一种高速连续光固化3D打印装置及其工作方法.pdf

上传人:bo****18 文档编号:5428552 上传时间:2019-01-16 格式:PDF 页数:14 大小:950.32KB
返回 下载 相关 举报
摘要
申请专利号:

CN201610945088.3

申请日:

2016.10.26

公开号:

CN106426915A

公开日:

2017.02.22

当前法律状态:

实审

有效性:

审中

法律详情:

授权|||实质审查的生效IPC(主分类):B29C 64/129申请日:20161026|||公开

IPC分类号:

B29C64/129(2017.01)I; B29C64/30(2017.01)I; B29C64/291(2017.01)I; B29C64/307(2017.01)I; B33Y30/00(2015.01)I

主分类号:

B29C64/129

申请人:

青岛理工大学

发明人:

兰红波; 钱垒; 段玉岗; 李涤尘

地址:

266033 山东省青岛市市北区抚顺路11号

优先权:

专利代理机构:

济南圣达知识产权代理有限公司 37221

代理人:

黄海丽

PDF下载: PDF下载
内容摘要

本发明公开了一种高速连续光固化3D打印装置及其工作方法,包括:机箱本体,机箱本体由中间隔板分为上腔室和下腔室;下腔室设有成像模块,上腔室设有窗口盒和供氧冷却模块,窗口盒和供氧冷却模块组合固定安装在中间隔板上,供氧冷却模块设置在所述窗口盒的正下方,所述成像模块设置在所述窗口盒的正下方;所述窗口盒正上方设有打印平台,所述打印平台安装在Z向工作台上;所述窗口盒与原料供给单元连接;本发明结合了窗口盒的复合富氧膜、供氧冷却、液面辅助施压三者的优势,实现了大尺寸、任意形状制件的低成本、高效连续打印,适用材料广泛,打印件的精度和质量高,一致性好,工艺稳定可靠。为高速连续光固化3D打印提供一种工业级解决方案。

