至少清除掉杂质氧和一氧化碳之一 的物流的制备方法和装置 本发明涉及象氮和稀有气体这样的化学惰性化合物物流的制备方法和装置,至少清除掉物流中的杂质氧和一氧化碳之一。
在一些工业领域中,特别是电子工业中经常使用象氮和稀有气体即氦、氖、氩、氪、氙这样的惰性化合物及其混合物。更特别的是,电子工业中要求所述惰性化合物尽可能纯,尤其是不含杂质氧(O2)和一氧化碳(CO)。
专利申请EP-A-0,509,871描述了一种生产氩的方法。按照该方法,氧含量低于约1000ppm(百万份数,以体积计)的不纯的氩在接近环境温度下、催化剂床中与过量的氢反应,催化剂床由至少一种铂族金属地颗粒组成,颗粒由高比表面的颗粒载体所承载。
专利申请EP-A-0,444,422描述了一种用一种或多种吸气剂式还原性金属的床层脱除热氩中含量为0.8mol%的氧的方法。这种吸气剂可含有铜、镍或者能化学吸附氧并能用氢再生的其它金属。
另外,专利US-A-3,996,028揭示了一种纯化氩的方法,方法是使氩流过A型合成沸石,这使合成沸石仅吸附氧。使用沸石进行吸附,沸石温度保持在-186℃(氩的沸点)~-133℃。
本发明的第一个方面是清除掉所含杂质CO和O2的物流的制备方法,该物流含有至少90mol%的选自氮和稀有气体的惰性化合物,该方法可用于低温、通常为低于-40℃的物流;该物流是气态或液态的。
根据第二个方面,本发明还涉及一种至少清除掉杂质O2和CO之一的物流的制备装置。
于是,本发明包括一种至少清除掉杂质O2和CO之一的物流的制备方法,其特征在于:
a)将待纯化的物流冷却至低于-40℃的温度,待纯化的物流一方面含有至少90%的选自氮、氦、氖、氩、氪、氙的一种化合物或这些化合物的混合物,另一方面至少含有杂质O2和CO中的一种;
b)经冷却的物流流过一种吸附剂以便至少吸附杂质O2和CO中的一种,所述吸附剂至少含有一种多孔的金属氧化物;
c)对至少清除掉杂质O2和CO之一的物流进行回收,
其中物流由液氮组成的方法不包括在内。
现在将参照下面的说明和附图详细描述本发明。
图1表示用来除去储罐中液态稀有气体物流中存在的杂质O2和CO的装置。
图2表示用来在运输终点处除去液态稀有气体中所含杂质O2和CO的装置。
图3表示用来贮存液态稀有气体的储罐,装有一个用来纯化这种液态稀有气体的装置,该装置与储罐相连接以输送液态稀有气体。
图4表示由空气制备高纯度液态氩的装置。
待纯化的物流通常至少含有96mol%的选自氮和稀有气体即氦、氖、氩、氪和氙的一种化合物。当稀有气体是氩时,到100%的余量通常由氮和杂质O2组成。
待纯化的物流通常含有低于1000ppm(体积)的O2杂质,通常低于100ppm(体积)的O2杂质。当待纯化的物流基本上由氮气组成时,其一氧化碳含量可低于30ppm(体积),更一般的情况是CO含量在0.15~1.5ppm(体积)。当待纯化的物流基本上由一种或多种稀有气体例如氩组成时,它通常不含CO或含极少的CO。然而,这种杂质偶然会污染所述惰性化合物。在这种情况下,可用本发明的方法除去所述稀有气体中含量为5ppm的CO。
本发明的方法特别适合于对冷却至低于温度T的物流进行纯化,T等于Pe+30℃等于“Pe”是指操作压力下所述物流的沸点。根据本发明方法的优点,处理的物流可以是气态或液态的。更具体地说,待纯化的物流含有冷却至低于-130℃的氩气或者含有冷却至低于-100℃的氪和氙的混合物,温度是在操作压力下测量的。根据本发明方法的独特优点,待纯化的物流含有液态氩。
