本发明涉及用于保健、含有油溶成分的液体组合物。本发明特别涉及诸如饮料等人或动物内用或外用的着色制品的组合物、制备这类组合物的工艺以及含有这些组合物的产品。 色泽明亮的食物和饮料制品受到消费者的极大欢迎。就“保健”或“强力”类饮料而言,也要求鲜亮明净,显得“干净新鲜”。明净的产品还有助于人们识别产品是否受到某些微生物的污染。鲜亮的黄色、橙色和红色饮料的生产通常使用允许在食物中使用的若干合成染料中的一种,如酒黄石、日落黄FCF和淡红。就可溶于水和不怕光来说,“偶氮”着色剂在大部分水基饮料中特别有用。上述化学、物理特性使得将这些着色剂作为主要着色成分的许多产品在商业上取得了很大成功。
使用这些偶氮着色剂的一个主要缺点是它们不是天然产品,而是人造产品。由于消费者日益关切食物中是否使用人造添加剂以及大众媒体对食品问题的重视,制造商为消费者提供他们以特别喜爱“自然生成”色的态度来选择以被允许的、非偶氮食物色素着色地产品的机会的压力与日俱增。遗憾的是,用许多非偶氮色素给透明的水基产品着色极端困难,因为大多数现有的黄色和(或)橙色着色剂是油溶的。
类叶红素是存在于植物、海藻和菌类中的类萜类中的自然生成的从黄色到红色的染料。它们包括“叶红素”(α-叶红素和β-叶红素的混合物,但β-叶红素占多数)、α-叶红素、β-叶红素、r-叶红素、番茄红素、玉米黄质、叶黄素、胭脂树橙(例如从溶剂萃取的胭脂树橙)、辣椒红(辣椒粉)、芜青素、虾青素、海葵赤醇、紫赤藓素、β-8′-阿扑-叶黄素(阿扑-叶黄素)、β-12′-阿扑-叶黄素以及它们含羟基或羧基的酯。许多自然生成的着色素可用合成方法制得。例如许多工业用β-叶红素是合成制备的。许多类叶红素在自然界是以顺式或反式异构形式出现的,而合成的该化合物通常为消旋混合物。
类叶红素被广泛用作食品和饮料制品的着色剂。但它们不溶于水,很难溶于食品制品中通常使用的油,且易氧化,这就限制了它们的使用,特别是在水基制品中,如饮料、糖汁和其它加水的产品。
英国专利说明书1407779(Hoffman-La Roche)描述了一种类叶红素着色组合物,它能在水中扩散开来形成明净透亮的水扩散体。这些已知组合物主要含大量的多乙氧基醚60和80乳化剂,同时含低分子量的饱和椰子脂酸和饱和的椰子油甘油三酸脂。但是一般不希望出现大量乳化剂。尤其是多乙氧基醚80,它的味道不好,如以上述量大量使用,会在大多数饮料中引起“油气“或“脂气“太浓而无法饮用。而且,这样大的量也会增加成本,我们现在发明了一种组合物,它不依赖于大量的脂酸、甘油三酸酯和乳化剂。
因此本发明为制备用于人或动物的明净的保健食品提供了一种水性组合物,它包括以20-30%W/W分散在合适油中的在组合物中含量为0.1-2.0%W/W油溶成份,或在组合物中含量为0.1-5.0%W/V的纯结晶成份;2-20%的HLB(亲水/亲油平衡)值在10-18之间的一种乳化剂,或是由几种乳化剂组成的混合物,是计算得出的总HLB值在10-18之间,以及0.1-1.0%的抗氧化剂或抗氧化剂混合物。
乳化剂混合物的一个例子是由4份Span20山梨糖醇单月桂酸酯和6份Tween60聚氧乙烯山梨糖醇单硬脂酸酯组成的乳化剂混合物,其HLB有效值为0.4×8.6+0.6×14.9=12.3。
所谓“明净透亮”指的是,在波长为800nm,比色杯长为1cm时测定,产品显示出其透射百分比值不小于95%,最好是不小于98%,这一组合物最好是油溶成分包括着色剂和(或)抗氧化剂或抗氧化剂混合物的着色组合物。
令人惊奇的是,我们发现本发明的组合物能获得具有所需特性的产品,特别是,使用迄今被认为在此类产品中难于溶解的成分却得到了易溶于水的特性。
