高压半导体功率开关器件.pdf

上传人:li****8 文档编号:4760499 上传时间:2018-11-07 格式:PDF 页数:44 大小:3.35MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410584966.4

申请日:

2014.10.27

公开号:

CN104660250A

公开日:

2015.05.27

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):H03K 19/0944申请日:20141027|||公开

IPC分类号:

H03K19/0944; H01L27/06; H01L21/822

主分类号:

H03K19/0944

申请人:

科域半导体有限公司

发明人:

谢潮声; 陈安邦; 邓志强

地址:

中国香港新界荃湾沙咀道52号A皇廷广场20楼2005-2006室

优先权:

14/064,843 2013.10.28 US

专利代理机构:

北京金信知识产权代理有限公司11225

代理人:

黄威; 邓玉婷

PDF下载: PDF下载
内容摘要

本发明公开了一种三端子高压达林顿双极型晶体管功率开关器件,其包括:两个高压双极型晶体管,两者的集电极连接在一起作为集电极端子,第一高压双极型晶体管的基极作为基极端子,第一高压双极型晶体管的发射极连接到第二高压双极型晶体管的基极(内部基极),并且第二高压双极型晶体管的发射极作为发射极端子;二极管,其正极连接到所述内部基极(第一高压双极型晶体管的发射极,或第二高压双极型晶体管的基极),并且其负极连接到所述基极端子。类似地,可以通过将前述的开关器件的第一高压双极型晶体管替换为高压MOSFET来形成三端子MOSFET/双极型晶体管混合高压开关器件。

