用于控制热源的方法和装置.pdf

上传人:00****42 文档编号:491010 上传时间:2018-02-19 格式:PDF 页数:24 大小:1.11MB
返回 下载 相关 举报
摘要
申请专利号:

CN200410058743.0

申请日:

2004.07.28

公开号:

CN1578543A

公开日:

2005.02.09

当前法律状态:

授权

有效性:

有权

法律详情:

专利权的转移IPC(主分类):H05B 1/02登记生效日:20170301变更事项:专利权人变更前权利人:三星电子株式会社变更后权利人:爱思打印解决方案有限公司变更事项:地址变更前权利人:韩国京畿道变更后权利人:韩国京畿道|||授权|||实质审查的生效|||公开

IPC分类号:

H05B1/02; H05B1/00; G05D23/00

主分类号:

H05B1/02; H05B1/00; G05D23/00

申请人:

三星电子株式会社

发明人:

秋钟杨

地址:

韩国京畿道

优先权:

2003.07.28 KR 52081/2003

专利代理机构:

北京市柳沈律师事务所

代理人:

邵亚丽;马莹

PDF下载: PDF下载
内容摘要

本发明提供了一种使用AC电压控制热源的驱动的装置和方法。如果热源的温度低于一个基准温度并且AC电压的电平大于一个基准电平,则改变感测信号的电平。随后,确定从感测信号的电平被改变的时刻起是否已经经过了预定时间周期。随后,如果确定从感测信号的电平被改变的时刻起已经经过了预定时间周期,则当AC电压为零电平时驱动热源。因此,如果所接收的AC电压的频率不固定在一个特定频率,而是变化的,或者如果所述驱动控制信号被延迟和产生而AC电压具有恒定频率,则在感测信号的电平从高逻辑电平转变为低逻辑电平之后经过预定时间周期后,产生所述控制驱动信号。因此,以规则的占空率向热源提供AC电压,从而稳定地控制热源并避免闪烁的发生。

权利要求书

1.  一种使用AC电压控制热源的驱动的方法,所述方法包括:
如果热源的温度低于一个基准温度并且输入AC电压的电平大于一个基准电平,则改变感测信号的电平;
确定从感测信号被改变的时刻起是否已经经过了预定时间周期;和
基于从感测信号电平被改变的时刻起已经经过了预定时间周期的确定,当所述AC电压处于零电平时,驱动所述热源。

2.
  如权利要求1所述的方法,其中,改变感测信号的电平包括:
测量输入AC电压的电平和热源的温度;
确定所测量的热源的温度是否低于所述基准温度;
基于所测量的热源的温度低于所述基准温度的确定,确定所测量的输入AC电压的电平是否大于所述基准电平;和
基于所测量的AC电压的电平大于所述基准电平的确定,改变感测信号的电平。

3.
  如权利要求2所述的方法,其中,测量AC电压的电平和热源的温度包括:把所测量的热源的温度转换成一个数字值,以及基于所测量的热源的数字温度是否低于一个数字基准温度的确定,来确定所测量的热源的温度是否低于所述基准温度。

4.
  如权利要求1所述的方法,其中,所述感测信号包括高电平和低电平。

5.
  如权利要求1所述的方法,还包括:如果确定所测量的热源的温度不低于所述基准温度,则当AC电压处于零电平时,停止驱动所述热源。

6.
  如权利要求1所述的方法,其中,所述基准电平是基于输入AC电压的电平的变化范围,而所述基准温度是基于熔融色粉的熔融温度。

7.
  如权利要求1所述的方法,其中,所述基准电平被设置为包括在AC电压的电平的变化范围中的最小值的一半。

8.
  如权利要求1所述的方法,其中,所述预定时间周期是基于基准电平、输入AC电压的变化范围和延迟持续时间中的至少一个,并且所述延迟持续时间是这样的时间:延迟驱动控制信号的产生直到在确定从感测信号电平被改变的时刻起是否已经经过了预定时间周期之后执行了对热源的驱动的时间。