油溶着色组分优选使用类叶红素。类叶红素优选是β-叶红素或阿扑-叶黄素。若以纯物质的重量计,类叶红素的数量可以占0.1-2.0%,优选是0.1-1.0%。用于本发明的类叶红素可以从自然物中萃取,其工艺是现成的,例如可参见Stevens,B.(1988),Food Production,P.34,以及Emman,S.S.,Ibrahim,S.S.,Ahsons,M.M.S.,Askar,A.(1991),Fluss.Obst.,57(5),287-288;295-297。用与自然色料无异的合成色料的叶红素和阿扑-叶黄素也是现成的[Emodi,A.(1978),Food Tech.32(5),32-42,79.]纯的类叶红素可从Sigma Chemical Co.,Poole,Dorset购得,以植物油中的扩散体形式出现的类叶红素可从Roche Prodaction Ltd.,Welwyn Garden City,Herts购得。类叶红素例如叶红素的同分异构形式不止一种,本发明能应用于所有不同的同分异构形式。
按照本发明,本组合物也可使用各种色料的混合物,特别是β-叶红素与阿扑-叶黄素混合物生成迷人的橙色。按照本发明,也可用β-叶红素的扩散体与其它色料混合物生成各种不同的色彩。与叶绿酸铜钠混合时,生成种种深浅不同的橙黄色;与胭脂红酸、胭脂红或花色素萃取物混合时,则生成种种深浅不同的橙色。
按照本发明,可用的油类包括消费类油,例如玉米油、花生油、红花油、橄榄油和菜油,以及许多香精油,特别是增加饮料香味的香精油,如柑橘油。
乳化剂可以是任何人体或动物体受用或可用的阴离子、阳离子、两性的或非离子乳化剂或乳化剂混合物。乳化剂最好是非离子乳化剂或其混合物,其HLB值在12-16之间为佳,最好为15,合意的混合物包括Tween60和Tween40(聚氧乙烯(20)山梨糖醇单硬脂酸酯)可从ICI Speciality Chemicals,Leatherhead,Surrey购得。
乳化剂可以是不同乳化剂的二元或三元混合物,例如可以是Tween60(由Mitsubishi Kasei Food Corporation,Ichikawa Building,13-3Ginza5-Chome,Chuo-ku,Tokyo104,Jnpan制造)的混合物,或Tween60、蔗糖脂和脂酸的聚甘油脂(可从Grindsted Produces Limited.,Northern Way,Bury St Edmunds,Suffolk购得)的混合物。
本组合物中乳化剂的数量取决于具体所使用的油溶组分,其制备方法及数量。例如,在油中扩散β-叶红素较之扩散同样数量的晶体化合物需要更高浓度的乳化剂或乳化剂混合物来扩散油和类叶红素。例如含按重量计30%染料的油基扩散体一般要求乳化剂或乳化剂混合物在8-10% W/W的范围,以生成明净的扩散体,并且在稀释成典型饮料时不致带来很大异味。与此相对照,若使用同样浓度的纯化合物,乳化剂一般只需2-5%。
乳化剂优选多乙氧基醚,食品中使用多乙氧基醚60特别好,因为它的味道最淡。因此,本发明的一个特别有用的特点是发明了一种无味的着色剂组合物,一种特别值得推荐的组合物是,类叶红素用阿扑-叶黄素和β-叶红素,乳化剂用多乙氧基醚。
本发明使用的抗氧化剂可以是α-生育酚、抗坏血酸、抗坏血棕榈酸、丁化羟基苯甲醚和丁化羟基甲苯或这些抗氧化剂的混合物。α-生育酚、抗坏血棕榈酸和抗坏血酸特别合用。
本发明组合物较之其它已知组合物的一个重大优点是经济,因为它不用使用大量添加类脂类和乳化剂。本组合物要比那些把类叶红素加入到饮料中的已知配方更简单,并能用于范围广泛的食品中,特别是味道新奇的减肥食品。本发明的另一个优点是本组合物可与许许多多天然和人工造的着色剂混合使用,在水制产品中生成种种不同的色彩。