权利要求书

权利要求书1.  一种三端子高压达林顿双极型晶体管功率开关器件,其具有集电极端子、基极端子、发射极端子,并且包括以下组件:第一和第二高压双极型晶体管,均具有集电极、基极和发射极,并且两者的所述集电极连接在一起作为所述功率开关器件的所述集电极端子,所述第一高压双极型晶体管的基极作为所述功率开关器件的所述基极端子,所述第一高压双极型晶体管的发射极连接到所述第二高压双极型晶体管的基极,并且所述第二高压双极型晶体管的发射极作为所述功率开关器件的所述发射极端子;以及二极管,其具有正极和负极,所述正极连接到所述第一高压双极型晶体管的发射极或所述第二高压双极型晶体管的基极,并且所述负极连接到所述功率开关器件的所述基极端子。2.  根据权利要求1所述的功率开关器件,其中所述二极管可以是肖特基二极管。3.  根据权利要求1所述的功率开关器件,其中所述二极管可采用连接成二极管形式的双极型晶体管。4.  根据权利要求1所述的功率开关器件,其中使用高压SOI工艺将所有的组件集成为单片IC。5.  根据权利要求1所述的功率开关器件,其中使用改进的高压平面工艺将所有的组件集成为单片IC。6.  一种制造三端子高压达林顿双极型功率开关器件的方法,所述三端子高压达林顿双极型功率开关器件具有集电极端子、带有基极管脚的基极端子和带有发射极管脚的发射极端子,所述方法包括:将第一和第二高压双极型晶体管与三管脚功率器件封装件的主芯片焊盘进行导电芯片粘接,所述第一和第二高压双极型晶体管的衬底作为集电极端子,其中所述主芯片焊盘还与所述开关器件的集电极端子电连接;将二极管与所述三管脚功率器件封装件的所述基极端子的基极接合管脚进行导电芯片粘接,所述二极管具有负极和正极且负极作为衬底;将所述第一高压双极型晶体管的基极与所述三管脚功率器件封装件的基极端子接合;将所述第一高压双极型晶体管的发射极与所述第二高压双极型晶体管的 基极进行片间接合;将所述第一高压双极型晶体管的发射极和/或所述第二高压双极型晶体管的基极与所述二极管的所述正极接合;将所述第二高压双极型晶体管的所述发射极与所述三管脚功率器件封装件的发射极管脚接合;以及通过随后的标准模塑及后续工艺来完成器件封装。7.  根据权利要求6所述的方法,其中所述二极管可以是肖特基二极管。8.  一种制造三端子高压达林顿双极型功率开关器件的方法,所述三端子高压达林顿双极型功率开关器件具有集电极端子、带有基极接合管脚的基极端子和带有发射极管脚的发射极端子,所述方法包括:将单半导体芯片高压达林顿双极型晶体管与三管脚功率器件封装件的主芯片焊盘进行导电芯片粘接,所述单半导体芯片高压达林顿双极型晶体管具有集电极、第一基极、内部基极和发射极,且其衬底作为发射极端子,其中所述主芯片焊盘还电连接至所述开关器件的集电极端子;将二极管与所述三管脚功率器件封装件的所述基极端子的基极接合管脚进行导电芯片粘接,所述二极管具有负极和正极且负极作为衬底;将所述高压达林顿双极型晶体管的所述第一基极与所述三管脚功率器件封装件的基极端子接合;将所述高压达林顿双极型晶体管的内部基极与所述二极管的所述正极接合;将所述高压达林顿双极型晶体管的所述发射极与所述三管脚功率器件封装件的发射极管脚接合;以及通过随后的标准模塑及后续工艺来完成器件封装。9.  根据权利要求8所述的方法,其中所述二极管可以是肖特基二极管。10.  一种单片三端子高压达林顿双极型功率开关半导体集成电路,其具有基极端子和发射极端子,并包括:第一和第二高压双极型晶体管,其具有多个基极区,所述基极区具有阱,并且每个基极区具有基极,所述第一和第二高压双极型晶体管的衬底作为共集电极并且作为所述集成电路的位于背面的集电极端子;两个半导体阱区,其掺杂类型与所述衬底相反并且作为所述高压双极型晶体管的基极区;在所述高压双极型晶体管的基极区内的高掺杂密度的半导体电极,其类型与衬底相同并处在所述基极区内,并作为所述高压双极型晶体管的发射极;其中所述第一高压双极型晶体管的基极作为所述功率开关集成电路的所述基极端子;所述第一高压双极型晶体管的发射极连接至所述第二高压双极型晶体管的基极(内部基极);所述第二高压双极型晶体管的发射极作为所述功率开关集成电路的所述发射极端子;以及二极管,其具有正极和负极,所述正极连接至所述内部基极并且所述负极连接于所述功率开关集成电路的所述基极端子;其中所述二极管是连接成二极管形式的双极型晶体管,并包括:集电极,其作为在所述高压双极型晶体管的所述衬底上的阱,该阱的掺杂类型与所述衬底相反;基极,其在集电极阱内部,其掺杂类型与所述集电极阱相反,并通过相同类型的高掺杂电极与其他组件互连;发射极,对于普通二极管其作为与集电极相同类型的半导体,或对于肖特基二极管其作为势垒金属硅化物;并且所述基极和集电极的端子相互连接并作为所述二极管的所述负极,同时所述发射极作为所述二极管的所述正极。11.  根据权利要求10所述的集成电路,进一步包括用于制造基极区阱的掩模,并且其中所述连接成二极管形式的双极型晶体管的集电极阱与两个高压双极型晶体管的基极区阱共用掩模,或该集电极阱为由额外的掩模来制造的独立区。12.  根据权利要求10所述的集成电路,其中所述连接成二极管形式的双极型晶体管的集电极阱具有高掺杂密度区,其隔离结深低于所述高密度掺杂区的同类型低掺杂密度区,所述高掺杂区用于承受高击穿电压并且连接低掺杂密度集电极阱以与其他电极相连接,所述低掺杂密度区作为实际上的集电极阱,其内部形成有所述连接成二极管形式的双极型晶体管的基极和发射极。13.  根据权利要求10所述的集成电路,其中所述连接成二极管形式的双极型晶体管的集电极阱与所述第一高压双极型晶体管的所述基极合并。14.  根据权利要求10所述的集成电路,其中肖特基结用于所述连接成二极管形式的双极型晶体管并且通过势垒金属硅化物与半导体区连接。15.  根据权利要求10所述的集成电路,其为单片集成电路并且其中所述连接成二极管形式的双极型晶体管具有肖特基基极发射极结,并且与所述肖特基二极管正极的连接是与其直接接触。16.  根据权利要求10所述的集成电路,其中通过与所述二极管的正极所用的相同种类的半导体电极来连接形成所述达林顿器件的所述高压双极型晶体管的所述基极区与使用普通基极发射极结的所述连接成二极管形式的双极型晶体管的所述集电极区。17.  一种三端子高压MOSFET/双极型晶体管混合功率开关器件,所述MOSFET具有沟道端子和栅极并且所述双极型晶体管具有集电极、基极和发射极,所述功率开关器件具有集电极端子、发射极端子和栅极端子,并包括:高压MOSFET和高压双极型晶体管,所述MOSFET的所述沟道端子分别与所述双极型晶体管的所述集电极和所述基极相连接,所述双极型晶体管的所述集电极和所述发射极分别作为所述开关器件的所述集电极端子和发射极端子,并且所述MOSFET的栅极作为所述三端子高压MOSFET/双极型晶体管混合功率开关器件的栅极端子;以及二极管,其具有正极和负极,所述正极与所述高压双极型晶体管的基极相连接,并且所述负极与所述功率开关器件的栅极端子相连接。18.  根据权利要求17所述的功率开关器件,其中所述二极管可以是肖特基二极管。19.  根据权利要求17所述的功率开关器件,其中所述二极管是连接成二极管形式的双极型晶体管。20.  根据权利要求17所述的功率开关器件,其中使用高压SOI工艺将所有组件制造在单片IC上。21.  根据权利要求17所述的功率开关器件,其中使用平面高压工艺、超级结高压工艺或半超级结高压工艺将所有组件制造在单片IC上。22.  一种制造三端子高压MOSFET/双极型晶体管混合功率开关器件的方法,所述三端子高压MOSFET/双极型晶体管混合功率开关器件具有集电极端子、带有栅极接合管脚的栅极端子和带有发射极管脚的发射极端子,所述方法包括:将高压MOSFET和高压双极型晶体管与三端子功率器件的主芯片焊盘进行导电芯片粘接,所述高压MOSFET和所述高压双极型晶体管的衬底分别作为漏极和集电极端子,所述主芯片焊盘作为所述功率开关器件的集电极端子;将二极管与所述三端子功率器件的所述栅极端子的栅极接合管脚进行导电芯片粘接,所述二极管具有负极和正极且负极作为衬底;将所述高压MOSFET的栅极与三端子功率器件封装件的栅极端子接合;将所述高压MOSFET的源极与所述高压双极型晶体管的基极进行片间接合;将所述高压MOSFET的源极和/或所述高压双极型晶体管的基极与所述二极管的所述正极接合;将所述高压双极型晶体管的发射极与所述三端子功率器件封装件的发射极管脚接合;以及通过随后的标准模塑及后续工艺来完成器件封装。23.  根据权利要求22所述的方法,其中所述二极管可以是肖特基二极管。24.  一种单片三端子高压MOSFET/双极型晶体管混合功率开关半导体集成电路,其由高压平面工艺制造并具有集电极端子、栅极端子和发射极端子,并包括:高压MOSFET,以及高压双极型晶体管,其衬底作为所述高压MOSFET的漏极及所述高压双极型晶体管的集电极,从而使得所述衬底通过与背面相同类型的高掺杂浓度区而作为功率开关集成电路的集电极端子,两个半导体阱区,其掺杂类型与所述衬底相反并且分别作为所述高压MOSFET和所述高压双极型晶体管的主体和基极区,半导体电极,其掺杂类型与所述衬底相同,位于所述主体和基极区的内部并具有高掺杂密度,所述半导体电极分别作为所述高压MOSFET和所述高压双极型晶体管的源极和发射极;多晶硅薄氧化层栅极电极,其与所述主体和所述衬底区叠置,并作为所述MOSFET的栅极;其中:所述高压MOSFET的栅极作为所述功率开关集成电路的栅极端子;所述高压MOSFET的源极与所述高压双极型晶体管的基极相连接;所述高压MOSFET的所述主体连接至所述高压MOSFET的源极,或连接至所述高压双极型晶体管的发射极;所述高压双极型晶体管的发射极作为所述功率开关集成电路的发射极端子;以及二极管,其具有正极和负极,所述正极与所述高压双极型晶体管的基极相连接,并且所述负极与所述功率开关集成电路的栅极端子相连接;其中所述二极管是连接成二极管形式的双极型晶体管,并且包括:集电极,其作为在所述高压功率开关集成电路的高压集电极衬底上的阱,所述阱的掺杂类型与主衬底相反,所述集电极与所述高压MOSFET的所述主体或与所述高压双极型晶体管的所述基极类似;基极,其位于集电极阱内部,其掺杂类型与所述集电极阱相反,并通过电极与其他组件互连,所述基极与所述高压双极型晶体管的所述发射极或与所述MOSFET的所述源极类似;发射极,其为更高掺杂密度的与集电极相同类型的半导体,或为势垒金属硅化物;并且所述基极和所述集电极的端子相互连接并作为二极管的负极,同时所述发射极作为二极管的正极。