权利要求书

1.一种高速连续光固化3D打印装置,其特征是,包括:机箱本体,所述机箱本体由中间
隔板分为上腔室和下腔室;所述下腔室设有成像模块,所述上腔室设有窗口盒和供氧冷却
模块,所述窗口盒和供氧冷却模块组合固定安装在中间隔板上,所述供氧冷却模块设置在
所述窗口盒的正下方,所述成像模块设置在所述窗口盒的正下方;所述窗口盒正上方设有
打印平台,所述打印平台安装在Z向工作台上;所述窗口盒与原料供给单元连接;
所述供氧冷却模块,包括供氧冷却室,所述供氧冷却室的两端分别与冷却进气管路和
冷却出气管路连接,所述冷却进气管路与供氧冷却单元连接;供氧冷却室安装在窗口盒打
印窗口的正下方,并与打印窗口形成封闭腔室;
打印时,通过供氧冷却模块通过控制窗口盒底部树脂死区的含氧量和将连续打印过程
中释放的热量及时排出来提高打印速度。
2.如权利要求1所述的一种高速连续光固化3D打印装置,其特征是,还包括:液面辅助
施压模块,所述液面辅助施压模块包括设置在下腔室中的无油空压机,所述无油空压机与
加压进气管路的入口连接,所述加压进气管路的出口设置在上腔室中,所述上腔室具有气
密性;通过树脂液面辅助施压模块增加上腔室的气体压强,打印时,高压气体向光敏树脂液
面施压,加快光敏树脂向窗口盒底部树脂死区和固化区域的流动,实现树脂快速回流和补
给。
3.如权利要求1或2所述的一种高速连续光固化3D打印装置,其特征是,
所述窗口盒采用分离式结构,包括:储液槽、密封垫圈、复合富氧膜和压板;所述供氧冷
却室、压板、复合富氧膜、密封垫圈和储液槽上均开有通孔,供氧冷却室、压板和储液槽的孔
为螺纹孔,供氧冷却室的一侧设有凸台,压板的一侧有与供氧冷却室上凸台对应的凹槽;所
述供氧冷却室的凸台与压板的凹槽卡紧,并通过螺栓紧固连接;所述压板与储液槽通过螺
栓连接压紧,所述压板与储液槽两者之间夹有复合富氧膜和密封垫圈,并且密封垫圈位于
复合富氧膜上方。
4.如权利要求1所述的一种高速连续光固化3D打印装置,其特征是,
窗口盒的打印窗口采用复合富氧膜,复合富氧膜包括:多孔支撑层和富氧层,多孔支撑
层位于富氧层的下方。
5.如权利要求4所述的一种高速连续光固化3D打印装置,其特征是,
所述多孔支撑层是具有指状或者海绵状孔结构的膜,选用的材料包括聚四氟乙烯
PTFE、聚偏氟乙烯PVDF、聚丙烯腈PAN、聚砜PS、聚碳酸酯PC、聚对苯二甲酸乙二醇酯PET或聚
醚酰亚胺PEI,多孔支撑层的孔径50nm-2000nm,孔隙率60%-90%,多孔支撑层的厚度范围
为10-1000微米。
6.如权利要求4所述的一种高速连续光固化3D打印装置,其特征是,
所述富氧层是具有高氧气透过系数的致密膜,选用的材料包括聚二甲基硅氧烷PDMS、
聚全氟乙丙烯FEP或聚三甲基硅-1-丙炔PTMSP,富氧层的厚度范围为1-100微米。
7.如权利要求4所述的一种高速连续光固化3D打印装置,其特征是,
复合富氧膜具有透氧和透紫外光的特性,氧气透过系数在10barrer以上,365-405nm紫
外光透过率不低于80%。
8.一种高速连续光固化3D打印装置的工作方法,其特征是,包括如下步骤:
步骤(1):打印初始设置,预处理:开启原料供给单元,向窗口盒中的储液槽注入液态光
敏树脂;Z向工作台带动打印平台向下运动到初始工作位置,打印平台浸入到液态光敏树
脂,且打印平台与窗口盒中的复合富氧膜保持设定距离;开启供氧冷却单元和无油空压机;
步骤(2):连续打印成形件:Z向工作台以设定速度连续提升,同时成像模块连续播放层
面图像信息;紫外LED灯产生的紫外光选择性照射到液态光敏树脂上,打印平台不断的将固
化的树脂拉起,窗口盒底部树脂死区源源不断的向上补充固化所需液态光敏树脂,使得打
印过程连续化;
步骤(3):后处理:完成零件打印后,关闭成像模块、供氧冷却单元和无油空压机;Z向工
作台带动打印平台和打印零件返回原位;取下打印平台和打印零件;最后,将打印零件从打
印平台上取下。
9.如权利要求8所述的方法,其特征是,
所述步骤(2)连续打印过程中,供氧冷却模块工作,供氧冷却单元将冷却空气或者设定
浓度的低温氧气经冷却进气管路输送到供氧冷却室与窗口盒的复合富氧膜组成的封闭空
间内,源源不断的补充固化消耗的氧气,并经冷却出气管路将光敏树脂交联固化产生的热
量及时排出,为复合富氧膜补充氧气实现对死区含氧量的精确调控,同时带走固化产生的
热量,保持死区设定的温度,防止复合富氧膜的老化。
10.如权利要求8所述的方法,其特征是,
所述步骤(2)通过液面辅助施压模块使上腔室气体增压,高压气体迫使树脂向死区内
流动,加快固化所需树脂的补充速度;
大尺寸构件打印时,固化中心位置距死区边界入口较远,在高压气体的压力作用下,树
脂快速向固化中心位置流动,实现树脂及时补充,实现大面积的连续打印。

说明书

一种高速连续光固化3D打印装置及其工作方法

技术领域

本发明涉及增材制造和3D打印技术领域,具体涉及一种高速连续光固化3D打印装
置及其工作方法。

背景技术

光固化成形是发展最早、现阶段最成熟、应用最广泛的一种增材制造(3D打印)技
术,经过近30年的发展,已经从最初的立体光固化成型(Stereolithography,SL),发展出许
多新的工艺,诸如微立体光刻(Microstereolithography)、面投影微立体光刻技术
(Integral SL,Projection Microstereolithography)、数字光处理(Digital Light
Processing,DLP)3D打印、连续液面生长(Continuous Liquid Interface Production,
CLIP)、双光子聚合激光直写3D打印等。