本发明不仅在生产明净的产品中特别有用,而且也可用来制备模糊、暗色产品。这类产品、特别是含有乳化类叶红素的产品的一个常见问题是“瓶颈环”现象。本发明的组合物则无此问题。值得赞赏的是,本发明的组合物可用于为饮料之外的药品或兽医领域的液体制品着色,例如维生素、咳嗽糖浆、喷喉水、洗液和漱口剂,特别是在要求这些制品明净的场合。
某些类叶红素可用作维生素和原维生素。在本发明中,类叶红素和其它油溶成分能以胶束形式或作为微乳状液细布开来,因为它们显示出某些特点,例如用光透射时,显示出透明性。
因此,本发明组合物的另一个优点是,这些油溶维生素、原维生素和其它油溶物质在水制品中的细布有助于人体组织对这些物质的有效吸收。一方面油溶成分的细小粒子有利于油溶物质的吸收,另一方面,对使用乳化剂的油溶活性化合物的吸收也有利于这些物质通过膜。
本发明的组合物还有令人惊奇的抗酸性。这是一个优点,因为在被肠道吸收之前,它不会被胃内的强酸环境所破坏。
本发明还给出了一种按本发明组合物治疗人体或动物体时服用油溶物质的方法。组合物最好是口服,例如以液体的形式。
按本发明获得的组合物是水性扩散体,它能溶于水基产品中获得明净的最终产品。
还可在本发明的组合物或最终食物产品中加入其它成分,如增甜剂、防腐剂、(例如二氧化硫、苯甲酸和山梨酸)、蛋白质、脂肪、维生素、矿物质和其它制备食物或饮料所用的原料。本组合物还可加入抗氧化辅助剂,如人体自然生成抗氧化酶所需的锌、硒和锰。最终产品优选是有味的,还可通过加入有味的天然食物来做到,如果汁,浓缩物,萃取物、调味化合物或调味添加剂。优选还在最终饮料中加入营养成分,如维生素和矿物质,如在伦敦皇家出版社的“食品标签法规1984”1305号法令(1984)中所说的。
本发明还包括加工辅料。这类辅料包括影响到PH值、氧化还原电势、酶的活性、氢键键合力和(或)其它性质的组分。加工辅料举例来说有二氧化硫、其它抗氧化剂、金属盐、酸(例如磷酸和柠檬酸碱、表面活性剂(如卵磷酯)和淀粉增塑剂(如氯化钙)。加工辅料最好还包括抗起泡剂),如硅氧烷。
在加工的后面阶段加入承受营养值损耗的成分。经制备后,产品可在避光或避氧的容器中生产以提高对易因光或氧而变质的材料的保护。产品也可充以碳酸气。
美国专利4,435,427,[BASF]揭示了制备β-叶红素的胶束溶液的一种工艺,它涉及到在160-180℃的温度下加热β-叶红素和非离子乳化剂并以加水方式冷却此物质的热混合物。
本发明的另一个方面是提供一个制备水性组合物的工艺,此组合物制备用于人体或动物体保健的明净产品,该工艺包括:
a)在加热到大约40℃的过程中在乳化剂中扩散抗氧化剂
b)在加热到大约80-200℃过程中在上述a)的混合物中扩散一种或多种油溶成分形成透明混合物。
c)可加入其它油溶成分
d)一边不断搅拌以维持一透明混合物,一边提高混合物的温度到合适的温度
e)在不断搅拌的同时将混合物与温度不低于95℃的水相混合。优选是以混合物加入到水中的方式进行混合。
本发明的一个优点是上述b)中所使用的温度范围宽广。b)中的混合温度优选是80-160℃或180-200℃。对于对温度敏感的成分来说,80-160℃的温度尤其有用。而在需要大大减少乳化剂的场合,180-200℃的温度就有用武之地了。特别是我们发现,当纯β-叶红素被用作油溶成分后,温度的提高能减少达到明净透亮所需的乳化剂数量。因此,要使使用的乳化剂数量为最少,温度不要低于160℃,优选是不低于180℃。
使用这样高的温度要冒染料劣化的风险,除非采取适当的防卫措施。例如在制备的初始阶段必须加入抗氧化剂,并且,最好在氮气环境中加热该混合物以排除氧气。
在按照e)制备组合物的过程中,重要的是混合物必须慢慢地与水混合以保持透明性,为了得出最好的结果,应把混合物加入到水中。