25.  根据权利要求24所述的集成电路,包括为所述高压MOSFET和高压双极型晶体管的所述主体和基极区制造阱的掩模,其中所述连接成二极管形式的双极型晶体管的集电极阱与所述高压MOSFET和高压双极型晶体管的所述主体和基极区的阱共用掩模,或该集电极阱为由额外的掩模制造的独立区。26.  根据权利要求24所述的集成电路,其中所述连接成二极管形式的双极型晶体管的集电极阱具有高掺杂密度区,其隔离结深低于所述高密度掺杂区的同类型低掺杂密度区,所述高掺杂区用于承受高击穿电压并且连接低掺杂密度集电极阱以形成连接,所述掺杂低密度区作为实际上的集电极阱,其内部形成有所述连接成二极管形式的双极型晶体管的基极和发射极。27.  根据权利要求24所述的集成电路,其中,在所述MOSFET的主体与所述高压双极型晶体管的所述基极电连接的情况下,所述高压MOSFET的所述主体的阱与所述高压双极型晶体管的所述基极的阱合并。28.  根据权利要求24所述的集成电路,其中所述二极管是具有正极的肖特基二极管,并且通过势垒金属硅化物而与除了肖特基二极管的正极之外的半导体区连接。29.  根据权利要求24所述的集成电路,其中通过与所述二极管的正极所 用的相同种类的半导体电极来连接所述高压双极型晶体管的所述基极区和所述高压MOSFET的所述主体区,以及使用普通基极发射极结的所述连接成二极管形式的双极型晶体管的所述集电极区。30.  一种由高压超级结工艺制造的具有栅极端子、发射极端子和集电极衬底的单片三端子高压MOSFET/双极型晶体管混合功率开关半导体集成电路,包括:高压MOSFET,以及高压双极型晶体管,其衬底作为所述高压MOSFET的漏极及所述高压双极型晶体管的集电极,从而使得所述衬底通过与背面相同类型的高掺杂密度区而作为功率开关集成电路的集电极端子;半导体阱区,其掺杂类型与所述衬底相反并且分别作为所述高压MOSFET和所述高压双极型晶体管的主体和基极区,所述半导体阱区具有与主衬底掺杂类型相反的高掺杂浓度的超级结列,并用于承受高击穿电压。半导体电极,其掺杂类型与所述衬底相同,位于所述主体和基极区的内部并具有高掺杂密度,所述半导体电极分别作为所述高压MOSFET和所述高压双极型晶体管的源极和发射极;多晶硅薄氧化层栅极电极,其与所述主体和所述衬底区叠置,并作为所述MOSFET的栅极;其中:所述高压MOSFET的栅极作为所述功率开关集成电路的栅极端子;所述高压MOSFET的源极端子与所述高压双极型晶体管的基极相连接;所述高压MOSFET的所述主体连接至所述高压MOSFET的源极,或连接至所述高压双极型晶体管的发射极;所述高压双极型晶体管的发射极作为所述功率开关集成电路的发射极端子;以及二极管,其具有正极和负极,所述正极与所述高压双极型晶体管的基极相连接,并且所述负极与所述功率开关集成电路的栅极端子相连接;其中所述二极管是连接成二极管形式的双极型晶体管,并包括:集电极,其作为在所述高压功率开关集成电路的高压集电极衬底上的阱,所述阱的掺杂类型与主衬底相反,所述集电极与所述高压MOSFET的所述主体或与所述高压双极型晶体管的所述基极类似,并具有高掺杂浓度的超级结列,所述超级结列的掺杂类型与所述衬底相反,并且其隔离集电极区而用来承受高击穿电压;基极,其位于集电极阱内部,其掺杂类型与所述集电极阱相反,并通过电极与其他组件互连,所述基极与所述高压双极型晶体管的所述发射极区或所述MOSFET的所述源极类似;发射极,其为更高掺杂密度的与集电极相同类型的半导体,或为势垒金属硅化物;并且所述基极和所述集电极的端子相互连接并作为二极管的负极,同时所述发射极作为二极管的正极。31.  根据权利要求30所述的集成电路,包括为所述高压MOSFET和所述高压双极型晶体管的所述主体和基极区制造阱的掩模,所述连接成二极管形式的双极型晶体管的集电极阱与所述高压MOSFET和所述高压双极型晶体管的所述主体和基极区的阱共用掩模,或该集电极阱为由额外的掩模制造的独立区。32.  根据权利要求30所述的集成电路,其中所述连接成二极管形式的双极型晶体管的集电极阱具有高掺杂密度区,其隔离结深低于所述高密度掺杂区的同类型低掺杂密度区,所述高掺杂区用于承受高击穿电压并且连接低掺杂密度集电极阱以形成连接,所述低密度区作为实际上的集电极阱,其内部形成有所述连接成二极管形式的双极型晶体管的基极和发射极。33.  根据权利要求30所述的集成电路,其中,所述MOSFET的主体与所述高压双极型晶体管的基极电连接,并且所述高压MOSFET的所述主体的阱与所述高压双极型晶体管的所述基极的阱合并。34.  根据权利要求33所述的集成电路,其中将用于所述高压MOSFET和所述高压双极型晶体管的隔离区超级结列合并,并将其间的隔离区去掉。35.  根据权利要求30所述的集成电路,其中所述二极管是具有正极的肖特基二极管,并且通过势垒金属硅化物而与除了肖特基二极管的正极之外的半导体区连接。36.  根据权利要求30所述的集成电路,其中通过与所述二极管的正极所用的相同种类的半导体电极来连接所述高压双极型晶体管的所述基极区和所述高压MOSFET的所述主体区,以及使用普通基极发射极结的所述连接成二极管形式的双极型晶体管的所述集电极区。37.  一种由高压半超级结工艺制造的具有集电极端子、栅极端子和发射极端子的单片三端子高压MOSFET/双极型晶体管混合功率开关半导体集成电 路,包括:高压MOSFET,以及高压双极型晶体管,其衬底作为所述高压MOSFET的漏极及所述高压双极型晶体管的集电极,从而使得所述衬底通过与背面相同类型的高掺杂密度区而作为功率开关集成电路的集电极端子;半导体阱区,其掺杂类型与所述衬底相反并且分别作为所述高压MOSFET和所述高压双极型晶体管的主体和基极区,所述半导体阱区具有与主衬底掺杂类型相反的高掺杂浓度的半超级结列,并用于承受高击穿电压。半导体电极,其掺杂类型与所述衬底相同,位于所述主体和基极区的内部并具有高掺杂密度,所述半导体电极分别作为所述高压MOSFET和所述高压双极型晶体管的源极和发射极;多晶硅薄氧化层栅极电极,其与所述主体和所述衬底区叠置,并作为所述MOSFET的栅极;其中:所述高压MOSFET的栅极作为所述功率开关集成电路的栅极端子;所述高压MOSFET的源极与所述高压双极型晶体管的基极相连接;所述高压MOSFET的所述主体连接至所述高压MOSFET的源极,或连接至所述高压双极型晶体管的发射极;所述高压双极型晶体管的发射极作为所述功率开关集成电路的所述发射极端子;以及二极管,其具有正极和负极,所述正极与所述高压双极型晶体管的基极相连接,并且所述负极与所述功率开关集成电路的栅极端子相连接;其中所述二极管是连接成二极管形式的双极型晶体管,并包括:集电极,其作为在所述高压功率开关集成电路的高压集电极衬底上的阱,所述阱的掺杂类型与主衬底相反,所述集电极与所述高压MOSFET的所述主体或与所述高压双极型晶体管的所述基极类似,并具有高掺杂浓度的半超级结列,所述半超级结列的掺杂类型与所述衬底相反,并且其隔离集电极区而用来承受高击穿电压;基极,其位于集电极阱内部,其掺杂类型与所述集电极阱相反,并通过电极与其他组件互连,所述基极与所述高压双极型晶体管的发射极或与所述MOSFET的源极类似;发射极,其为更高掺杂密度的与集电极相同类型的半导体,或为势垒金属硅化物;并且所述基极和所述集电极的端子相互连接并作为二极管的负极,同时所述发射极作为二极管的正极。38.  根据权利要求37所述的集成电路,包括为所述高压MOSFET和所述高压双极型晶体管的所述主体和基极区制造阱的掩模,所述连接成二极管形式的双极性晶体管的集电极阱与所述高压MOSFET和所述高压双极型晶体管的所述主体和基极区的阱共用掩模,或该集电极阱为由额外的掩模制造的独立区。39.  根据权利要求37所述的集成电路,其中所述连接成二极管形式的双极型晶体管的集电极阱具有高掺杂密度区,其隔离结深低于所述高密度掺杂区的同类型低掺杂密度区,所述高掺杂区用于承受高击穿电压并且连接低掺杂密度集电极阱以形成连接,所述低密度区作为实际上的集电极阱,其内部形成有所述连接成二极管形式的双极型晶体管的基极和发射极。40.  根据权利要求37所述的集成电路,其中,在所述MOSFET的主体与所述高压双极型晶体管的所述基极电连接的情况下,所述高压MOSFET的所述主体的阱与所述高压双极型晶体管的所述基极的阱合并。41.  根据权利要求40所述的集成电路,其中将所述高压MOSFET和所述高压双极型晶体管的隔离区半超级结列合并,并将其间的隔离区去掉。42.  根据权利要求37所述的集成电路,其中所述二极管是具有正极的肖特基二极管,并且通过势垒金属硅化物而与除了肖特基二极管的正极之外的半导体区连接。43.  根据权利要求37所述的集成电路,其中通过与所述二极管的正极所用的相同种类的半导体电极来连接所述高压双极型晶体管的所述基极区和所述高压MOSFET的所述主体区,以及使用普通基极发射极结的所述连接成二极管形式的双极型晶体管的所述集电极区。