9.
  一种图像形成装置,其具有用于熔融色粉的熔融辊子和用于加热所述熔融辊子的热源,所述图像形成装置包括:
感测信号发生器,用于当热源的温度低于一个基准温度并且输入AC电压的电平大于一个基准电平时,改变感测信号的电平并输出具有改变的电平的感测信号;
时间检验器,用于确定从感测信号电平被改变的时刻起是否经过了预定时间周期,以及输出响应于所述时间检验器的确定结果所产生的驱动控制信号;和
热源驱动器,用于响应于所述驱动控制信号,当输入AC电压的电平为零电平时,驱动所述热源。

10.
  如权利要求9所述的图像形成装置,其中,所述感测信号包括高电平和低电平。

11.
  如权利要求9所述的图像形成装置,其中,所述感测信号发生器包括:
电平测量器,用于测量所述AC电压的电平;
温度测量器,用于测量所述热源的温度;
温度比较器,用于比较所测量的热源的温度和所述基准温度,并将比较结果输出作为第一控制信号;
电平比较器,用于响应于所述第一控制信号,比较所测量的AC电压的电平和所述基准电平,并将比较结果输出作为第二控制信号;和
电平变换器,用于响应于所述第二控制信号,改变所述感测信号的电平,并输出具有改变的电平的感测信号。

12.
  如权利要求11所述的图像形成装置,其中,响应于所述第一控制信号,当输入AC电压的电平为零电平时,热源驱动器停止驱动所述热源。

13.
  如权利要求11所述的图像形成装置,其中,所述感测信号发生器还包括:模数转换器,用于把由温度测量器所测量的热源温度转换成一个数字值,并且向所述温度比较器输出所测量的数字温度,并且所述温度比较器比较所测量的热源的数字温度和一个数字基准温度。

14.
  如权利要求9所述的图像形成装置,其中,所述热源驱动器包括:
开关,其响应于一个栅极信号把输入AC电压发送给所述热源;和
栅极信号发生器,其每次在输入AC电压的电平为零电平时基于驱动控制信号的电平,来确定所述栅极信号的电平,并向所述开关输出具有所确定的电平的一个栅极信号;
其中,所述热源由经由所述开关接收的输入AC电压所驱动。

15.
  如权利要求14所述的图像形成装置,其中,所述开关包括一个连接栅极信号的栅极和一个三端双向可控硅,并且所述栅极信号发生器包括一个光敏可控硅,其包括一个发光二极管和一个光接收二极管,以致发光二极管接收一个预定电压,并基于驱动控制信号的电平而发光,且光接收二极管接收从发光二极管发射的光,并基于所接收的光产生栅极信号。

16.
  如权利要求9所述的图像形成装置,其中,所述预定时间周期是基于输入AC电压的变化范围和延迟持续时间中的至少一个,并且所述延迟持续时间周期是这样的时间:延迟驱动控制信号的产生直到在响应于时间检验器的确定结果产生驱动控制信号之后所述热源驱动器接收到所述驱动控制信号的时间。