传统的立体光固化成型是利用激光振镜或者掩模版技术控制光照区域,使树脂在
可控的光照区域内逐层固化,通过逐层固化叠加后生成三维实体模型。但这种逐点扫描光
固化方式具有以下不足:成形效率低(约8~12x104mm3/h);固化时存在较大的收缩,工件产
生翘曲变形。在逐点扫描光固化技术发展趋于成熟的背景下,基于面层成形的光固化成形
技术应运而生,主流的面成形光固化技术主要有:基于数字光处理(DLP)的面阵曝光固化技
术和连续数字光处理3D打印(连续光固化3D打印)。连续光固化3D打印是近年出现的一种非
常重要增材制造新技术,尤其是连续液面生长CLIP技术是2015年由美国Carbon3D公司所开
发的一种颠覆性的3D打印新技术,CLIP的基本原理:利用氧气阻聚的效应,氧气透过窗口与
树脂底部液面接触,形成一层薄的不能被紫外固化的区域,称为“死区”(Dead Zone),而紫
外线仍然可以透射通过死区,在上方继续产生聚合作用,同时避免了固化的树脂与底部窗
口的粘连。紫外线连续照射树脂,打印平台也是连续上升,实现连续打印。CLIP技术将光固
化打印过程从叠层打印变为连续打印,这带来三个方面的独特和显著的优势:(1)高效,比
传统的3D打印机要快25-100倍,理论上有提高到1000倍的潜力;(2)高精,高精度和高表面
质量,避免了传统3D打印的台阶效应,分层厚度上可以无限细腻,实现无分层打印;(3)高性
能,传统的3D打印零件因为层状结构,其力学特性在各个方向上不同,特别是在堆叠的方向
上,抗剪切性能很差,而CLIP打印的零部件的力学特性在各个方向保持一致,提高了性能和
扩大了应用范围。

基于CLIP的3D打印设备与传统光固化设备最大的不同在于盛放液态光敏树脂的
打印窗口(储液槽)。传统面曝光3D打印机以涂覆离型膜的高透光玻璃为盛放树脂装置的底
部窗口,而在CLIP技术中采用了具有透氧和透紫外光性能的特氟龙材料(Teflon AF)为底
部窗口。氧气透过窗口浸入液态光敏树脂,由于氧阻聚效应的存在,窗口表面会形成一定厚
度(几十微米)的不固化区域,从而使树脂固化发生在打印窗口之上,打印零件不会与槽底
窗口粘连,从而实现高速连续打印。但是CLIP工艺面临一些不足和局限性:

(1)所使用的透氧和透紫外光特氟龙材料的价格非常昂贵,而且需要特别的制造
工艺。

(2)光敏树脂发生交联固化反应时,会释放出大量的热,导致光束照射区域温度升
高,氧和透紫外光的特氟龙材料经过长时间照射后,容易因过热老化,其透明度降低,影响
光效和成形件质量。

(3)CLIP高速连续固化释放出的大量热源,现有的方案还无法及时有效的排出和
释放这些热,因而CLIP工艺目前成形工件被限定在较小的尺寸物体打印(小尺寸零件产生
的热相对较少,热交换排出释放相对容易)。

(4)对于光敏树脂的高速打印,当分离速度达到一定量时,最大的制约就是树脂的
回流速度了,尤其当树脂的粘度比较高的时候,更难以处理。

因此,对于大尺寸物体的打印,CLIP等工艺还面临无法实现底部死区液面和固化
液面消耗树脂材料的快速的补给难题。因此,现有的连续光固化工艺(如CLIP)只适用于小
尺寸物体的打印,打印的典型零件形状也大多限定在一些镂空结构,难以实现大尺寸和实
体零件的高效制;并且打印速度和质量的进一步提高受到限制。迫切需要开发新的工艺和
技术。