说明书

说明书高压半导体功率开关器件
技术领域
本发明涉及高压半导体开关器件。本发明具体但不排他地涉及应用于开关变换器的开关器件。
背景技术
图1和图2图示了现有技术的开关变换器电路。图1图示了隔离恒压输出的开关变换器,而图2图示了用于驱动LED照明设备的非隔离恒流输出的开关变换器。
在图1和图2中,关键的决定是对于功率开关器件(分别为115和215)的选择。双极型晶体管和MOSFET是用于功率开关器件的典型候选器件。在具有相同的额定功率的情况下,双极型晶体管的成本比MOSFET更低。然而,通常MOSFET更为优选,特别是在高输出功率的情况下,这是因为:
a.双极型晶体管要求连续的基极电流以保持导通状态,而MOSFET只要求对栅极电容充电来导通;
b.击穿电压较高(比如,600V或更高)的功率双极型晶体管的电流增益一般并不高(比如,大致为10至20,或甚至低于10)。这导致了要用很大功率来驱动基极(尤其当功率变换器将高功率传输至其输出端时),从而降低了开关变换器电路的效率。
通过使用达林顿结构的双极型晶体管,有效电流增益将变为单个晶体管的电流增益的乘积。因此,能够易于获得几百的有效电流增益,并且能够降低由于基极驱动而导致的功率损耗,从而在相同的输出功率下能够与MOSFET中对应的栅极驱动相近。然而,商用的达林顿晶体管通常为三管脚封装件,如图3所示,其中B是前一基极并且E是后一发射极,一较小的基极电流就能轻易地使其导通,但是由于内部基极(图3中晶体管302和304的基极管脚)处的基极弛豫,其关断会非常缓慢,这会使开关器件在关断时产生大量的热,从而导致效率下降,因此不适用于开关电源的应用。
IGBT是混合型功率开关器件,其尝试将MOSFET和双极型晶体管的优点结合到一起。对于IGBT,由于其对控制基极电容的充电与MOSFET的情况相似,因此其用于基极驱动的功率较小,同时由于传导模式为双极动作,IGBT的芯片尺寸与具有相同额定电流的双极型晶体管相似。然而,由于实际的双极型基极端子是在器件内部,其面临与三端子达林顿双极型晶体管相同的关断缓慢的问题。
直到现在,对于功率开关器件,MOSFET仍然是最普遍的选择。
发明内容
本发明提供了一种具有快速关断时间的高压三管脚达林顿双极型功率开关器件。
本发明还提供了一种具有快速关断时间的高压MOSFET/双极型晶体管混合功率开关器件。
上述每一个功率开关器件均可制造成单片器件。
本文中公开了一种三端子高压达林顿双极型晶体管功率开关器件,其包括以下组件:
两个高压双极型晶体管,两者的集电极连接在一起作为所述功率开关器件的所述集电极端子;所述第一高压双极型晶体管的基极作为所述功率开关器件的所述基极端子;所述第一高压双极型晶体管的发射极与所述第二高压双极型晶体管的基极(内部基极)连接,所述第二高压双极型晶体管的发射极作为所述功率开关器件的所述发射极端子;以及
二极管,其正极与所述内部基极(所述第一高压双极型晶体管的发射极或所述第二高压双极型晶体管的基极)相连接,并且所述负极与所述功率开关器件的所述基极端子相连。
优选地,所述二极管是肖特基二极管。
可选地,所述二极管采用连接成二极管形式的双极型晶体管。
优选地,使用高压SOI工艺将所有的组件集成为单片IC。
优选地,使用改进的高压平面工艺将所有的组件集成为单片IC。
本文进一步公开了一种制造三端子高压达林顿双极型功率开关器件的方法,所述方法包括:
将两个高压双极型晶体管与三管脚功率器件封装件的主芯片焊盘进行导 电芯片粘接,所述高压双极型晶体管的衬底作为集电极端子,其中所述主芯片焊盘同时电连接至所述功率开关器件的集电极端子;
将二极管与所述三管脚功率器件封装件的所述基极端子的基极接合管脚进行导电芯片粘接,所述二极管的负极作为衬底;
将所述第一高压双极型晶体管的基极与所述三管脚功率器件封装件的基极端子接合;
将所述第一高压双极型晶体管的发射极与所述第二高压双极型晶体管的基极进行片间接合;
将所述第一高压双极型晶体管的发射极和/或所述第二高压双极型晶体管的基极与所述二极管的所述正极接合;
将所述第二高压双极型晶体管的所述发射极与所述三管脚功率器件封装件的发射极管脚接合;以及
通过随后的标准模塑及后续工艺来完成器件封装。
所述二极管优选为肖特基二极管。
在此进一步公开一种制造三端子高压达林顿双极型功率开关器件的方法,所述方法包括:
将单半导体芯片高压达林顿双极型晶体管与三管脚功率器件封装件的主芯片焊盘进行导电芯片粘接,所述单半导体芯片高压达林顿双极型晶体管具有四个端子,即集电极、第一基极、内部基极和发射极,其衬底作为所述发射极端子,其中所述主芯片焊盘还电连接至所述封装件的集电极端子;
将二极管与所述三管脚功率器件封装件的所述基极端子的基极接合管脚进行导电芯片粘接,所述二极管的负极为衬底;
将所述高压达林顿双极型晶体管的所述第一基极与所述三管脚功率器件封装件的基极端子接合;
将所述高压达林顿双极型晶体管的内部基极与所述二极管的所述正极接合;
将所述高压达林顿双极型晶体管的所述发射极与所述三管脚功率器件封装件的发射极管脚接合;以及
通过随后的标准模塑及后续工艺来完成器件封装。
同样,所述二极管优选为肖特基二极管。
在此进一步公开了一种单片三端高压达林顿双极型功率开关半导体集成 电路,其包括:
两个高压双极型晶体管,其衬底作为共集电极并且作为所述功率开关集成电路的位于背面的集电极端子;
两个半导体阱区,其掺杂类型与所述衬底相反的并且作为所述高压双极型晶体管的基极区;
高掺杂密度的半导体电极,其类型与衬底相同并处在所述基极区内,并作为所述高压双极型晶体管的发射极;其中
所述第一高压双极型晶体管的基极作为所述功率开关集成电路的所述基极端子;
所述第一高压双极型晶体管的发射极连接至所述第二高压双极型晶体管的基极(内部基极);
所述第二高压双极型晶体管的发射极作为所述功率开关集成电路的所述发射极端子;以及
二极管,其正极连接至内部基极并且其负极连接于所述功率开关集成电路的所述基极端子;其中
所述二极管是连接成二极管形式的双极型晶体管,并包括:
集电极,其作为在所述高压双极型晶体管的所述衬底上的阱,该阱的掺杂类型与所述衬底相反;
基极,其在集电极阱内部,其掺杂类型与所述集电极阱相反,并通过电极与其他组件互连;
发射极,对于普通二极管其作为与集电极相同类型的半导体,或对于肖特基二极管其作为势垒金属硅化物;并且
所述基极和集电极的端子相互连接并作为所述二极管的所述负极,同时所述发射极作为所述二极管的所述正极。
优选地,所述连接成二极管形式的双极型晶体管的集电极阱与两个高压双极型晶体管的基极区阱使用同一掩模,或该集电极阱为由额外的掩模来制造的独立区。
优选地,所述连接成二极管形式的双极型晶体管的集电极阱具有高掺杂密度区,包围结深较浅于所述高密度掺杂区的同类型低掺杂密度区,所述高掺杂区用于承受高击穿电压并且连接低掺杂密度集电极阱以与其他电极相连接,所述低掺杂密度区作为实际上的集电极阱,其内部形成所述连接为二极 管形式的双极型晶体管的基极和发射极。
优选地,所述连接成二极管形式的双极型晶体管的集电极阱与所述第一高压双极型晶体管的所述基极(所述三端子高压达林顿双极型晶体管功率开关集成电路的基极管脚)合并。
优选地,通过与使用普通基极发射极结的所述连接成二极管形式的双极型晶体管的正极所用的相同种类的半导体电极来连接形成所述达林顿器件的所述高压双极型晶体管的所述基极区与所述连接成二极管形式的双极型晶体管的集电极区。
可选地,所述集成电路为单片集成电路,并且其中连接成二极管形式的双极型晶体管具有肖特基基极发射极结,并且与所述肖特基二极管正极的连接是与其直接接触。
优选地,对于带有肖特基二极管的单片功率开关集成电路,也可通过势垒金属硅化物来形成与其他半导体区的连接,其中所述肖特基二极管采用连接成二极管形式的双极型器件。
在此进一步公开了一种三端子高压MOSFET/双极型晶体管混合功率开关器件,其包括:
