基于共聚焦显微原理的大口径光学元件母线轮廓测量方法技术领域
本发明涉及一种基于共聚焦显微原理的大口径光学元件母线轮廓测量方法,属于
光学精密测量技术领域。
背景技术
基于共聚焦显微原理的轮廓扫描仪被广泛地应用于大口径光学元件的测量。但是
由于数据解析时间的限制,现有大口径光学元件的共聚焦轮廓测量方法采用步进扫描解析
的方式来提取大口径光学元件的轮廓,而采用步进扫描解析的方式降低了该方法的测量效
率。
发明内容
本发明为解决现有大口径光学元件的共聚焦轮廓测量方法的效率低的问题,提出
了一种基于共聚焦显微原理的大口径光学元件母线轮廓测量方法。
本发明所述的基于共聚焦显微原理的大口径光学元件母线轮廓测量方法基于大
口径光学元件母线轮廓测量装置实现;
所述装置包括共聚焦显微单元1、气浮平台2和数据处理单元3;
聚焦显微单元1包括激光器5、二向色镜6、物镜7、会聚透镜8和光电探测器9;
待测大口径光学元件4的受光面上设置有荧光膜,待测大口径光学元件4固定设置
在气浮平台2上;
激光器5发射的激光经二向色镜6的反射和物镜7的聚光入射至待测大口径光学元
件4的受光面上,并在荧光膜上形成聚焦光斑,荧光膜上聚焦光斑处的激发光经物镜7的准
直、二向色镜6的透射和会聚透镜8的聚光入射至光电探测器9的光信号接收端,光电探测器
9的电信号输出端与数据处理单元3的电信号输入端相连;
数据处理单元3包括复合轴向包络响应曲线生成模块和动态复合运动模型模块;
复合轴向包络响应曲线生成模块用于根据光电探测器9发来的电信号生成复合轴
向包络响应曲线,动态复合运动模型模块用于根据复合轴向包络响应曲线计算得到待测大
口径光学元件4的母线轮廓;
所述方法包括:
步骤一、建立三维直角坐标系,该三维直角坐标系的Z轴为待测大口径光学元件4
的矢高方向,X轴为Z轴方向光源下所述母线在气浮平台2上表面上的投影的长度方向;
步骤二、使激光器5发射的激光经二向色镜6的反射和物镜7的聚光后沿Z轴方向入
射至所述母线的一端并形成聚焦光斑;
步骤三、控制气浮平台2沿着X轴方向单向连续移动,使所述聚焦光斑沿着所述母
线移动至所述母线的另一端;
步骤四、在实施步骤三的同时,激光器5自其初始位置沿Z轴方向以预设的位移朝
向待测大口径光学元件4做周期性的往返运动,当步骤三结束时,激光器5回到其初始位置;
步骤五、复合轴向包络响应曲线生成模块根据光电探测器9发来的电信号生成复
合轴向包络响应曲线;
步骤六、动态复合运动模型模块根据复合轴向包络响应曲线计算得到待测大口径
光学元件4的母线轮廓。
本发明所述的方法基于所述大口径光学元件母线轮廓测量装置对大口径光学元
件的母线轮廓进行测量,在测量过程中,气浮平台沿着X轴方向单向连续移动,使所述聚焦
光斑沿着所述母线移动至所述母线的另一端,实现了X轴方向上的连续扫描和X、Z轴的动态
复合扫描,替代了现有大口径光学元件的共聚焦轮廓测量方法所采用的步进扫描。本发明
所述的方法通过复合轴向包络响应曲线生成模块生成复合轴向包络响应曲线,通过动态复
合运动模型模块根据复合轴向包络响应曲线计算得到待测大口径光学元件的母线轮廓,能
够大幅度地提升扫描速度,提高测量效率。
附图说明
在下文中将基于实施例并参考附图来对本发明所述的基于共聚焦显微原理的大
口径光学元件母线轮廓测量方法进行更详细的描述,其中:
图1为实施例提及的大口径光学元件母线轮廓测量装置的结构示意图;
图2为实施例提及的现有基于共聚焦显微原理的轮廓扫描仪的步进扫描模式下的
共焦轴向包络曲线图;
图3A为实施例提及的现有基于共聚焦显微原理的轮廓扫描仪的步进扫描模式下
的待测大口径光学元件的X轴位移示意图,t1至t5均为时刻;
图3B为实施例提及的现有基于共聚焦显微原理的轮廓扫描仪的步进扫描模式下
的共聚焦显微单元的Z轴位移示意图;
图4A为实施例提及的大口径光学元件母线轮廓测量装置的连续扫描模式下的待
测大口径光学元件的X轴位移示意图,XP为Z轴方向光源下待测大口径光学元件的母线在气
浮平台上表面上的投影的长度;
图4B为实施例提及的大口径光学元件母线轮廓测量装置的连续扫描模式下的共
聚焦显微单元的Z轴位移示意图,ZP为预设的位移;
图5为实施例提及的大口径光学元件母线轮廓测量装置的光路示意图,其中实线
光线为激光器的出射光,虚线光线为荧光膜的激发光。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
具体实施方式
下面将结合附图对本发明所述的基于共聚焦显微原理的大口径光学元件母线轮
廓测量方法作进一步说明。
实施例一:下面结合图1至图5详细地说明本实施例。
本实施例所述的基于共聚焦显微原理的大口径光学元件母线轮廓测量方法基于
大口径光学元件母线轮廓测量装置实现;
所述装置包括共聚焦显微单元1、气浮平台2和数据处理单元3;
聚焦显微单元1包括激光器5、二向色镜6、物镜7、会聚透镜8和光电探测器9;
待测大口径光学元件4的受光面上设置有荧光膜,待测大口径光学元件4固定设置
在气浮平台2上;