发明内容

本发明的目的就是为了解决上述问题,提供一种高速连续光固化3D打印装置及其
工作方法,它采用一种新的打印窗口,并结合了窗口盒的复合富氧膜、供氧冷却模块、液面
辅助施压模块三者的优势,实现对死区含氧量精准有效控制(死区氧含量,死区和固化液面
快速补给,固化过程释放热量的快速排出),实现对大尺寸、任意形状成形件低成本、高效连
续打印。

为了实现上述目的,本发明采用如下技术方案:

一种高速连续光固化3D打印装置,包括:机箱本体,所述机箱本体由中间隔板分为
上腔室和下腔室;所述下腔室设有成像模块,所述上腔室设有窗口盒和供氧冷却模块,所述
窗口盒和供氧冷却模块组合固定安装在中间隔板上,所述供氧冷却模块设置在所述窗口盒
的正下方,所述成像模块设置在所述窗口盒的正下方;所述窗口盒正上方设有打印平台,所
述打印平台安装在Z向工作台上;所述窗口盒与原料供给单元连接;

所述供氧冷却模块,包括供氧冷却室,所述供氧冷却室的两端分别与冷却进气管
路和冷却出气管路连接,所述冷却进气管路与供氧冷却单元连接;供氧冷却室安装在窗口
盒打印窗口的正下方,并与打印窗口形成封闭腔室;

打印时,通过供氧冷却模块通过控制窗口盒底部树脂死区的含氧量和将连续打印
过程中释放的热量及时排出来提高打印速度。

一种高速连续光固化3D打印装置,还包括:液面辅助施压模块,所述液面辅助施压
模块包括设置在下腔室中的无油空压机,所述无油空压机与加压进气管路的入口连接,所
述加压进气管路的出口设置在上腔室中,所述上腔室具有气密性。通过树脂液面辅助施压
模块增加上腔室的气体压强,打印时,高压气体向光敏树脂液面施压,加快光敏树脂向窗口
盒底部树脂死区和固化区域的流动,实现树脂快速回流和补给。

所述窗口盒采用分离式结构,包括:储液槽、密封垫圈、复合富氧膜和压板;所述供
氧冷却室、压板、复合富氧膜、密封垫圈和储液槽上均开有通孔,供氧冷却室、压板和储液槽
的孔为螺纹孔,供氧冷却室的一侧设有凸台,压板的一侧有与供氧冷却室上凸台对应的凹
槽;所述供氧冷却室的凸台与压板的凹槽卡紧,并通过螺栓紧固连接。所述压板与储液槽通
过螺栓连接压紧,所述压板与储液槽两者之间夹有复合富氧膜和密封垫圈,并且密封垫圈
位于复合富氧膜上方。供氧冷却室底部设有透明石英板,透明石英板的面积大于成像面积。

所述储液槽用于盛放液态光敏树脂,所述密封垫圈用于防止储液态光敏树脂泄
漏,所述压板用于将储液槽与复合富氧膜固定。

窗口盒的打印窗口采用复合富氧膜,复合富氧膜包括:多孔支撑层和富氧层组成,
多孔支撑层位于富氧层的下方。

所述多孔支撑层是具有指状或者海绵状孔结构的膜,选用的材料包括聚四氟乙烯
PTFE、聚偏氟乙烯PVDF、聚丙烯腈PAN、聚砜PS、聚碳酸酯PC、聚对苯二甲酸乙二醇酯PET或聚
醚酰亚胺PEI,多孔支撑层的孔径50nm-2000nm,孔隙率60%-90%,多孔支撑层的厚度范围
为10-1000微米。

所述富氧层是具有高氧气透过系数的致密膜,选用的材料包括聚二甲基硅氧烷
PDMS、聚全氟乙丙烯FEP或聚三甲基硅-1-丙炔PTMSP,富氧层的厚度范围为1-100微米。