高压MOSFET和高压双极型晶体管,所述MOSFET的沟道端子分别与所述双极型晶体管的集电极和基极相连接,所述双极型晶体管的集电极和发射极分别作为所述功率开关器件的集电极端子和发射极端子,并且所述MOSFET的栅极作为所述三端子高压MOSFET/双极型晶体管混合功率开关器件的栅极端子;以及
二极管,其正极与所述高压双极型晶体管的基极相连接,并且其负极与所述功率开关器件的栅极端子相连接。
所述二极管可以优选为肖特基二极管。
所述二极管可以(次优选地)采用连接成二极管形式的双极型晶体管的形式。
优选地,其中使用高压SOI工艺将所有组件制造在单片IC上。
优选地,使用平面高压工艺、超级结高压工艺或半超级结高压工艺将所有组件制造在单片IC上。
在此进一步公开了一种制造三端子高压MOSFET/双极型晶体管混合功率开关器件的方法,所述方法包括:
将高压MOSFET和高压双极型晶体管与所述三端功率器件的主芯片焊盘进行导电芯片粘接,所述高压MOSFET和所述高压双极型晶体管的衬底分别作为漏极和集电极端子,所述主芯片焊盘同时电连接至所述功率开关器件的集电极端子;
将二极管与所述三管脚功率器件封装件的所述栅极端子的栅极接合管脚进行导电芯片粘接,所述二极管的负极作为衬底;
将所述高压MOSFET的栅极与所述三管脚功率器件封装件的栅极端子接合;
将所述高压MOSFET的源极与所述高压双极型晶体管的基极进行片间接合;
将所述高压MOSFET的源极和/或所述高压双极型晶体管的基极与所述二极管的所述正极接合;
将所述高压双极型晶体管的发射极与所述三管脚功率器件封装件的发射极管脚接合;以及
通过随后的标准模塑及后续工艺来完成器件封装。
所述二极管优选为肖特基二极管。
在此进一步公开了一种单片三端子高压MOSFET/双极型晶体管混合功率开关半导体集成电路,其包括:
高压MOSFET以及高压双极型晶体管,其衬底的掺杂类型分别与漏极和集电极相同,从而使得所述衬底通过与背面相同类型的高掺杂浓度区而作为所述功率开关集成电路的集电极端子;
两个半导体阱区,其掺杂类型与所述衬底相反并且分别作为所述高压MOSFET和所述高压双极型晶体管的主体和基极区;
半导体电极,其掺杂类型与所述衬底相同,位于所述主体和基极区的内部并具有高掺杂密度,所述半导体电极分别作为所述高压MOSFET和所述高压双极型晶体管的源极和发射极;
多晶硅薄氧化层栅极电极,其与所述主体和所述衬底区叠置,并作为所述MOSFET的栅极;其中:
所述高压MOSFET的栅极作为所述功率开关集成电路的栅极端子;
所述高压MOSFET的源极与所述高压双极型晶体管的基极相连接;
所述高压MOSFET的所述主体连接至所述高压MOSFET的源极,或可选地 连接至所述高压双极型晶体管的发射极;
所述高压双极型晶体管的发射极作为所述功率开关集成电路的发射极端子;以及
二极管,其正极与所述高压双极型晶体管的基极相连接,并且其负极与所述功率开关器件的栅极端子相连接;其中
所述二极管是连接成二极管形式的双极型晶体管,并包括:
集电极,其作为在所述高压功率开关集成电路的高压集电极衬底上的阱,所述阱的掺杂类型与主衬底相反,所述集电极与所述高压MOSFET的所述主体或与所述高压双极型晶体管的所述基极类似;
基极,其位于所述集电极阱内部,其掺杂类型与所述集电极阱相反,并通过电极与其他组件互连,所述基极与所述高压双极型晶体管的所述发射极或与所述MOSFET的所述源极类似;
发射极,其为更高掺杂密度的与集电极相同类型的半导体(对于普通二极管),或为势垒金属硅化物(对于肖特基二极管);并且
所述基极和所述集电极的端子相互连接并作为二极管的负极,同时所述发射极作为二极管的正极。
优选地,所述连接成二极管形式的双极型晶体管的集电极阱与所述高压MOSFET和高压双极型晶体管的所述主体和基极区的阱使用同一掩模,或该集电极阱为由额外的掩模制造的独立区。
优选地,其中所述连接成二极管形式的双极型晶体管的集电极阱具有高掺杂密度区,包围结深较浅于所述高密度掺杂区的同类型低掺杂密度区,所述高掺杂区用于承受高击穿电压并且连接低掺杂密度集电极阱以形成连接,所述掺杂低密度区作为实际上的集电极阱,其内部形成有所述连接成二极管形式的双极型晶体管的基极和发射极。
优选地,在所述MOSFET的主体与所述高压双极型晶体管的所述基极电连接的情况下,所述高压MOSFET的所述主体的阱与所述高压双极型晶体管的所述基极的阱合并。
优选地,所述二极管是具有正极的肖特基二极管,并且通过势垒金属硅化物而与除了肖特基二极管的正极之外的半导体区连接。
优选地,其中通过与所述二极管的正极所用的相同种类的半导体电极来连接所述高压双极型晶体管的所述基极区和所述高压MOSFET的所述主体区, 以及使用普通基极发射极结的所述连接成二极管形式的双极型晶体管的所述集电极区。
在此进一步公开了一种由高压超级结工艺制造的单片三端子高压MOSFET/双极型晶体管混合功率开关半导体集成电路,包括:
高压MOSFET以及高压双极型晶体管,其衬底的掺杂类型分别与漏极和集电极相同,从而使得所述衬底通过与背面相同类型的高掺杂密度区而作为功率开关集成电路的集电极端子;
半导体阱区,其掺杂类型与所述衬底相反并且分别作为所述高压MOSFET和所述高压双极型晶体管的主体和基极区,所述半导体阱区具有与主衬底掺杂类型相反的高掺杂浓度的超级结列,并用于承受高击穿电压。
半导体电极,其掺杂类型与所述衬底相同,位于所述主体和基极区的内部并具有高掺杂密度,所述半导体电极分别作为所述高压MOSFET和所述高压双极型晶体管的源极和发射极;
多晶硅薄氧化层栅极电极,其与所述主体和所述衬底区叠置,并作为所述MOSFET的栅极;其中:
所述高压MOSFET的栅极作为所述功率开关集成电路的栅极端子;
所述高压MOSFET的源极端子与所述高压双极型晶体管的基极相连接;
所述高压MOSFET的所述主体连接至所述高压MOSFET的源极,或可选地连接至所述高压双极型晶体管的发射极;
所述高压双极型晶体管的发射极作为所述功率开关集成电路的发射极端子;以及
二极管,其正极与所述高压双极型晶体管的基极相连接,并且其负极与所述功率开关器件的栅极端子相连接;其中
所述二极管是连接成二极管形式的双极型晶体管,并包括:
集电极,其作为在所述高压功率开关集成电路的高压集电极衬底上的阱,所述阱的掺杂类型与主衬底相反,所述集电极与所述高压MOSFET的所述主体或与所述高压双极型晶体管的所述基极类似,并具有高掺杂浓度的超级结列,所述超级结列的掺杂类型与所述衬底相反,并且其隔离集电极区而用来承受高击穿电压;
基极,其位于集电极阱内部,其掺杂类型与所述集电极阱相反,并通过电极与其他组件互连,所述基极与所述高压双极型晶体管的所述发射极区或 所述MOSFET的所述源极类似;
发射极,其为更高掺杂密度的与集电极相同类型的半导体(对于普通二极管),或为势垒金属硅化物(对于肖特基二极管);并且
所述基极和所述集电极的端子相互连接并作为二极管的负极,同时所述发射极作为二极管的正极。
优选地,所述连接成二极管形式的双极型晶体管的集电极阱与所述高压MOSFET和所述高压双极型晶体管的所述主体和基极区的阱使用同一掩模,或该集电极阱为由额外的掩模制造的独立区。
优选地,其中所述连接成二极管形式的双极型晶体管的集电极阱具有高掺杂密度区,包围结深较浅于所述高密度掺杂区的同类型低掺杂密度区,所述高掺杂区用于承受高击穿电压并且连接低掺杂密度集电极阱以形成连接,所述低密度区作为实际上的集电极阱,其内部形成有所述连接成二极管形式的双极型晶体管的基极和发射极。
优选地,在所述MOSFET的主体与所述高压双极型晶体管的基极电连接的情况下,所述高压MOSFET的所述主体的阱与所述高压双极型晶体管的基极的阱合并。此外,将用于所述高压MOSFET和所述高压双极型晶体管的隔离区超级结列合并,并将其间的隔离区去掉。
所述二极管可以是具有正极的肖特基二极管,并且通过势垒金属硅化物而与除了肖特基二极管的正极之外的半导体区连接。
优选地,通过与所述二极管的正极所用的相同种类的半导体电极来连接所述高压双极型晶体管的所述基极区和所述高压MOSFET的所述主体区,以及使用普通基极发射极结的所述连接成二极管形式的双极型晶体管的所述集电极区。