在本发明的上下文中,术语“多孔的金属氧化物”是指单一金属的氧化物以及含有多种金属的混合的氧化物。硅在这里不被认为是一种金属。所以在本发明上下文中含有SiO2图案的沸石不是金属氧化物。可提及的金属氧化物有,特别是过渡金属元素的氧化物,尤其是那些在周期表中IVB、VB,VIIIB和IB族、原子数为22~79的金属的氧化物。这些金属中,铜、钴、镍、锰、银和铁各自的氧化物或者混合形式的氧化物是优选的。
含有混合的一氧化铜和氧化锰以及合适的话,其它过渡金属氧化物的金属氧化物是特别优选的。有利的是,这类混合的一氧化铜和氧化锰是那些由术语“hopcalites”为人们所公知的氧化物。hop-calites是人们公知的作为催化剂的多种化合物,其能在标准温度下氧化一氧化碳。除了氧化锰(MnO2)和一氧化铜(CuO)外,hopcalite还可含有其它金属氧化物,特别是氧化钴和氧化银。可以特别提及的是含有(%重量)50%MnO2、30%CuO、15%Co2O3和5%Ag2O的hopcalites。不过,本发明特别优选的hopcalite是二元的hopcalite,基本上由MnO2和CuO组成,合适的话,含有微量的选自铂、钯、锇、铱、铑和钌的至少一种金属。更具体地说,后一种类型的hopcalite含有40-70%(重量)MnO2和25-50%(重量)CuO。更为具体地说,这种hopcalite含有约60%(重量)MnO2和40%(重量)CuO。
本发明的吸附剂具有高于0.4nm的平均孔径,优选0.5~4nm。这种吸附剂的孔体积可以高于0.1cm3/g,优选0.15~5cm3/g。比表面可以高于150m2/g,优选150~300m2/g。吸附剂可以是粉末状或棒状的,或者优选颗粒状或球状。这些颗粒和球的直径可以在1~5mm。
当要按照本发明进行纯化的物流是气态时,它通常经受1~200巴的压力,优选1~15巴。当该物流是液态时,它通常经受1~20巴的压力,优选1~15巴。流过吸附剂、经冷却的物流通常具有高于10-3m/s的线速度,优选10-3~2×10-2m/s。
当已经除去杂质O2和/或CO之后,所用吸附剂可以用再生气体以常规方式再生。这种再生气体可以以相对于待纯化物流的并流流动的方式流过吸附剂,或者优选逆流流动的方式。所述气体通常含有氮气或一种氮气与象烃这样的还原气的混合物,或者优选氢。这种混合物可含有低于5mol%的还原气。通过根据前述的本发明的方法纯化过的氮的汽化可以生产用作再生气体的氮气。再生气体的温度可以在大约100℃~250℃,优选150℃~250℃。
吸附剂可以分成并联设置的两个单独的处理区域,两区域中一个区域被再生而另一个与待纯化的物流相接触。
在第一次使用吸附剂从待纯化物流中除去所述杂质O2和CO之前,可以对所述吸附剂进行活化处理,特别是为了将吸附剂还原并除去其中可能含有的微量水分。活化可以在150℃~300℃的温度下进行,优选大约250℃。最好是在用一种由氮和氢组成的气氛冲洗的情况下进行活化。
按照本发明的方法除去杂质O2和CO之前或之后,处理的物流可以带有用公知方法所除去的杂质之外的杂质。因此,如果处理的物流含有氢,可以通过蒸馏法除去氢。当处理的物流基本上由氮组成时,氢的存在就更加值得注意。当处理的物流基本上由常压蒸馏所获得的稀有气体特别是氩组成时,就往往有必要从物流中除去所有微量的氮。可以用常规方式在脱氮柱中进行这种脱除,例如按照专利申请EP-A-0,509,871中所述的方法。
本发明的方法可以获得一种杂质O2和CO含量都低于100ppb或低于10ppb甚至低于2ppb的物流。
