中的寿命为仅添加氧化物涂层的约2-3倍,这就使它们显著地优于无添加剂的简单的样品Ⅰ涂层。
将表3和4中的一些组合物沉积在条棒上,并使之经受燃烧器装置试验。此外的基底为单晶CMSX-4,一种用于高性能涡轮叶片的高级镍基合金。燃烧器装置试验如前所述,不同的是将注入盐的浓度降至0.25ppm。试验在1100℃下进行,如前所述,13分钟在燃烧器内,1分钟脱火冷却。当循环返入燃烧器时用约1分钟回升至1100℃。以破坏周期数除以涂层厚度(密耳)计算所得的结果示于图7。这就基本校正了因涂层厚度差别而引起的寿命差别。各涂层还制成6密耳标定厚度。还发现,所有含Pt涂层的寿命为仅含Ta或氧化物一元添加剂涂层的近两倍。而且,加Ta+Pt比单加Pt略好,且加Ta+Pt+氧化物为最好。
为评估新涂层配制品抵抗向基底扩散的能力,我们进行了1100℃氩气氛中长时暴露等温试验,然后测量断面的互扩散区宽度。使用相同的试样Ⅰ涂料,向其中加入添加剂。图8显示长达60小时的试验结果。我们发现有较大扩散区宽度的涂层含有Pt。单独加Ta或Ta与Pt结合添加降低了互扩散。向含Pt涂层再添加氧化物也降低互扩散。根据我们的研究,减少互扩散的最佳涂层为Pt+Ta+氧化物三元添加剂的涂层。总的观察结果是,Ta和氧化物添加剂为减少互扩散最为有效的组分。
数据表明,Ta特别是其与氧化物结合为达到我们减少与基底互扩散之目的的有效添加方式。我们要限制由涂层向基底内扩散造成的Al和Cr的损失。但我们还要避免来自基底的有害元素进入涂层并减弱其保护性。为帮助认识Ta的特殊作用,在1050℃长达400小时的氧化暴露之后,我们用电子显微探针对添加和未添加Ta的涂层做了分析。基底为In-100和Mar M-002,发现涂层中的Ta在与试图从基底扩散入涂层的Ti发生反应,Ta-Ti颗粒的形成首先位于接近基底的涂层内,并在以后随着时间的推移而上升,在这一反应中消耗了Ta。因此,Ta改善抗氧化性的一个作用便是这样捕收Ti,而减少其向涂层上面外部氧化皮的迁移,在该处Ti会不利地影响皮层的保护性。这一发现使得向涂层加Ta的价值在诸如IN-100、Mar-M-002、Rene′80的含钛高温合金基底上及在各种Mar-M-200和B-1900上格外地体现。
我们发现,含有特别是氧化物添加剂的涂层在典型的热处理过程(1080-1100℃下2-4小时)中降低了致密度。可以预料,获得如表5中所示的涂层样品Ⅲ-Ⅷ的较低的密度,与其处于较高密度相比,要降低全部机械性能,并某种程度地降低氧化与腐蚀的抗性。热膨胀及泊松比值预计不受影响。虽然在正常热处理密度下性能尚好,进一步的改进有待于更高的密度。制做有样品Ⅵ涂层(CoNiCrAlY+Pt、Ta和氧化物)的独立工件,并对其高温热处理。结果表明,若把新研制的涂层与对该涂层最佳的热处理工艺相结合,可获得密度的改善。获得高密度就有望强化涂层的其它性能,诸如提高氧化与硫化的抗性、提高断裂应变、提高屈服强度和极限抗拉强度,还会提高涂层的抗蠕变性。热膨胀系数预计不会改变。
本发明的涂层还可用作隔热涂层体系中的结合层或底涂层。在隔热体系中,一般有一3-10密耳厚的为样品Ⅰ涂层(表4)的结合层,然后有-10-20密耳或更厚的由氧化钇稳定的氧化锆涂层。用样品Ⅵ涂料将叶片涂上一结合层,随后涂上10密耳厚的由氧化钇稳定的氧化锆层。两层均使用同样的等离子体电弧枪,只是变换粉末和操作条件。使涂有隔热层的叶片在1100℃下真空热处理2小时。在用氧化铝磨料的振动精整机内平整该氧化锆外表面。涂有隔热层叶片的显微结构显示出良好结合的底涂层和有效隔热层所需的氧化物层。
应当理解,在不背离本发明精神和范围的前提下,可对本文给出和描述的本发明的优选实施方案做出修正和变更。例如,在本发明涂层之上用固渗法二次涂铝或铬会使得至少部分铝或铬扩散入该涂层。另一实例是给本发明涂层上氧化锆顶层,形成一良好的双层隔热涂层。