在此进一步公开了一种由高压半超级结工艺制造的单片三端子高压MOSFET/双极型晶体管混合功率开关半导体集成电路,包括:
高压MOSFET以及高压双极型晶体管,其衬底的掺杂类型分别与漏极和集电极相同,从而使得所述衬底通过与背面相同类型的高掺杂密度区而作为功率开关集成电路的集电极端子;
半导体阱区,其掺杂类型与所述衬底相反并且分别作为所述高压MOSFET和所述高压双极型晶体管的主体和基极区,所述半导体阱区具有与主衬底掺杂类型相反的高掺杂浓度的半超级结列,并用于承受高击穿电压。
半导体电极,其掺杂类型与所述衬底相同,位于所述主体和基极区的内部并具有高掺杂密度,所述半导体电极分别作为所述高压MOSFET和所述高压双极型晶体管的源极和发射极;
多晶硅薄氧化层栅极电极,其与所述主体和所述衬底区叠置,并作为所述MOSFET的栅极;其中:
所述高压MOSFET的栅极作为所述功率开关集成电路的栅极端子;
所述高压MOSFET的源极与所述高压双极型晶体管的基极相连接;
所述高压MOSFET的所述主体连接至所述高压MOSFET的源极,或可选地连接至所述高压双极型晶体管的发射极;
所述高压双极型晶体管的发射极作为所述功率开关集成电路的所述发射极端子;以及
二极管,其正极与所述高压双极型晶体管的基极相连接,并且其负极与所述功率开关集成电路的栅极端子相连接;其中
所述二极管是连接成二极管形式的双极型晶体管,并包括:
集电极,其作为在所述高压功率开关集成电路的高压集电极衬底上的阱,所述阱的掺杂类型与主衬底相反,所述集电极与所述高压MOSFET的所述主体或与所述高压双极型晶体管的所述基极类似,并具有高掺杂浓度的半超级结列,所述半超级结列的掺杂类型与所述衬底相反,并且其隔离集电极区而用来承受高击穿电压;
基极,其位于集电极阱内部,其掺杂类型与所述集电极阱相反,并通过电极与其他组件互连,所述基极与所述高压双极型晶体管的发射极或与所述MOSFET的源极类似;
发射极,其为更高掺杂密度的与集电极相同类型的半导体(对于普通二极管),或为势垒金属硅化物(对于肖特基二极管);并且
所述基极和所述集电极的端子相互连接并作为二极管的负极,同时所述发射极作为二极管的正极。
优选地,所述连接成二极管形式的双极性晶体管的集电极阱与所述高压MOSFET和所述高压双极型晶体管的所述主体和基极区的阱使用同一掩模,或该集电极阱为由额外的掩模制造的独立区。
优选地,所述连接成二极管形式的双极型晶体管的集电极阱具有高掺杂密度区,包围结深较浅于所述高密度掺杂区的同类型低掺杂密度区,所述高 掺杂区用于承受高击穿电压并且连接低掺杂密度集电极阱以形成连接,所述低密度区作为实际上的集电极阱,其内部形成有所述连接成二极管形式的双极型晶体管的基极和发射极。
优选地,在所述MOSFET的主体与所述高压双极型晶体管的所述基极电连接的情况下,所述高压MOSFET的所述主体的阱与所述高压双极型晶体管的基极的阱合并。此外,其中将所述高压MOSFET和所述高压双极型晶体管的隔离区半超级结列合并,并将其间的隔离区去掉。
优选地,其中所述二极管是肖特基二极管,并且通过势垒金属硅化物而与除了肖特基二极管的正极之外的半导体区连接。
优选地,其中通过与所述二极管的正极所用的相同种类的半导体电极来连接所述高压双极型晶体管的所述基极区和所述高压MOSFET的所述主体区,以及使用普通基极发射极结的所述连接成二极管形式的双极型晶体管的所述集电极区。
附图说明
下面参照图示来示例性地描述本发明的优选形式,其中:
图1图示了现有技术常见的隔离恒压输出的开关变换器;
图2图示了现有技术常见的用于LED照明设备的非隔离恒流输出的开关变换器;
图3示出了现有技术常见的两个以三管脚封装的达林顿晶体管的电路示意图;
图4是本发明的具有高速关断时间的三管脚高压达林顿双极型功率开关器件的示意性电路图;
图5示出了将形成本发明的高压达林顿双极型功率开关器件的分立器件集成为单片三管脚封装件的一可行的接合图;
图6示出了将形成本发明的高压达林顿双极型功率开关器件的分立器件集成为单片三管脚封装件的另一可行的接合图;
图7示出了作为单片IC的本发明的高压达林顿双极型开关器件的一可行的横截面;
图8示出了作为单片IC的本发明的高压达林顿双极型开关器件的另一可行的横截面;
图9示出了作为单片IC的本发明的高压达林顿双极型开关器件的第三种可行的横截面;
图10示出了所述连接成二极管形式的双极型器件的直到形成基极区的结构的另一种可行的横截面;
图11是本发明的具有高速关断时间的三管脚高压MOSFET/双极型晶体管混合功率开关器件的示意性电路图;
图12示出了将形成本发明的高压MOSFET/双极型晶体管混合功率开关器件的分立器件集成为单片三管脚封装件的一可行的接合图;
图13示出了使用了改进的高压平面VDMOS工艺得到的作为单片IC的本发明的高压MOSFET/双极型晶体管混合开关器件的一可行的横截面;
图14示出了使用了改进的高压平面VDMOS工艺得到的作为单片IC的本发明的高压MOSFET/双极型晶体管混合开关器件的另一可行的横截面;
图15示出了使用了改进的高压平面VDMOS工艺得到的作为单片IC的本发明的高压MOSFET/双极型晶体管混合开关器件的第三种可行的横截面;
图16示出了使用了改进的高压超级结VDMOS工艺得到的作为单片IC的本发明的高压MOSFET/双极型晶体管混合开关器件的一可行的横截面;
图17示出了使用了改进的高压超级结VDMOS工艺得到的作为单片IC的本发明的高压MOSFET/双极型晶体管混合开关器件的另一可行的横截面;
图18示出了使用了改进的高压半超级结VDMOS工艺得到的作为单片IC的本发明的高压MOSFET/双极型晶体管混合开关器件的一可行的横截面;
图19示出了使用了改进的高压半超级结VDMOS工艺得到的作为单片IC的本发明的高压MOSFET/双极型晶体管混合开关器件的另一可行的横截面。
具体实施方式
图4是本发明实施例的具有高速关断时间的三管脚高压达林顿双极型功率开关器件的示意性电路图。高压双极型晶体管401和402组成传统的达林顿双极型晶体管。该达林顿晶体管的电流增益是晶体管401和晶体管402的各电流增益的乘积。常见的电流增益可以达到100至400。因此,用来导通达林顿晶体管的基极电流较小,并且相关驱动功率能够在同样的输出功率下与用来驱动MOSFET栅极的功率相当。增加二极管403是为了当达林顿晶体管关断时对晶体管402的基极提供放电路径。因此,二极管403确保了较快的 基极弛豫,并且因此能快速关断本发明的功率开关器件。对于二极管403,由于与晶体管402的基极发射极结相比,肖特基二极管的正向电压较低,因此肖特基二极管更为优选。这使得开关器件的发射极端子能够直接与Vss连接。由于在常见应用中发射极电压高于如图1和图2所示的Vss电压,因此也可以用普通的二极管。因此,如图1和图2所示,在本发明的功率开关器件中,集电极和发射极端子作为功率开关器件的正极侧和负极侧,同时基极端子作为控制端。
可以将形成本发明的高压达林顿双极型功率开关器件的三个分立的半导体芯片封装成单个三引脚IC。所使用的双极型晶体管具有作为集电极端子的背面衬底,并且基极和发射极端子位于带有接合焊盘的前侧。所使用的二极管的负极作为衬底且其正极焊盘位于前侧。可利用各种不同的导电连接方法将两个双极型晶体管与主芯片焊盘进行导电芯片粘接。将主芯片焊盘和封装件的集电极管脚进行电连接。将所述二极管的负极与基极管脚进行导电芯片粘接。将三个分立的半导体芯片适当地接合成如图4中所示的电路。然后执行例如塑模等后继封装步骤来完成三管脚封装。图5是用于将各分立器件内连接为单个三管脚封装件的一可行的接合图。
值得注意的是,如果使用具有四个接合焊盘(即,集电极焊盘、发射极焊盘、第一基极焊盘和内部基极焊盘)的高压达林顿双极型晶体管,那么可以将图5中的两个双极芯片减少至单个芯片,并且可以去掉第一发射极和第二基极之间的片间接线。图6示出了用于该特定实施例的新接合图。