根据另一方面,本发明涉及一种至少清除掉杂质O2和CO之一的物流的制备装置。该物流含有至少90mol%,优选至少96mol%的选自氮和象氦、氖、氪、氙或更具体地说氩这样的稀有气体的一种化合物或者这些化合物的混合物。该装置的特点在于,它包括一个待纯化物流的来源,其与至少一个吸附区域的入口相连,该吸附区域含有至少吸附杂质O2和CO之一的吸附剂,该吸附剂基本上由一种多孔的金属氧化物组成。吸附区域的出口装有一根连接管,连接管导入一个储罐或者导入一个物流使用站,该物流至少清除掉杂质O2和CO之一。当待纯化的物流基本上由一种或多种液态稀有气体组成时,经过纯化后,为了后续的应用,可对物流进行汽化处理。
图1表示本发明的一种装置,包括液态氩源1,要清除掉氩源中的杂质氧进行纯化,如果合适,还要清除掉杂质CO进行纯化,液态氩源1由一个固定的液氩储罐组成。储罐由装有泵6的导管2连到反应器3的入口上,反应器3含有至少一种本发明的吸附剂,利用多孔的金属氧化物可以除去一种或多种上述杂质。根据本发明的一个特别有利的方面,吸附剂是一种混合的一氧化铜和氧化锰,优选hopcalite。
反应器3的出口装有一根连接管4,与用来贮存经纯化的液态氩的罐5相通。液态氩源还装有一根导管7,用来向需要使用不纯液态氩的地方(未示出)输送原料。
按要求并根据用户的需要,图1所示的装置可以输送经纯化或未经纯化的液态氩。应液态氩用户的要求,可以很容易地安装图1所示装置,就此而论,只需对已输送不纯液态氩的工厂增设反应器3以及连接装置2和4。
图2表示本发明的一种装置,包括一个待纯化的液态氩源,它由可移动的液态氩储罐11特别是油车的储罐组成。储罐11由导管2连到反应器3的入口,反应器3含有至少一种本发明的吸附剂,吸附剂含有一种多孔的金属氧化物,能除去液态氩中所含的杂质O2以及合适的话,除去杂质CO。所述反应器3的出口设置有装有阀8的连接管4,连接管4通入用来贮存经纯化的液态氩的罐5。反应器3还经导管9与氮气源NG(未示出)相连。氮气通过以逆流流动方式冲洗使吸附剂再生。氮气经导管10从反应器3排出。
图2所示装置可以就在离开罐11的液态氩贮存于储罐5之前对其进行纯化。
图3所示装置包括一个用来贮存待纯化的液态氩的固定的罐1,罐1经带有阀12的导管2与反应器3的入口相连,反应器3含有如前定义的吸附剂。该反应器的出口经导管4与用来贮存经纯化的液态氩的可移动的罐13相连。导管2设有一个装有阀14的支管15。
阀12是打开的,以填装可移动的储罐13。不纯的液态氩经导管2从储罐1送入反应器3。经纯化的液态氩再从反应器3送入可移动的罐13。阀14可以是打开或关闭的。当阀14打开时,在填装罐13的同时,可以用不纯的液态氩填装另一个可移动的或固定的罐(未示出)。
图4表示一个根据本发明的工厂,包括一个常压蒸馏装置,用来在低压即接近大气压下生产氧气OG、液态氧OL、氮气NG以及在约1.8×105帕的压力下生产液态氩ArL。该工厂包括一个双层蒸馏柱101(这种类型的蒸馏柱具有“尖塔”108)、用来生产不纯液态氩的柱102和用来从不纯的氩中除去氧的装置103。双层柱101包括一个中压柱105,例如在6×105帕的压力下操作;在中压柱105上部有一个低压柱106,例如在稍高于大气压的压力下操作。柱106包括一个回流管110和一个称为“氩龙头”的管109。管109和110与柱102相连。待处理的空气在柱105的底部引入,柱105的顶部蒸汽(氮)通过蒸发器/冷凝器107与柱106的容器液体(氧)接触而进行热交换。
柱102至少包括100块理论塔板,优选100~130块理论塔板。该柱可用填料特别是规则填料填充,最好是用文献WO-A-89/10527中所述的波纹交联填料。这样,根据所用的理论塔板数,不纯的氩含有至多约100ppm(体积)。柱102包括一个由膨胀的富液所冷却的塔顶冷凝器111。