说明书

用于控制热源的方法和装置
相关申请的交叉参考
本申请要求2003年7月28日在韩国知识产权局提交的韩国专利申请第2003-52081号的优先权权益,其全部内容引入于此作为参考。
技术领域
本发明涉及一种热源,诸如包括在诸如图像形成装置的图像形成装置中的热源,例如加热器灯(heater lamp),更具体地说,本发明涉及一种用于控制该热源的方法和装置。
背景技术
在2003年5月19日提交的题为“Apparatus and method of controlling a heatsource,in which a received alternating current(AC)voltage is sensed and a pulsesignal corresponding to the sensed AC voltage is provided(控制热源的装置和方法,其中感测所接收的交流(AC)电压和提供与所感测的AC电压相对应的脉冲信号)”的韩国专利申请第2003-31680中提出了一种用于驱动包括在例如图像形成装置的图像形成装置中的热源的传统熔融电路(fusing circuit),所述申请具有一相应的美国申请,其于2004年2月20日提交,并具有序列号10/781,655。
在这个公开的传统熔融电路中,如果发光二极管PTa2响应于由控制器提供的热源控制信号而发光,则当相应的交流(AC)电压的电平为零时,相应的光敏可控硅(phototriac)PTa1接通三端双向可控硅(triac)Ta1,从而所述AC电压被施加给所述热源。然而,如果发光二极管PTa2响应于所述热源控制信号而不发光,则当AC电压的电平为零时,所述光敏可控硅PTa1断开三端双向可控硅Ta1,从而导致没有AC电压被施加给热源。
现在将参照图1A到4D更详细地描述上述传统热源控制方法。
图1A到1D说明了在AC电压的频率是50Hz的情况下热源控制装置中的波形,所述热源控制装置包括在前述的传统热源控制方法中公开的传统熔融电路。在图1A-1D中,图1A说明了AC电压的波形,图1B说明了所述控制器施加给发光二极管PTa2的驱动控制信号的波形,图1C说明了施加给三端双向可控硅Ta1的栅极(gate)的栅极信号(gate signal)的波形,而图1D说明了提供给热源的AC电压的波形。
图2A-2D说明了在AC电压的频率(诸如50Hz)具有例如-3Hz的频率偏差的频率偏差(Δf)的情况下在前述的传统热源控制方法中公开的热源控制装置中的波形。在图2A-2D中,图2A说明了AC电压的波形,图2B说明了驱动控制信号的波形,图2C说明了栅极信号的波形,而图2D说明了提供给热源的AC电压的波形。
假定:由于频率偏差,图1A的AC电压的频率如图2A所说明的在频率上被降低了。如图2B所示,所述驱动控制信号可以是一个间隔为10ms的逻辑高电平,且AC电压的50%能够以波数控制方式(wave number control manner)被提供给热源。由于图2B的驱动控制信号的周期和图2A的交流电压的周期是不同的,从而产生一个具有图2C的波形的栅极信号而不是具有图1C的波形的栅极信号。因此,所述热源可能接收如图2D所说明的不精确的电压,其可能不具有正好50%的占空率(duty cycle),而不是如图1D所说明的具有正好50%的占空率的电压。
图3A-3D说明在AC电压的频率(诸如50Hz)具有例如+3Hz的频率偏差的频率偏差(Δf)的情况下在前述的传统热源控制方法中公开的热源控制装置中的波形。在图3A-3D中,图3A说明了AC电压的波形,图3B说明了驱动控制信号的波形,图3C说明了栅极信号的波形,而图3D说明了提供给热源的AC电压地波形。
和上面类似,假定:由于频率偏差,图1A的AC电压的频率如图3A所说明的在频率上提高了。驱动控制信号能够具有如图3B所示的间隔为10ms的逻辑高电平,而AC电压的50%能够以波数控制方式被提供给热源。由于图3B的驱动控制信号的周期和图3A的AC电压的周期是不同的,从而产生一个具有图3C的波形的栅极信号而不是具有图1C的波形的栅极信号。因此,所述热源可能接收如图3D所说明的不精确的电压,其不具有正好50%的占空率,而不是如图1D所说明的具有正好50%的占空率的电压。