可以将形成本发明的高压达林顿双极型功率开关器件的三个分立器件制造成单片集成电路(IC)。一显而易见的实施例是使用高压SOI工艺。下文将讨论其他可能的实施例。
在使用高压平面工艺将形成本发明的高压达林顿功率开关器件的三个分立器件集成为单片IC的过程中,主要的困难是将二极管与衬底隔离。与形成高压达林顿晶体管的晶体管相同的是,由于用衬底作为集电极的寄生垂直双极型晶体管的导通,将使得用基极阱作为正极且用该基极阱内的发射极电极作为负极的简单二极管将无法工作。使用连接成二极管形式的双极型晶体管可避免二极管区内的寄生晶体管的导通。
图7是如上所述的集成电路的可行的实施例的横截面。在图7中,背侧的N+区701用于与芯片焊盘进行导电芯片粘接,其还电性地作为集电极管 脚,N-区702是能够承受高击穿电压的实际集电极区。P阱703是连接成二极管形式的PNP晶体管725的集电极,其内部的N+区707作为基极,而P+区708为发射极。在连接成二极管形式的PNP晶体管725中,发射极708作为正极,而由N+区707形成的基极和P阱集电极703共同作为负极。因为以N-区702为集电极、P阱区703为基极且N+区707为发射极区而形成的垂直NPN晶体管726将在电流从P阱正极703流到N+负极707其间变为导通,因此需要用连接成二极管形式的PNP晶体管来代替用P阱703作为正极且N+区707作为负极的简单二极管。由于作为基极的P阱703总是与其内部的N+发射极区707保持相同的电位,因此该连接成二极管形式的PNP晶体管结构将确保垂直NPN晶体管726不会导通。此外,对于同样的正向二极管电流的处理,该器件因晶体管具有电流增益,从而与简单二极管相比面积较小。该连接成二极管形式的器件725的P阱区可以与其他P阱(704和705,其作为形成达林顿晶体管的两个双极性晶体管的基极区)共用相同的掩膜、具有相同的剂量并在相同条件下扩散推入,或倘若其与集电极N-区702一起承受所要求的高反向击穿电压,则可以使另一独立的P阱采用另一掩模步骤、掺杂浓度和扩散推入条件,所述其他P阱(704和705)。P阱704和705分别是形成达林顿晶体管的第一双极型晶体管和内部双极型晶体管(727和728)的基极区。N+区711和713是达林顿晶体管的第一双极型晶体管的发射极,而N+区716、718、721和723是达林顿晶体管的内部双极型晶体管的发射极。所有这样的N+发射极可以并优选与N+区707(先前描述的连接成二极管形式的PNP晶体管的负极)共用相同的掩模、并具有相同的剂量。P阱703、704和705的掺杂密度通常足够高以便与金属形成直接欧姆接触。由于需要额外的掩模步骤来形成P+结708,因此提供了这样的选择:共用相同的掩模来使金属层连接至P+触点以与这些P阱区相连。由于P阱703和P阱704处的电位相同(电连接),因此优选将这两个P阱合并为单P阱以缩减芯片尺寸。
图8描述了另一个实施例,其中器件832、833、834和835分别与图7中的器件725、726、727和728对应。图7和图8之间的主要区别是上述连接成二极管形式的双极型晶体管的实施。图8中的连接成二极管形式的双极型晶体管具有肖特基基极发射极结,而图7中与其对应的器件725具有普通的基极发射极结。需要额外的掩模步骤来产生P阱803内部的N-结,其结深 与N+结的结深相比更深或更浅。使用通过势垒金属硅化物809形成的用于连接P阱803内部的N-区的互连金属触点来形成肖特基结。作为一种选择,可直接地或通过势垒金属硅化物(810,811,814,815,816,817,818,819,821,822,824,825,826,828,829,831和836)间接地来使互连金属与其他半导体区接触。通过势垒金属硅化物来连接其他区域可节省一道掩模步骤。由于P阱803和P阱804处的电位相同(电连接),因此为了缩减芯片尺寸,优选将这两个P阱合并为单P阱。
另一个实施例是将图8中的连接成二极管形式的晶体管的基极发射极结改成体硅P+结。其实际等效电路与图7的相同。图9中示出了这样的单片器件的横截面。适用于图7的选择一般同样适用于图9。
由于连接成二极管形式的双极型器件的集电极阱和达林顿器件的基极区具有相对较高的掺杂浓度,因此用于形成连接成二极管形式的双极型器件的集电极阱内部的轻反向掺杂区的工艺控制非常严格。为了缓和严格的工艺控制要求,图10示出了该连接成二极管形式的双极型器件的直到形成基极区的器件结构的横截面。完成该横截面(对于普通双极型晶体管或肖特基双极型晶体管)的进一步结构与在图8和图9中图示的相似。在图10中,该连接成二极管形式的双极型器件的集电极区1005的掺杂浓度与P阱区1003和1004(其将区1005与高电压隔开)相比低得多。因此,不需要严格的工艺控制就可以制造轻掺杂的基极区1006。当区1001处于高电压期间,P阱1003和1004以及高压集电极区1002将在区1005下方形成耗尽区。这确保了在区1005中将不会发生击穿电压。可以使用这样的连接成二极管形式的双极型晶体管来替代图8和图9中的等同部件。
图11是本发明的具有快速关断时间的三管脚高压MOSFET/双极型晶体管混合功率开关器件的实施例的电路图。基本上,用MOSFET替代了图4的电路中的第一双极型晶体管,使得电路实质上是个IGBT。类似于二极管403,二极管1103在功率开关器件关断时提供基极弛豫路径,以确保快速关断。同样,优选用肖特基二极管,同时普通二极管也可以使用。
可以将形成本发明的高压MOSFET/双极型晶体管混合功率开关器件的三个分立半导体芯片封装成单片三引脚IC。所使用的MOSFET和双极型晶体管的背面衬底分别作为漏极和集电极端子,其他端子位于带有焊盘的前侧。所使用的二极管的负极作为衬底且其正极焊盘位于前侧。可利用各种不同的 导电连接方法将MOSFET和双极型晶体管与主芯片焊盘进行导电芯片粘接。主芯片焊盘与封装件的集电极管脚电连接。将二极管与基极管脚进行导电芯片粘接。将三个分立的半导体芯片适当地结合连接成图11中所示的电路。而后通过例如塑模等后续封装步骤来完成三管脚封装。图12示出了将分立器件内连接成单片三管脚封装件的接合图。
可以将形成本发明的高压MOSFET/双极型晶体管混合功率开关器件的三个分立器件制造为单片集成电路(IC)。一显而易见的实施例是使用高压SOI工艺。下文将讨论其他可行的实施例。
在使用高压平面工艺、超级结工艺或半超级结工艺将形成本发明的高压MOSFET/双极型晶体管混合功率开关器件的三个分立器件集成为单片IC的过程中,主要的困难是将二极管与衬底隔离。与垂直高压双极型晶体管相同的是,由于用衬底作为集电极的垂直高压双极型晶体管的导通,将使得用基极阱作为正极且用该基极阱内部的发射极电极作为负极的简单二极管无法工作。与高压达林顿功率开关器件相似,使用连接成二极管形式的双极型晶体管可避免二极管区中的寄生晶体管的导通。