激光器5发射的激光经二向色镜6的反射和物镜7的聚光入射至待测大口径光学元
件4的受光面上,并在荧光膜上形成聚焦光斑,荧光膜上聚焦光斑处的激发光经物镜7的准
直、二向色镜6的透射和会聚透镜8的聚光入射至光电探测器9的光信号接收端,光电探测器
9的电信号输出端与数据处理单元3的电信号输入端相连;
数据处理单元3包括复合轴向包络响应曲线生成模块和动态复合运动模型模块;
复合轴向包络响应曲线生成模块用于根据光电探测器9发来的电信号生成复合轴
向包络响应曲线,动态复合运动模型模块用于根据复合轴向包络响应曲线计算得到待测大
口径光学元件4的母线轮廓;
所述方法包括:
步骤一、建立三维直角坐标系,该三维直角坐标系的Z轴为待测大口径光学元件4
的矢高方向,X轴为Z轴方向光源下所述母线在气浮平台2上表面上的投影的长度方向;
步骤二、使激光器5发射的激光经二向色镜6的反射和物镜7的聚光后沿Z轴方向入
射至所述母线的一端并形成聚焦光斑;
步骤三、控制气浮平台2沿着X轴方向单向连续移动,使所述聚焦光斑沿着所述母
线移动至所述母线的另一端;
步骤四、在实施步骤三的同时,激光器5自其初始位置沿Z轴方向以预设的位移朝
向待测大口径光学元件4做周期性的往返运动,当步骤三结束时,激光器5回到其初始位置;
步骤五、复合轴向包络响应曲线生成模块根据光电探测器9发来的电信号生成复
合轴向包络响应曲线;
步骤六、动态复合运动模型模块根据复合轴向包络响应曲线计算得到待测大口径
光学元件4的母线轮廓。
图2为现有基于共聚焦显微原理的轮廓扫描仪的步进扫描模式下的共焦轴向包络
曲线图,共焦轴向包络曲线的表达形式如下:
I(u)=sinc2[u/(2π)] (1)
u=4kzs sin2(α/2) (2)
其中,I(u)为共焦轴向包络值,u为共焦轴上的点值,sinc2为LabVIEW程序的拟合
函数,k为常数,zs为大口径光学元件上被测点的Z轴数据,现有基于共聚焦显微原理的轮廓
扫描仪的激光发射端和激发光接收端的前端均设置有聚光物镜,α为数值孔径较小的聚光
物镜的数值孔径;
如公式(1)和公式(2)所示,u为zs的函数,而本实施例所述的方法采用X-Z轴的动
态复合扫描方式对大口径光学元件进行测量,因此本实施例中的复合轴向包络响应曲线生
成模块生成的复合轴的点值u1为Z轴数据zs和X轴数据xs的复合函数,因此动态复合运动模
型模块利用MATLAB建立动态复合运动模型,由复合包络实时解算出位置信息,由于不需要
步进等待解算,大大缩短了扫描时间。
现有基于共聚焦显微原理的轮廓扫描仪的步进扫描模式如图3A和图3B所示,本实
施例的大口径光学元件母线轮廓测量装置的连续扫描模式如图4A和图4B所示。
在本实施例中,激光器的发射波长为532nm,激光器发射的激光经物镜聚光后,其
光功率小于80mW,本实施例所述的方法用于测量的大口径光学元件的母线不超过180mm。
实施例二:下面结合图5详细地说明本实施例。本实施例是对实施例一所述的基于
共聚焦显微原理的大口径光学元件母线轮廓测量方法作进一步的限定。
本实施例所述的基于共聚焦显微原理的大口径光学元件母线轮廓测量方法,在激
光器5与二向色镜6之间依次设置有准直镜10和光阑11,准直镜10用于将激光器5发射的激
光准直为平行光,所述平行光经光阑11的通光孔入射至二向色镜6的反射面。
实施例三:下面结合图5详细地说明本实施例。本实施例是对实施例二所述的基于
共聚焦显微原理的大口径光学元件母线轮廓测量方法作进一步的限定。
本实施例所述的基于共聚焦显微原理的大口径光学元件母线轮廓测量方法,在二
向色镜6与会聚透镜8之间设置有可调滤光片12,在会聚透镜8与光电探测器9之间设置有表
面带有微孔的隔光板13,经会聚透镜8聚光后的激发光经隔光板13上的微孔入射至光电探
测器9的光信号接收端。
实施例四:本实施例是对实施例一所述的基于共聚焦显微原理的大口径光学元件
母线轮廓测量方法作进一步的限定。
本实施例所述的基于共聚焦显微原理的大口径光学元件母线轮廓测量方法,复合
轴向包络响应曲线生成模块基于LabVIEW软件实现。
实施例五:本实施例是对实施例四所述的基于共聚焦显微原理的大口径光学元件
母线轮廓测量方法作进一步的限定。
本实施例所述的基于共聚焦显微原理的大口径光学元件母线轮廓测量方法,动态
复合运动模型模块基于MATLAB软件实现。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实
施例仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许
多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和
范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利
要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其
他所述实施例中。