图4A-4D说明了在驱动控制信号由控制器延迟和产生并而由熔融电路接收的情况下在前述的传统热源控制方法中公开的热源控制装置中的波形。在图4A-4D中,图4A说明了AC电压的波形,图4B说明了驱动控制信号的波形,图4C说明了栅极信号的波形,而图4D说明了提供给热源的AC电压的波形。
在这种情况下,假定:图4A-4D的AC电压的频率被保持在如图1A所说明的50Hz。如图4B所说明的具有改变的占空率的驱动控制信号由控制器所产生,并被施加到所述熔融电路,然后AC电压的50%以波数控制方式被提供给热源。由于产生如图4B所说明的具有改变的占空率的驱动控制信号而不是图1B的驱动控制信号,即,由于所产生的驱动控制信号被延迟,热源可能接收到如图4D所说明的不精确的电压,其不具有正好50%的占空率,而不是如图1D所说明的具有正好50%的占空率的电压。这是由于控制器处理一个具有比驱动控制信号更高优先级的指令(即控制器延迟所述驱动控制信号并且随后把延迟的驱动控制信号提供给熔融电路)而发生的。
取决于使用所述图像形成装置的国家,施加到图形形成装置的AC电压的电平可以是110V或220V,而其频率可以是50Hz或60Hz。因此,在传统的热源控制方法中,如果AC电压的频率不是固定的,即,如果它是变化的,或者如果所述驱动控制信号由控制器延迟和产生而AC电压具有恒定频率,则热源无法正确地工作,例如,闪烁可能会发生。
发明内容
因此,本发明的一个方面和/或优点在于解决上述和/或其它问题。本发明的实施例提供了一种热源控制方法,其能够避免由于驱动热源的AC电压的频率上的改变或由于控制提供给热源的AC电压的驱动控制信号的产生的延迟而对热源的驱动产生不期望的影响。
本发明的实施例还提供了一种热源控制装置,其能够避免由于驱动热源的AC电压的频率上的改变或由于控制向热源提供AC电压的驱动控制信号的产生的延迟而对热源的驱动产生不期望的影响。
本发明的其他方面和/或优点部分在随后的说明中阐述,并且部分通过说明而变得显而易见,或者可以通过本发明的实践被了解。
为了实现上面和/或其他方面和优点,本发明的实施例包括一种用于使用AC电压控制热源的驱动的方法,所述方法包括:当热源的温度低于一个基准温度并且输入AC电压的电平高于一个基准水平时,改变感测信号的电平,确定从感测信号被改变的时刻起是否已经过了预定时间周期,并且如果确定从感测信号被改变的时刻起已经经过了预定时间周期,则当AC电压处于零电平时,驱动所述热源。
此外,改变感测信号的电平可以包括:测量输入AC电压的电平和热源的温度,确定所测量的热源的温度是否低于所述基准温度,如果确定所测量的热源的温度低于基准温度,则确定所测量的输入AC电压的电平是否高于所述基准电平,和如果确定所测量的AC电压的电平大于所述基准电平,则改变感测信号的电平。
所述预定时间周期可以基于基准电平、输入AC电压的变化范围和延迟持续时间中的至少一个,所述延迟持续时间是这样的时间:延迟驱动控制信号的产生直到在确定从感测信号电平被改变的时刻起是否已经经过了预定时间周期之后执行了驱动所述热源的时间。
为了实现上面和/或其他方面和优点,本发明的实施例包括一种用于控制热源的驱动的装置,所述装置包括:感测信号发生器,用于当热源的温度低于一个基准温度并且输入AC电压的电平大于一个基准电平时,改变感测信号的电平并输出具有改变的电平的感测信号;时间检验器,用于确定从感测信号电平被改变的时刻起是否经过了预定时间周期,以及输出响应于所述时间检验器的确定结果所产生的驱动控制信号;和热源驱动器,用于响应于所述驱动控制信号,当输入AC电压的电平为零电平时,驱动所述热源。
再次,所述感测信号发生器可以包括:电平测量器,用于测量所述AC电压的电平;温度测量器,用于测量所述热源的温度;温度比较器,用于比较所测量的热源的温度和所述基准温度,并将比较结果输出作为第一控制信号;电平比较器,用于响应于所述第一控制信号,比较所测量的AC电压的电平和所述基准电平,并将比较结果输出作为第二控制信号;和电平变换器,用于响应于所述第二控制信号,改变所述感测信号的电平,并输出具有改变的电平的感测信号。
热源驱动器可以包括:开关,其响应于一个栅极信号把输入AC电压发送给所述热源;和栅极信号发生器,其每次在输入AC电压的电平为零电平时基于驱动控制信号的电平,来确定所述栅极信号的电平,并向所述开关输出具有所确定的电平的一个栅极信号;其中,所述热源由经由所述开关接收的输入AC电压所驱动。