复合富氧膜具有透氧和透紫外光的特性,氧气透过系数在10barrer以上,365-
405nm紫外光透过率不低于80%。而且具有优良的机械性能。

所述打印窗口面积大于成像面积。

所述打印平台面积小于打印窗口,所述打印平台面积等于或大于成像面积。打印
平台位于窗口盒正上方,并与打印窗口保持平行。

所述供氧冷却室的底板采用透明石英玻璃,365-405nm紫外光透过率不低于90%,
底板面积大于成像面积。

所述成像模块包括:紫外LED灯,所述紫外LED灯与动态掩膜生成单元连接。

所述紫外LED灯为紫外LED模组,光照强度可调,并配有散热板及风扇进行散热。紫
外LED灯的功率范围为10-200W,波长范围365-405nm,其发出的光线经光路准直后照射到动
态掩膜生成单元上。

所述动态掩膜生成单元采用数字微镜器件DMD、液晶显示器LCD或者空间光调制器
SLM。不同类型动态掩膜生成单元需要配置相对应的光路准直,准直光路的作用是将产生的
紫外光按照所需角度均匀的照射到动态掩膜生成单元上;动态掩膜生成单元位于打印窗口
下方,生成图像垂直投影到窗口盒的打印窗口上。

所述打印平台通过连接支架固定在Z向工作台上;Z向工作台固定在在机箱上腔室
后板上。

Z向工作台为高精密位移工作台,包括:精密电动平移台、高精度直线滑台或压电
位移台。

所述Z向工作台在打印过程中的移动速度范围为10mm/h-1000mm/h,在非打印过程
中的移动范围为100mm/min-1000mm/min。

所述原料供给单元包括:原材料储料筒,供料连接管和计量泵。所述原材料储料筒
通过供料连接管与窗口盒连接,所述计量泵分别与原材料储料筒和供料连接管相连。原材
料储料筒与计量泵设置在下腔室。

所述下腔室设有散热窗口。

一种高速连续光固化3D打印装置的工作方法,包括如下步骤:

步骤(1):打印初始设置,预处理:开启原料供给单元,向窗口盒中的储液槽注入液
态光敏树脂;Z向工作台带动打印平台向下运动到初始工作位置,打印平台浸入到液态光敏
树脂,且打印平台与窗口盒中的复合富氧膜保持设定距离;开启供氧冷却单元和无油空压
机;

步骤(2):连续打印成形件:Z向工作台以设定速度连续提升,同时成像模块连续播
放层面图像信息;紫外LED灯产生的紫外光选择性照射到液态光敏树脂上,打印平台不断的
将固化的树脂拉起,窗口盒底部树脂死区源源不断的向上补充固化所需液态光敏树脂,使
得打印过程连续化;

步骤(3):后处理:完成零件打印后,关闭成像模块、供氧冷却单元和无油空压机。Z
向工作台带动打印平台和打印零件返回原位;取下打印平台和打印零件;最后,将打印零件
从打印平台上取下。

所述步骤(1)的打印平台与窗口盒中的复合富氧膜保持设定距离为10-50微米。

所述步骤(2)连续打印过程中,供氧冷却单元和无油空压机一直处于开启状态,并
且原料供给单元向储液槽不断补充添加液态光敏树脂。

所述步骤(2)连续打印过程中,供氧冷却模块工作,供氧冷却单元将冷却空气或者
设定浓度的低温氧气经冷却进气管路输送到供氧冷却室与窗口盒的复合富氧膜组成的封
闭空间内,源源不断的补充固化消耗的氧气,并经冷却出气管路将光敏树脂交联固化产生
的热量及时排出,为复合富氧膜补充氧气实现对死区含氧量的精确调控,同时带走固化产
生的热量,保持死区设定的温度,防止复合富氧膜的老化。

所述步骤(2)通过液面辅助施压模块使上腔室气体增压,高压气体迫使树脂向死
区内流动,加快固化所需树脂的补充速度;