一种优选工艺是将晶状β-叶红素溶于含有合适抗氧化剂(最好是α-生育酚)的多乙氧基醚乳化剂中。本发明的另一优选工艺是将阿扑-叶黄素的油性悬浮体加入到多乙氧基醚乳化剂与抗氧化剂的混合物中。先加阿扑-叶黄素具有促进其后以油中悬浮体方式加入的β-叶红素的溶解的优点。加入阿扑-叶黄素的另一个优点是它有助于β-叶红素的稳定。
本发明的另一个方面是在组合物中另外加水便能生成适用于水基产品的水性中间产品。
下面通过实施例说明本发明。
实施例1.着色剂组合物
% W/W
β-叶红素(晶状) 1.0
抗氧化剂(α-生育酚) 0.3
乳化剂(多乙氧基醚40或60) 7.5
加水到 100
上述成分如下混合。在加热到大约40℃的过程中把抗氧化剂扩散到乳化剂中。然后加入β-叶红素并把温度提高到至少140℃,并不断搅拌。此时混合物应该是透明的。以每分钟50毫升的速率把该混合物慢慢地加入占最终容量约75%、温度不低于95℃的热水中,并不断搅拌。将该稀释的混合液冷却至室温并用水稀释到最终容量。另一种做法是在如上加入β-叶红素并加热后,以每分钟50毫升的速率将热水慢慢地加到β-叶红素混合物中,并不断搅拌。在水加到一半时,粘性明显增加,继续把水加到所需容量,粘性便会下降生成明净、橙暗色组合物。
实施例2.着色剂组合物
% W/W
β-叶红素(30%扩散体) 0.33
阿扑-叶黄素(20%扩散体) 1.5
抗氧化剂(α-生育酚) 0.3
乳化剂(多乙氧基醚40或60) 9
加水到 100
在加热到约40℃的过程中将抗氧化剂扩散到乳化剂中。在加热到约80℃时加入阿扑-叶黄素并搅拌生成透明混合体。然后一边继续搅拌一边加入β-叶红素并把温度升至140℃。此时混合液应仍是透明的。最后,如上述实施例1所详述的将此混合液加入热水中。
实施例3.着色剂组合物
%W/W
β-叶红素(晶状) 1.0
抗氧化剂(α-生育酚) 0.3
乳化剂1(多乙氧基醚60) 6.0
乳化剂2(糖脂S-1170) 0.25
乳化剂3(Triodan) 0.25
加水到 100
在加热到约40℃的过程中把抗氧化剂扩散到乳化剂1中。加入乳化剂2和3并升温到140℃,加入β-叶红素并不断搅拌,此时混合液应透明。最后,如实施例2把混合液加入水中。
实施例4.着色稳定性数据
使用如下模拟货架和加速储藏测试我们确定了按本发明的组合物的着色稳定性。
4.1.抗坏血酸和阿扑-叶黄素的稳定效应。
在最终产品中加入抗坏血酸可有效地提高抗氧化剂的稳定效应。这可以用一项研究获得的数据加以说明。此顶研究将β-叶红素、阿扑-叶黄素和抗坏血酸加入到典型的饮料组合物中,得到的产品在光照充足的地方储存30天后用分光光度技术确定其颜色损耗。
β-叶红素 阿扑-叶黄素 抗坏血酸 原色的%
mg/L mg/L mg/L
2 1 100 49
2 1 300 80
4 2 0 0
4 2 200 80
4 2 400 89
6 1 100 37
6 1 300 83
6 3 100 70
6 3 300 93
4.2.α-生育酚的稳定效应
用实施例2所述的着色剂配方加入现成饮料产品中,从而准备好被试饮料。并准备好相同的饮料但不加抗氧化剂(α-生育酚)。把它们装入封口玻璃瓶中在强光、高温处放置240小时。定时对样品的颜色保持度进行分析。240小时后,含有抗氧化剂的样品比不含抗氧化剂的样品显示出很大的颜色保持度(见下表)
时间(小时) 原色的%
样品1 样品2
0 (100) (100)
48 64 69
98 39 57
146 18 35
194 19 34
242 8 18
样品1-不加抗氧化剂;
样品2-加抗氧化剂。
将样品瓶放在受东北向日光照射的货架上在环境温度下历时12个月。按月通过测量样品在460mm下的吸光度并将之表达为原色的百分比而对样品作分析。从下列结果可知含抗氧化剂的样品比同样着色但不含抗氧化剂的产品显示出更大的颜色保持度。