最后,为了至少实现上面和/或其他方面和优点,本发明的实施例包括一种图像形成装置,其具有用于熔融(fusing)色粉(toner)的熔融辊子(fusing roller)和用于加热所述熔融辊子的热源,所述图像形成装置包括:感测信号发生器,用于当热源的温度低于一个基准温度并且输入AC电压的电平大于一个基准电平时,改变感测信号的电平并输出具有改变的电平的感测信号;时间检验器,用于确定从感测信号电平被改变的时刻起是否经过了预定时间周期,以及输出响应于所述时间检验器的确定结果所产生的驱动控制信号;和热源驱动器,用于响应于所述驱动控制信号,当输入AC电压的电平为零电平时,驱动所述热源。
热源驱动器可以包括:开关,其响应于一个栅极信号把输入AC电压发送给所述热源;和栅极信号发生器,其每次在输入AC电压的电平为零电平时基于驱动控制信号的电平,来确定所述栅极信号的电平,并向所述开关输出具有所确定的电平的一个栅极信号;其中,所述热源由经由所述开关接收的输入AC电压所驱动。
而且,所述开关包括一个连接栅极信号的栅极和一个三端双向可控硅,并且所述栅极信号发生器包括一个光敏可控硅,其包括一个发光二极管和一个光接收二极管,以致发光二极管接收一个预定电压,并基于驱动控制信号的电平而发光,且光接收二极管接收从发光二极管发射的光,并基于所接收的光产生栅极信号。
附图说明
结合参照附图的对下面实施例的说明,本发明的这些/或其他方面和优点将变得更明显和更容易理解。
图1A-1D说明了当AC电压的频率为50Hz时传统热源控制装置中的波形;
图2A-2D说明了当AC电压的频率为47Hz时传统热源控制装置中的波形;
图3A-3D说明了当AC电压的频率为53Hz时传统热源控制装置中的波形;
图4A-4D说明了当由控制器产生的并由熔融电路部分接收的驱动控制信号被延迟时传统热源控制装置中的波形;
图5是说明根据本发明的实施例的热源控制方法的流程图;
图6是根据本发明的实施例的热源控制装置的方框图;
图7是在图6中说明的本发明的实施例的感测信号发生器的实施例的方框图;
图8是在图6中说明的本发明的实施例的感测信号发生器的另一实施例的方框图;和
图9是在图6中说明的本发明的实施例的热源驱动的电路图。
具体实施方式
现在详细参照本发明的实施例,其例子在所述附图中说明,其中相同的附图标记总是指示相同的部件。下面通过参考附图说明所述实施例来说明本发明。
参照图5,图5说明了根据本发明的实施例的热源控制方法,并且包括用于改变感测信号的电平的操作10到18和用于控制热源的操作的操作20到24。
根据图5的所述热源控制方法,通过使用AC电压来控制热源(未示出)的操作。首先,在操作10到18中,如果热源的温度低于一个基准温度并且AC的电平大于一个基准电平,则改变感测信号的电平。
如果图像处理装置是一个图像形成装置,则热源的温度表示一个熔融辊子(未示出)的表面温度。所述热源可以安装在热源能够加热熔融辊子的预定位置,例如在熔融辊子之中。所述基准温度程度(level)可以是这样的温度:使处于该温度的熔融辊子能够熔融色粉。
基于输入AC电压的电平的变化范围来设置所述基准电平。例如,所述基准电平可以被设置为AC电压的最小电平的一半。换句话说,如果AC电压的电平的变化在90V到132V之间,则基准电平可以被设置为45V。如果AC电压的电平的变化在180V到264V之间,则基准电平可以被设置为90V。所述感测信号可以是一个脉冲基准信号,类似于在前述传统热源中使用的感测信号。
更具体地说,在操作10中,测量AC电压的电平和热源的温度。
根据本发明的一个实施例,在操作10之后的操作12中,把所测量的热源温度转换成数字温度。然后,在操作12之后的操作14中,确定热源的数字温度是否低于数字基准温度。
根据本发明的另一个实施例,在热源控制方法中可以不包括操作12,在这种情况下,在操作12之后的操作14中,确定所测量的热源温度是否低于基准温度。
如果在操作14中确定所测量的热源温度低于所述基准温度,则在操作16中确定所测量的AC电压的电平是否大于一个基准电平。如果在操作16中确定所测量的AC电压的电平不大于所述基准电平,则处理返回操作16。然而,如果在操作16中确定所测量的AC电压的电平大于所述基准电平,则在操作18中改变感测信号的电平,例如,所述感测信号的电平从低逻辑电平转变到高逻辑电平。