大尺寸构件打印时,固化中心位置距死区边界入口较远,在高压气体的压力作用
下,树脂快速向固化中心位置流动,实现树脂及时补充,实现大面积的连续打印。

所述步骤(2)通过复合富氧膜与供氧冷却模块共同作用,精准调控死区的含氧量
和死区的厚度。

本发明的有益效果:

本发明综合利用复合富氧膜、供氧冷却模块、液面辅助施压模块三者的共同作用,
实现大尺寸、任意形状零件的低成本、高效连续打印。

(1)实现了大尺寸、任意形状物体/零件的打印。通过引入复合富氧膜、供氧冷却模
块、液面辅助施压模块,实现对打印死区含氧量和死区厚度的精确调控,有效解决大尺寸构
件打印过程中释放出热量的快速排出和释放,以及大尺寸零件制造过程中死区和固化区域
大面积树脂快速回流补给的难题。

(2)生产成本低。采用一种低成本的复合富氧膜,降低了生成成本。提高连续光固
化工艺的性能,而且能够精准调控死区的含氧量和死区的厚度。

(3)通过液面辅助施压模块,提高了连续打印过程中树脂回流速度,实现死区和固
化液面的树脂快速补给,提高打印速度;通过液面辅助施压模块,提高了大尺寸零件生产过
程中树脂回流速度,有效的解决大尺寸零件制造过程中死区和固化区域大面积树脂快速回
流难题,实现了任意形状大尺寸物体的高速连续打印,突破了CLIP等现有连续光固化3D打
印在成形尺寸、形状、效率、精度和成本方面的制约。

(4)通过供氧冷却模块,将连续打印过程中产生释放的大量热及时排出,提高连续
打印速度;通过复合富氧膜和供氧冷却模块对于死区含氧量的精确调控,提高了打印速度。
通过供氧冷却模块,一方面精准调控死区的含氧量,提高生产率、扩大工艺使用范围(可用
的打印材料);另一方面,能够将光敏树脂材料交联固化释放出的热快速的排除,提高打印
效率,同时延长复合富氧膜使用寿命,尤其是增大了打印件的尺寸(现有的CLIP等连续光固
化工艺,光固化过程中产生的热不能有效及时的排除,制约了生产率,影响了制件的精度,
尤其是没有实现大尺寸零件打印)。

(5)打印精度高,避免热应力等缺陷。通过供氧冷却模块,保持死区和固化区域的
温度在最优范围内,产生的热量及时排出。有效避免打印过程由于温度导致的层间热应力
问题,提高打印精度和质量。

(6)打印材料适用性广,扩大了工艺适用范围。针对不同打印材料的要求。通过结
合复合富氧膜和供氧冷却模块,实现对死区含氧量的精确调控,适用不同的打印材料,扩大
了本工艺的适用范围。

(7)延长富氧膜使用寿命。通过供氧冷却模块在为复合富氧膜补充氧气的同时带
走固化产生的大量热量,防止复合富氧膜的老化。

(8)本发明通过液面辅助施压单元使3D打印装置上腔室气体增压,高压气体强迫
树脂向“死区”区域内流动,加快了固化所需树脂的补充速度。尤其是大尺寸构件打印时,固
化中心位置距“死区”边界入口较远,在高压气体的压力作用下,树脂会以更快的速度向固
化中心位置流动,解决了大尺寸打印情况下树脂补充不及时的难题,实现大面积的连续打
印。

(9)本发明实现了大尺寸、任意形状制件的低成本、高效连续打印,适用材料广泛,
打印件的精度和质量高,一致性好,工艺稳定可靠,具有广泛的工业应用价值。即可用于桌
面级3D打印机,又能用于工业级3D打印。

附图说明

图1是本发明实施例1高速连续光固化3D打印装置的结构原理示意图;

图2是本发明实施例1高速连续光固化3D打印装置的结构原理立体图;

图3是本发明实施例1窗口盒和供氧冷却室爆炸图示意图;