专利申请EP-A-0,509,871描述了柱101和102的操作方式。把这种操作方式引入本说明书作参考。
装置103包括两个反应器113和113′,每个反应器装有本发明的吸附剂,例如hopcalite。当对反应器113或113′中的一个进行再生时,另一个反应器用来纯化经管112离开柱102的液态氩。如需要,可在管112上安装一个低温泵。在反应器113或113′的出口处回收液态氩。通过用氮气以逆流流动的方式冲洗来再生吸附剂。氮气经管116和116′从反应器113和113′中脱除。
经纯化的液态氩可直接送往贮存区或使用站,或者在常规的脱氮柱中预处理以除去所含的氮杂质。
图1至3所示装置可生产高纯度的液态氩,不含杂质O2,合适的话,并且不含CO。这些装置可用来制备其它的液态惰性气体,即氖、氙、氪和氦或这些化合物相互间的混合物和/或与氩的混合物。
下面的实施例意在说明本发明。
在这些实施例中,所用的吸附剂或者是由Drger公司出售的、含有约63%MnO2和约37%CuO的hopcalite,或者是由MolecularProducts公司出售的、含有约60%(重量)MnO2和约40%(重量CuO的hopcalite。
用Trace Analytical公司出售的RGA3色谱测定CO杂质。用Osaka Sanso Kogyo Ltd公司出售的OSK分析仪连续测定O2杂质。RGA3色谱对CO的检测极限低于2ppb(体积十亿份数)。OSK分析仪对O2的检测极限为2ppb。实施例1:在-170℃、8巴下处理氮气
将-170℃、加压至8巴的氮气流流过3升反应器中所含的由Drger公司出售的hopcalite型吸附剂。反应器入口处氮气含有1ppm(体积)CO和3ppm(体积)O2。流量为33 Sm3/h。
处理80小时后,在反应器的出口处测定残留O2和CO的含量。氮气中氧含量低于2ppb,CO含量低于100ppb。实施例2:在-165℃、8巴下处理液态氩
加压至8巴的液态氩物流以33 Sm3/h的流量流过Drger公司出售的hopcalite型吸附剂。该吸附剂含于一个3升反应器中。反应器入口处这种液态氩中的氧含量为3ppm(体积)。
处理32小时后,反应器出口处残留O2的含量为2ppb。实施例3:在-165℃、8巴下处理液态氩
-165℃、加压至8巴的液态氩的物流流过Molecular Products公司出售的hopcalite型吸附剂。该吸附剂含于一个3升反应器中。流量为33 Sm3/h。反应器入口处这种液态氩中的氧含量为3ppm(体积)。液态氩中还人为地污染有1ppm(体积)CO。
处理45小时之后,液态氩中的氧含量仅为2ppb,没有检测CO含量。实施例4:在-150℃、8巴下处理氩气
-150℃、加压至8巴的氩气流流过Molecular Products公司出售的hopcalite型吸附剂。该吸附剂含于一个3升反应器中。流量为33 Sm3/h。反应器入口处这种氩气中的氧含量为3ppm(体积)。氩气中还人为地污染有1ppm(体积)CO。
处理40小时之后,氩气中的氧含量为2ppb,没有检测CO含量。
实施例5:在-150℃、8巴下处理氩气
-150℃、加压至8巴的氩气流流过Molecular Products公司出售的hopcalite型吸附剂。该吸附剂含于一个3升反应器中。流量为33Sm3/h。反应器入口处这种氩气中的氧含量为20ppm(体积)。
处理15小时后,氩气中的氧含量为2ppb。