如果在操作14中确定所测量的热源温度不低于所述基准温度,则在操作24中,当AC电压的电平为零时停止驱动热源。换句话说,如果所测量的热源温度不低于所述基准温度,则不向所述热源施加AC电压。
在操作18之后,在操作20中确定从所述感测信号的电平被改变的时刻起是否经过了预定时间周期。如果在操作20中确定从所述感测信号的电平被改变的时刻起还没有经过预定时间周期,则重复操作20。然而,如果在操作20中确定从所述感测信号的电平被改变的时刻起经过了预定时间周期,则在操作22中,当AC电压的电平为零时驱动所述热源。换句话说,在这种情况下,当AC电压的电平为零时,将向热源施加AC电压。
所述预定时间周期是基于AC电压的基准电平、AC电压的频率变化范围和AC电压的延迟的持续时间中的至少一个而确定的。例如,所述预定时间周期可以被设置为和所述基准电平成反比、和AC电压的频率变化宽度成正比、以及和延迟AC电压的时间成正比。所述延迟持续时间对应于在执行操作22前在操作20中确定从所述感测信号的电平被改变的时刻起已经经过预定时间周期之后的持续时间。更具体地说,如果在控制图像形成装置的整个系统的中央处理单元(未示出)中执行操作20,所述图像形成装置执行本发明的实施例的热源控制方法,则当确定从所述感测信号的电平被改变的时刻起已经经过预定时间周期时,所述中央处理单元将产生控制要被执行的操作22的驱动控制信号。所述中央处理单元不仅处理所述驱动控制信号,而且还处理控制所述图像形成装置中的其它系统(未示出)的指令。此外,如果在将要产生驱动控制信号的时刻,所述中央处理单元正在处理一个具有比驱动控制信号的优先级高的指令,则所述中央处理单元可能除了将驱动控制信号延迟所述延迟持续时间,并产生延迟的驱动控制信号之外没有别的选择。
如上所述,如果如图1A所说明的具有恒定频率的AC电压没有被施加给所述热源,而是施加了如图2A或图3A所说明的具有改变的频率的AC电压,根据传统热源控制方法的AC电压的提供变得不规则和不精确,如在图2D或3D中所说明的。然而,在根据本发明的实施例的热源控制方法中,在例如所述感测信号的电平从低逻辑电平转变到高逻辑电平的时刻起已经经过预定时间周期之后,当AC电压的电平变成零时驱动所述热源。因此,虽然AC电压的频率是波动的,但是仍然可以以如图1D所说明的规则的占空率将AC电压提供给所述热源。在这种情况下,所述预定时间周期可以是基于AC电压的频率变化范围。
如果如图1A所说明的具有恒定频率的AC电压被施加给热源,但是如图4B所说明的,指示执行操作22的驱动控制信号的产生被延迟,则根据传统热源控制方法的AC电压的提供也变得不规则和不精确,如图4D所说明的。然而,根据本发明的实施例,在热源控制方法中,在例如从感测信号的电平从低逻辑电平转变到高逻辑电平的时刻起已经经过了预定时间周期之后,当AC电压的电平变成零时,驱动所述热源。因此,虽然产生了延迟的驱动控制信号,但是和图1D中所说明的相类似,可以以规则的占空率把AC电压提供给热源。在这种情况下,可以基于延迟持续时间设置预定时间周期。
在前述的传统热源控制方法中,通过使用热源控制脉冲信号来控制热源的驱动。然而,根据本发明的实施例,在热源控制方法中,通过直接使用与脉冲基准信号相对应的感测信号,可以控制热源的驱动。
现在通过图6至图9来描述根据本发明的实施例的热源控制装置的结构和操作。图6是根据本发明的实施例的热源控制装置的方框图。这个热源控制装置包括感测信号发生器40、时间检验器42和热源驱动器44。
图6的热源控制装置可以执行图5的热源控制方法。为了执行操作10至18,如果经由输入端口IN1接收的热源温度小于基准温度,并且经由输入端口IN2接收的AC电压电平大于一个基准电平,则感测信号发生器40能够改变感测信号的电平,并且把具有改变了的电平的所述感测信号输出到时间检验器42。
图7是根据图6的感测信号发生器40的实施例的感测信号发生器40A的方框图。感测信号发生器40A包括电平测量器60、温度测量器62、温度比较器64、电平比较器66和电平变换器68。
在这个实施例中,感测信号发生器40A执行图5的操作10、14、16和18。例如,电平测量器60和温度测量器62能够执行操作10。电平测量器60测量经由输入端口IN1接收的AC电压的电平,并把所测量的AC电压电平输出给电平比较器66。此时,温度测量器62测量经由输入端口IN2接收的热源温度,并向温度比较器64输出所测量的热源温度。