图4是本发明实施例2高速连续光固化3D打印装置结构原理示意图。

其中,1DLP光机,2紫外LED灯,3供氧冷却单元,4无油空压机,5冷却进气管路,6加
压进气管路,7冷却出气管路,8供氧冷却室,801透明石英板,9窗口盒,10原料供给单元,11
机箱,12打印平台,13连接支架,14Z向工作台,15压板,16复合富氧膜,17密封垫圈,18储液
槽,19紫外LED模组,20菲涅尔透镜,21液晶显示屏。

具体实施方式

下面结合附图与实施例对本发明作进一步说明。

实施例1

图1是本发明实施例1高速连续光固化3D打印装置的结构原理示意图,图2是本发
明实施例1高速连续光固化3D打印装置的结构原理立体图。实施例1高速连续光固化3D打印
装置包括:DLP光机1、紫外LED灯2、供氧冷却单元3、无油空压机4、冷却进气管路5、加压进气
管路6、冷却出气管路7、供氧冷却室8、窗口盒9、原料供给单元10、机箱11、打印平台12、连接
支架13、Z向工作台14。其中DLP光机1与紫外LED灯2组成的成像单元位于机箱11下腔室;两
侧分别设置供氧冷却单元3和无油空压机4;DLP光机1产生的图像向上投影到窗口盒9上;窗
口盒9与供氧冷却室8组合安装在机箱11中间隔板上,供氧冷却室8两端分别连接冷却进气
管路5和冷却出气管路7;冷却进气管路5的另一端与供氧冷却单元3相连接;加压进气管路6
的一端与无油空压机4相连,另外一端置于机箱的上腔室;打印平台12位于窗口盒9正上方,
并通过连接支架13固定在Z向工作台14上;Z向工作台14固定在在机箱11上腔室后板上;原
料供给单元10通过连接管路与窗口盒9的储液槽18相连接,原料供给单元10置于机箱11下
腔室。

所述DLP光机1采用TI公司DLP9500UV数字微镜器件(DMD),光路准直集成在DLP光
机1中。DLP光机1包括动态掩膜生成单元、光路准直。

所述紫外LED灯2功率为30W,紫外光波长为365nm。

所述供氧冷却单元3包括空压机、涡流管冷却器、连接器件等。空压机通过连接器
件与涡流管冷却器相连接。供氧冷却单元3流量范围为0.1-10L/min,冷却进气管路5、冷却
出气管路7的工作范围是1-7bar。冷却气体的温度1-15℃。

所述供氧冷却单元3、冷却进气管路5、冷却出气管路7、供氧冷却室8组成供氧冷却
模块,供氧冷却单元3将冷却空气(或者一定浓度的低温氧气)经冷却进气管路5输送到供氧
冷却室8与窗口盒9的复合富氧膜16组成的封闭空间内,源源不断的补充固化消耗的氧气,
并经冷却出气管路7将光敏树脂交联固化产生的热量及时排出。供氧冷却模块一方面实现
对死区含氧量的精确调控,另一方面将连续打印过程中产生的大量热及时排除,保持死区
设定的温度。

所述无油空压机4的功率6KW,工作压力1-7bar。

所述无油空压机4、加压进气管路6、机箱11上腔室组成液面辅助施压模块,实现对
死区和固化液面的树脂快速回流和补给。

所述机箱11以中间隔板为界分为上下腔室。上腔室要求气密性良好,机箱框架连
接处采用高气密性橡胶粘结,下腔式开有散热窗口,散热性良好。

图3是本发明实施例1窗口盒9和供氧冷却室8爆炸图,所述窗口盒9包括储液槽18、
密封垫圈17、复合富氧膜16、压板15。所述供氧冷却室8、压板15、复合富氧膜16、密封垫圈
17、储液槽18上开有上下贯通的通孔,其中供氧冷却室8、压板15、储液槽18上孔为螺纹孔,
供氧冷却室8的一侧设有凸台,压板15的一侧有与供氧冷却室8上凸台对应的凹槽。所述供
氧冷却室8一侧凸台与压板15一侧凹槽卡紧,并通过螺栓连接紧固。所述压板15与储液槽18
通过螺栓连接压紧,两者之间夹有复合富氧膜16和密封垫圈17,并且密封垫圈17位于复合
富氧膜16上方。所述供氧冷却室8一端与冷却进气管路5相连接,另一端与冷却出气管路7相
连接,供氧冷却室8底部设有透明石英板801,石英板的面积应大于成像面积(成形零件的尺
寸)。