时间(月) 原色的%
样品1 样品2
0 100 100
1 93 95
2 76 85
3 66 73
6 39 50
12 25 36
样品1:不含抗氧化剂
样品2:含抗氧化剂
4.3.β-叶红素与胭脂红酸相混合的稳定性
用1.125毫克β-叶红素与2.7毫克胭脂红酸制备好被试样品,为节4.2所述测试380小时。样品在这样恶劣条件下显示出满意的颜色稳定性
时间(小时) 原色的%
0 (100)
24 94
72 94
96 92
144 89
192 83
240 82
288 83
384 76
4.4.β-叶红素与胭脂红相混合的稳定性
酸稳定的胭脂红可用来代替胭脂红酸而获得同样的结果。被试产品含有1.125毫克β-叶红素和0.75毫克的胭脂红。以节4.2所述测试。
时间(小时) 原色的%
0 100
24 98
67 96
178 90
225 82
294 82
462 78
实施例5、组合物
5.1.充碳酸气的、明净的柑桔味饮料
%W/W
蔗糖 10.0
柠檬酸 0.25
苯甲酸钠 0.017
抗坏血酸 0.030
调味剂适量
着色剂组合物1 0.2(% V/V)
加水至 100体积
二氧化碳至2.5体积
使用实施例1中那类β-叶红素,制备好含有浓度为2.5-400毫克/升的类叶红素的实验产品。它们的颜色范围为从淡柠檬黄到深橙色并且具有明净而不出现“瓶颈环”现象的特点。
在其中能使用着色剂配方的典型的不透明饮料产品有(例5.2和5.3):
5.2充碳酸气的果汁饮料
%W/V
桔子汁 5.2
蔗糖 7.5
柠檬酸 0.3
苯甲酸钠 0.007
抗坏血酸 0.040
着色剂组合物2 0.2%(V/V)
调味剂适量
加水至 100体积
二氧化碳到2.5体积
5.3.柑桔味奶制饮料
%W/V
脱脂奶 51.0
碳水化合物 9.4
柠檬酸 0.9
羧基甲基纤维素钠 0.94
抗坏血酸 0.030
着色剂组合物3 0.3(% V/V)
调味剂适量
加水到 100体积
5.4.咳嗽糖浆
%W/V
美莎芬HCI 0.15
葡萄糖糖浆 60.0
甘油 10.0
丙二醇 9.0
苯甲酸钠 0.1
柠檬酸钠 0.024
一水化柠檬酸 0.28
糖精钠 0.1
调味剂适量
着色剂组合物1 0.2(%V/V)
加水至 100体积
5.5.喷喉液
%W/V
已基间苯二酚 0.08
酒精(96%) 15.0(%V/V)
薄荷醇 0.04
甘油 35.0
柠檬酸钠 0.04
柠檬酸 0.05
十二烷基磺酸钠 0.05
调味剂适量
着色剂组合物1 2.0(%V/V)
加水至 100体积
5.6.抗氧化维生素糖浆
%W/V
乙酸生育酚 0.633
抗坏血酸 1.333
葡萄糖糖浆 85.0
丙二醇 1.0
柠檬酸钠 0.024
柠檬酸 0.25
苯甲酸钠 0.1
调味剂适量
着色剂组合物1 10.0(%V/V)
加水至 100体积
5.7.漱口水
%W/V
乙醇 15.0
氯化鲸蜡吡啶鎓 0.05
氟化钠 0.05
糖精钠 0.05
调味剂适量
着色剂组合物1 0.2(%V/V)
加水至 100体积
5.8.晒黑洗剂
%W/W
辛基甲氧肉桂酸盐 5.5
丁基甲氧二苯甲酰甲烷 1.0
生育酚乙酸脂 0.5
硬脂酸 1.8
硬脂酸甘油酯 2.25
白矿物油 10.0
甘油 5.0
二甲聚硅氧烷 0.5
Carbomer 0.1
三乙醇胺 0.52
香料适量
着色剂组合物1 0.2(%V/V)
加水至 100%(W/W)
实施例6.用晶状β-叶红素所作实验
我们作了实验以确定提高温度对达到明净所需乳化剂数量的作用。在下述温度下1克晶状β-叶红素所需的吐温60(Tween60)的数量如下:
温度(℃) 吐温60(克)
140 10.5
160 7.5