为了执行操作14,温度比较器64比较从温度测量器62接收的所测量的热源温度和基准温度,并把比较结果作为第一控制信号C1输出给电平比较器66。
为了执行操作16,电平比较器66响应于从温度比较器64接收的第一控制信号C1,比较由电平测量器60测量的AC电压电平和基准电平,并且把比较结果作为第二控制信号C2输出给电平变换器68。如果电平比较器66根据第一控制信号C1识别到所测量的热源温度低于基准温度,则电平比较器66比较所测量的AC电压电平和基准电平。
为了执行操作18,电平变换器68响应于从电平比较器66接收的第二控制信号C2,改变所述感测信号的电平,并且经由输出端口OUT2把具有改变了的电平的感测信号输出到时间检验器42。如果电平变换器68根据第二控制信号C2识别到所测量的AC电压电平大于基准电平,则电平变换器68改变所述感测信号的电平。
图8是感测信号发生器40B的方框图,该感测信号发生器40B是图6的感测信号发生器40的另一实施例。感测信号发生器40B包括电平测量器60、温度测量器62、模数转换器(ADC)70,温度比较器72、电平比较器66和电平变换器68。
在这个实施例中,感测信号发生器40B能够执行图5的操作10、12、14、16和18。由于图8的电平测量器60、温度测量器62、电平比较器66和电平变换器68扮演和图7中类似的部件相对应的角色,就不再重复对其的描述。
ADC 70通过把由温度测量器62测量的热源温度转换成数字值并把该数字热源温度输出给温度比较器72来执行操作12。为了执行操作14,温度比较器72把从ADC 70接收的数字热源温度和数字基准温度相比较,并把比较结果输出给电平比较器66。
为了执行操作20,图6的时间检验器42检查从改变从感测信号发生器40接收的感测信号的电平的时刻起是否经过了预定时间周期,并响应于时间检查的结果来产生驱动控制信号,并把所述驱动控制信号输出给热源驱动器44。
图6的热源驱动器44执行图5的操作22和24。为了执行操作22,热源驱动器44响应于来自时间检验器42的驱动控制信号的接收,在AC电压的电平为零时驱动热源。例如,假定当从感测信号的电平被改变的时刻起已经经过了预定时间周期时,时间检验器42产生处于高逻辑电平的驱动控制信号。在这个情况下,如果热源驱动器44从时间检验器42接收处于高逻辑电平的驱动控制信号,则当经由输入端口IN1接收的AC电压处于零电平时,热源驱动器44经由输出端口OUT1向热源施加用于驱动热源的AC电压。如果热源驱动器44从时间检验器42接收处于低逻辑电平的驱动控制信号,则当经由输入端口IN1接收的AC电压处于零电平时,热源驱动器44停止向热源施加AC电压。
为了执行操作24,响应于从感测信号发生器40接收的第一控制信号C1,热源驱动器44在AC电压处于零电平时停止对热源的驱动。第一控制信号C1分别由图7或图8的温度比较器64或72产生。换句话说,当热源驱动器44根据第一控制信号C1识别到所测量的热源温度不低于所述基准温度时,热源驱动器44不向热源施加用于驱动热源的AC电压。
如果在中央处理单元中执行图5的操作20,则图6的时间检验器42可以包括在中央处理单元中。在这种情况下,作为预定时间周期的基础的延迟持续时间可以是这样的时间:在时间检验器42检查经过了预定时间周期之后,延迟由热源驱动器44(热源驱动部分44)接收的驱动控制信号的时间。如上所述,中央处理单元能够处理各种指令。中央处理单元基于由时间检验器42执行的时间检查的结果产生驱动控制信号,延迟所述驱动控制信号,直到完全处理了具有比驱动控制信号高的优先级的指令,并把延迟的驱动控制信号发送给热源驱动器44,这样,可以引入延迟持续时间。
图9示出了说明热源驱动器44A的电路图,该热源驱动器44A是图6的热源驱动器44的一个实施例。图9说明了热源100和热源驱动器44A。
热源驱动器44A包括减震器(snubber)90、开关92、栅极信号发生器94、电感L、电阻R2、R3和R4以及电容C2。