所述复合富氧膜16由PET多孔支撑层和PDMS富氧层组成。其中,PET多孔支撑层的
厚度是100微米,PET多孔支撑层孔径为1微米,孔隙率为80%,PDMS选择层的厚度为50微米。
复合富氧膜16对于波长为395-405nm的紫外光透过率不低于80%,氧气透过系数在
100barrer以上,拉伸强度在10MPa以上。

所述供氧冷却室8通过顶起复合富氧膜16使其处于紧绷状态。

基于上述实施例1高速连续投影曝光固化液态光敏树脂的3D打印装置,实现高速
连续光固化3D打印的工作方法,包括如下步骤:

步骤1:打印初始设置,预处理。开启原料供给单元10,向窗口盒9中的储液槽18注
入液态光敏树脂;Z向工作台14带动打印平台12向下运动到初始工作位置,打印平台12浸入
到液态光敏树脂,且与复合富氧膜16保持约50微米的距离。氧气透过复合富氧膜16进入液
态光敏树脂,在膜表面形成厚度约20微米的“死区”,区域内的树脂在紫外光的照射下也不
会固化,所以光固化过程始终发生在复合富氧膜16上约20微米的位置。

步骤2:连续打印成形件。Z向工作台14上以设定速度连续提升,同时DLP光机1连续
播放层面图像信息。紫外LED灯2产生的紫外光选择性照射到树脂上,打印平台12不断的将
固化的树脂拉起,“死区”源源不断的向上补充固化所需树脂,使得打印过程连续化。连续打
印过程中,供氧冷却单元3,无油空压机4一直处于开启状态,并且原料供给单元10向储液槽
18中不断补充添加树脂。

步骤3:后处理。完成零件打印后,关闭DLP光机1、紫外LED灯2、供氧冷却单元3、无
油空压机4。Z向工作台14带动打印平台12和打印零件返回原位。取下打印平台12和打印零
件。将打印零件从打印平台12上取下。

实施例2

实施例2打印装置结构原理示意图如图4所示,采用液晶显示技术产生动态掩膜。
其中成像由紫外LED模组19、菲涅尔透镜20、液晶显示屏21组成,紫外LED模组19产生的紫外
光在经菲涅尔透镜20准直后,照射到液晶显示屏21上,液晶显示屏21连续播放图像信息,从
而产生固化所需的投影图像。

实施例3

作为另一种实施方式,所述冷却出气管路7设置为出口压力可调。当供氧冷却室8
与复合富氧膜16组成的封闭空间内气压达到一定阈值时,才可以经冷却出气管路7排出,通
过加大封闭空间内气压,提高氧气透过复合富氧膜的能力。

上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范
围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不
需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

一种高速连续光固化3D打印装置及其工作方法.pdf_第1页
第1页 / 共14页
一种高速连续光固化3D打印装置及其工作方法.pdf_第2页
第2页 / 共14页
一种高速连续光固化3D打印装置及其工作方法.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《一种高速连续光固化3D打印装置及其工作方法.pdf》由会员分享,可在线阅读,更多相关《一种高速连续光固化3D打印装置及其工作方法.pdf(14页珍藏版)》请在专利查询网上搜索。

本发明公开了一种高速连续光固化3D打印装置及其工作方法,包括:机箱本体,机箱本体由中间隔板分为上腔室和下腔室;下腔室设有成像模块,上腔室设有窗口盒和供氧冷却模块,窗口盒和供氧冷却模块组合固定安装在中间隔板上,供氧冷却模块设置在所述窗口盒的正下方,所述成像模块设置在所述窗口盒的正下方;所述窗口盒正上方设有打印平台,所述打印平台安装在Z向工作台上;所述窗口盒与原料供给单元连接;本发明结合了窗口盒的复合。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1