180 4.0
200 3.0
实施例7.抗酸性
下面模拟胃内酸性环境对取自明净“胶束”溶液(实施例1)的β-叶红素制剂的性能进行评价。在这里,同样数量的β-叶红素也可取自使用市场上5%液体乳剂(2号饮料)或含β-叶红素的小滴珠(3号饮料)那样的β-叶红素制剂扩散而成的常见乳剂。
被试饮料如下制备:其β-叶红素含量为30毫克/升,并以1体积的每种饮料与4体积的1摩尔盐酸相混合。把这些酸化了的饮料放置到温度为37℃的晃动的水盆中。一小时后取出,用肉眼和光学显微镜进行观察,观察结果记录如下:
被试饮料 肉眼 显微镜
1 明净度保持不变 未见形成小油滴
(明净饮料) 颜色无损耗 或胶束破坏
例1 不出现“环带”
2 乳剂被破坏 β-叶红素晶体大量聚集
(不透明饮料) 颜色有损耗 整个视野可见间隙油滴
表面见β-叶红素分解
3 无颜色损耗或 可见晶体的形成或聚集
(不透明饮料) 损耗不明显 但没饮料2那么严重
实施例8.粒子大小
为了估计上述被试饮料中“粒子”的大小,将三种饮料的等分试样通过已知孔隙度的膜过滤器。膜可使用孔径分别为5微米和0.65微米的沃特曼型WCN(Whatman Type WCN)。对于透明的产品,颜色的损耗可用分光光度计对过滤前后的饮料进行测定。这一技术不适用于不透明饮料,因此对其滤液只能作肉眼估计。
被试饮料 原色的% 原色的%
5微米 0.65微米
1.透明饮料 100 96
2.不透明饮料 5 1
3.不透明饮料 50 20-25
因此,可作结论说,根据本发明的饮料组合物,胶束或类似粒子的大小不大于大约0.65微米。
例9.生物利用率研究-志愿人员研究草案。
本发明组合物的生物利用率可从测定在饮用本组合物配制的透明饮料或服用β-叶红素药丸(Roche“REPOXON”)而每日摄入15毫克剂量的β-叶红素后出现在血清中的β-叶红素量看出。测定初始吸收量和反应的大小即可测定每剂的生物利用率。
使用了20个年龄在18-50岁的受试者,但有肝病、肾病、胰腺病、贫血、高血脂病史或患吸收不良综合症的志愿人员应排除掉。应排除的还有:服用维生素、β-叶红素或其它补剂或药品而有可能影响到对可溶于油脂的活性物质的吸收的素食者、饮食不规律者、体重超过视高度、年龄和性别因素而正常的体重20%或不足者、孕妇、服用避孕药的妇女、吸烟者以及每日饮食中摄取β-叶红素估计超过3.5毫克者。
饮食:用问卷方式确立起规定食物的脂肪和β-叶红素的摄入量。除了服药前的饮食,受试者的饮食可悉听尊便。规定的早餐可选择不以玉米为主的谷类食物加脱脂或半脱脂牛奶、酸乳酪、脱脂或半脱脂牛奶咖啡或奶茶、不含类叶红素的果汁或果酱。不准吃肥肉。其它时候可正常用餐,但不能吃高脂肪食物如奶油和含高浓度β-叶红素的食物。
测试材料:按本发明配制的饮料以及规定的食物,每250毫升含15毫克β-叶红素。饮料或含有15毫克β-叶红素的药丸(Roche Products REDOXON)的服用时间不得超过15分钟;药丸用250毫升的水吞服。
实验设计:
时间(小时)
-48 取血样
-1 早餐
0 第一次服药后取血样
+2 取血样
+4 取血样
+8 取血样
+23 早餐
+24 第二次服药后取血样
+47 早餐
+48 第三次服药后取血样
+71 早餐
+72 第四次服药后取血样
+95 早餐
+96 第五次服药后取血样
+119 早餐
+120 第六次服药后取血样
+143 早餐
+144 第七次服药后取血样
+168 取血样
上述过程完成后四星期,用第二批测试材料对每个受试者再重复上述设计。上面过程进行的顺序对于不同受试者可以有不同。
取样和分析:第一天将内置式导管插入前臂静脉收集10毫升血样;其后,血样可用注射器抽取血样。在血清分离后,将血清样本储存在-24℃处以备其后作HPLC分析。