热源驱动器44A可以只由开关92和栅极信号发生器94构成。开关92响应于栅极信号96向热源100的一侧102发送经由电感L接收的AC电压VS。为了实现这点,开关92可以由连接到栅极信号96的栅极和三端双向可控硅Ta构成,所述开关92响应于栅极信号96把AC电压VS(和电感L相连)连接到热源100的一侧102。例如,当栅极信号96处于高逻辑电平时,三端双向可控硅Ta以波数控制方式向热源100提供图1A中所说明的AC电压,如图1D所说明的。因此,AC电压VS的50%能够被发送给热源100。
当AC电压VS处于零电平时,响应于经由输入端口IN3从时间检验器42接收的驱动控制信号的电平,栅极信号发生器94确定栅极信号96的电平,并将处于所确定的电平的栅极信号96输出给开关92。为了实现它,栅极信号发生器94可以被实现为过零(zero crossing)光敏可控硅,其包括发光二极管PTa2和光接收二极管PTa1。发光二极管PTa2经由输入端口IN4接收例如24V的预定电压,并响应于经由输入端口IN3从时间检验器42接收的驱动控制信号,当接收到例如处于高逻辑电平的驱动控制信号时发光。光接收二极管PTa1接收从发光二极管PTa2发射的光,并在接收光期间,当AC电压VS处于零电平时产生处于高逻辑电平的栅极信号96。在另一方面,如果光接收二极管PTa1没有从发光二极管PTa2接收到光,即,如果产生了处于低逻辑电平的驱动控制信号,则当AC电压VS处于零电平时,光接收二极管PTa1产生处于低逻辑电平的栅极信号96。
发光二极管PTa2可以响应于经由输入端口IN3从感测信号发生器90接收的第一控制信号C1而停止发光。例如,当所测量的热源温度低于经由输入端口IN3接收的基准温度时,发光二极管PTa2能够响应于由感测信号发生器40所产生的第一控制信号C1而停止发光。因此,当发光二极管PTa2的发光停止时,不将AC电压VS提供给热源100的一侧102。
包括在减震器90中的电阻R1和电容C1,以及电感L用于噪声清除和频率补偿。将AC电压VS作为输出电压Vout提供给电源(未示出)。该电源处理输出电压Vout以产生打印机所需的各种电压。该电源还产生发光二极管PTa2经由输入端口IN4所接收的预定电压。
在根据本发明的实施例的热源控制方法和装置中,为了避免提供如图2D、3D或4D所说明的具有不规则的占空率的AC电压VS,在从改变感测信号的电平的时刻起经过预定时间周期之后驱动热源100。当如图2A或3A所说明的AC电压的频率在频率上改变时,或者当如图4B所说明的以不规则的占空率提供驱动控制信号时,以不规则的占空率提供AC电压VS发生了。因此,可以将AC电压VS以规则的间隔,即以规则的占空率提供给热源100。因此,由AC电压的不规则提供所导致的闪烁能够被避免。
如上所述,在根据本发明的实施例的热源控制方法和装置中,如果所接收的AC电压的频率不是固定在一个特定频率,而是变化的,或者如果在AC电压具有恒定频率时,驱动控制信号被延迟和产生,则在经过了感测信号的电平从低逻辑电平转变成高逻辑电平之后的预定时间周期之后,产生所述驱动控制信号。这样,以规则的占空率向热源提供AC电压,从而稳定地控制热源并避免闪烁的发生。
虽然示出和说明了本发明的几个实施例,本领域的技术人员应当理解,在不脱离本发明的主旨和精神的情况下,可以对实施例做改动,本发明的范围是在权利要求及其等同物中限定的。

用于控制热源的方法和装置.pdf_第1页
第1页 / 共24页
用于控制热源的方法和装置.pdf_第2页
第2页 / 共24页
用于控制热源的方法和装置.pdf_第3页
第3页 / 共24页
点击查看更多>>
资源描述

《用于控制热源的方法和装置.pdf》由会员分享,可在线阅读,更多相关《用于控制热源的方法和装置.pdf(24页珍藏版)》请在专利查询网上搜索。

本发明提供了一种使用AC电压控制热源的驱动的装置和方法。如果热源的温度低于一个基准温度并且AC电压的电平大于一个基准电平,则改变感测信号的电平。随后,确定从感测信号的电平被改变的时刻起是否已经经过了预定时间周期。随后,如果确定从感测信号的电平被改变的时刻起已经经过了预定时间周期,则当AC电压为零电平时驱动热源。因此,如果所接收的AC电压的频率不固定在一个特定频率,而是变化的,或者如果所述驱动控制信。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 其他类目不包含的电技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1