图13示出了使用高压平面工艺将三个器件(即,高压MOSFET、高压双极型晶体管和二极管)集成为单片器件而形成本发明的高压MOSFET/双极型晶体管混合开关器件的一可行的横截面。N-衬底1302分别作为高压MOSFET 1327的漏极和高压双极型晶体管1328的集电极。其通过N+衬底1301连接至开关器件的集电极端子。对于高压双极型晶体管1328,P阱1305作为基极区而N+电极1316、1318、1321和1323作为发射极电极。P+电极1315、1317、1319、1320、1322和1324是用于与高压双极型晶体管的基极区1305形成金属接触的可选电极。对于高压MOSFET 1327,P阱1304作为主体区而N+电极1311和1313作为源极电极,以及多晶硅1310和1314(其沟道表面的氧化层较薄且场区表面的氧化层较厚)作为栅极电极。P+电极1312是用于与高压MOSFET 1327的主体区1304形成金属接触的可选电极。P阱1303是连接成二极管形式的双极型晶体管1325的集电极。N+电极1307是P阱1303内部的基极电极,而P+电极1308作为基极区1307内部的发射极电极。发射极1308作为二极管的正极,而基极1307和集电极1303通过金属连接到一起作为二极管的负极。主衬底1302、P阱1303和N+电极1307在连接成二极管的双极型晶体管1325的位置处形成寄生双极型晶体管1326。 由于连接成二极管形式的双极型晶体管1325要求对器件1326的基极发射极结(1303和1307)进行金属连接,因此防止了寄生双极型晶体管1326的导通。高压MOSFET 1327的源极和主体连接至高压双极型晶体管1328的基极,并连接至连接成二极管形式的双极型晶体管1325的正极。高压MOSFET1327的栅极连接至连接成二极管形式的双极型晶体管1325的负极,并作为开关器件的栅极端子。高压双极型晶体管1328的发射极端子作为开关器件的发射极端子。P+电极1306、1309、1312、1315、1317、1319、1320、1322和1326是与P阱1303、1304和1305形成金属接触的可选的连接电极。作为选择,可以将高压MOSFET的主体连接至高压双极型晶体管1328的其发射极,而不将该主体连接至其自身的源极电极。如果高压MOSFET1327的主体连接至其自身的源极,由于其电位与高压双极型晶体管1328的基极电位相同,因此之后可以将P阱1304和P阱1305合并成单阱来节省芯片面积。
图14示出了通过高压平面工艺将三个器件(即,高压MOSFET、高压双极型晶体管和二极管)集成为单片器件而形成本发明的高压MOSFET/双极型晶体管混合开关器件的另一可行的横截面。衬底1402分别作为高压MOSFET 1437的漏极和高压双极型晶体管1438的集电极。通过N+背侧1401将其连接至开关器件的集电极端子。对于高压双极型晶体管1438,P阱1405作为基极区,而N+电极1421、1422、1423和1424作为发射极电极。对于高压MOSFET 1437,P阱1404作为主体区,而N+电极1412和1413作为源极电极,以及多晶硅1415和1419(其沟道表面的氧化层较薄且场区表面的氧化层较厚)作为栅极电极。P阱1403是连接成二极管形式的双极型晶体管1435的集电极。N-电极1407是P阱1403内部的基极电极,而势垒金属硅化物电极1410作为基极区1407内部的发射极电极(N-电极1407和势垒金属硅化物1410形成肖特基基极发射极结)。通过N+电极1406和1408形成与基极区1407的连接。发射极1410作为二极管的正极,而基极1407和集电极1403相连在一起作为二极管的负极。势垒金属硅化物电极1409、1411、1414、1416、1417、1418、1420、1425、1426、1427、1428、1429、1430、1431、1432、1433和1434是与除了连接成二极管形式的双极型晶体管1435的发射极电极之外的半导体电极形成金属接触的优选电极。
可以选择直接金属连接到这些电极,但由于金属与势垒金属硅化物可以共用相同的掩模步骤,因而优选前者的情况。主N-衬底1402,P阱1403和 N-电极1407在连接成二极管的双极型晶体管1435的位置处形成寄生双极型晶体管1436。由于连接成二极管形式的双极型晶体管1435要求器件1436的基极发射极结(1403和1407)处于相同电位,因此防止了寄生双极型晶体管1436导通。高压MOSFET 1437的源极和主体连接至高压双极型晶体管1438的基极,并连接至连接成二极管形式的双极型晶体管1435的正极。高压MOSFET 1437的栅极连接至连接成二极管形式的双极型晶体管1435的负极,并且还作为开关器件的栅极端子。高压双极型晶体管1438的发射极端子作为开关器件的发射极端子。作为选择,可以将高压MOSFET 1437的主体连接至高压双极型晶体管1438的发射极,而不是将该主体连接至其自身的源极电极。如果高压MOSFET 1427的主体连接至其自身的源极,由于其电位与高压双极型晶体管1438的基极电位相同,因此可以将P阱1404和P阱1405合并成单阱来节省芯片面积。
图15示出了通过高压平面工艺将三个器件(即,高压MOSFET、高压双极型晶体管和二极管)集成为单片器件而形成本发明的高压MOSFET/双极型晶体管混合开关器件的另一可行的横截面。衬底1502分别作为高压MOSFET 1529的漏极和高压双极型晶体管1530的集电极。通过N+背侧1501将其连接至开关器件的集电极端子。对于高压双极型晶体管1530,P阱1505作为基极区,而N+电极1518、1520、1523和1525作为发射极电极。对于高压MOSFET 1529,P阱1504作为主体区,而N+电极1512和1514作为源极电极,以及多晶硅1515和1516(其沟道表面的氧化层较薄且场区表面的氧化层较厚)作为栅极电极。P阱1503是连接成二极管形式的双极型晶体管1527的集电极。N-电极1508是P阱1503内部的基极电极,而P+电极1511作为基极区1508内部的发射极电极。通过N+电极1507和1509形成与基极区1508的连接。发射极1511作为二极管的正极,而基极1508和集电极1503连接到一起作为二极管的负极。P+电极1506、1510、1513、1517、1519、1521、1522、1524和1526是与P阱1503、1504和1505形成金属接触的可选电极,还可以直接与这些P阱进行金属连接。主N-衬底1502,P阱1503和N-电极1508在连接成二极管的双极型晶体管1527的位置处形成寄生双极型晶体管1528。由于连接成二极管形式的双极型晶体管1527要求对器件1527的基极发射极结(1503和1508)进行金属连接,因此防止了寄生双极型晶体管1528的导通。高压MOSFET 1529的源极和主体连接至高压双极型晶体管1530的 基极,并连接至双极型晶体管1527的二极管的正极。高压MOSFET 1529的栅极连接至连接成二极管形式的双极型晶体管1527的负极,并且还作为开关器件的栅极端子。高压双极型晶体管1530的发射极端子作为开关器件的发射极端子。作为选择,还可以将高压MOSFET 1529的主体连接至高压双极型晶体管1530的发射极,而不将高压MOSFET 1529的主体连接至其自身的源极电极。如果高压MOSFET 1529的主体连接至其自身的源极,则由于其电位与高压双极型晶体管1530的基极电位相同,因此之后可以将P阱1504和P阱1505合并成单阱来节省芯片面积。
由于连接成二极管形式的双极型器件的集电极、高压MOSFET的主体和高压双极型晶体管的基极区的阱的掺杂浓度相对较高,因此对于形成连接成二极管形式的双极型器件的集电极阱内部的轻掺杂反向区的工艺控制十分严格。图10中示出了缓解这个问题的方法,并且前文已对此进行了讨论。完成该横截面(对于普通双极型晶体管或肖特基双极型晶体管)的进一步结构与在图14和图15中图示的相似。可以使用这样的连接成二极管形式的双极型晶体管的结构来替代图14和图15中等同的部件。
图16示出了通过高压超级结工艺将三个器件(即,高压MOSFET、高压双极型晶体管和二极管)集成为单片器件而形成本发明的高压MOSFET/双极型晶体管混合开关器件的另一可行的横截面。N-衬底1611作为高压MOSFET 1647的漏极,而N-衬底区1613和1614作为高压双极型晶体管1648的集电极。这些N-区通过N+背侧1601连接至开关器件的集电极端子。超级结P+列1602、1603、1604、1605、1606、1607和1608与N-衬底区1609、1610、1611、1612、1613和1614一起用来承受高击穿电压。对于高压双极型晶体管1648,P阱1618和1619作为基极区,而N+电极1625、1626、1627和1628作为发射极电极。对于高压MOSFET 1647,P阱1616和1617作为主体区而N+电极1623和1624作为源极电极,以及多晶硅1633(其沟道表面的氧化层较薄且场区表面的氧化层较厚)作为栅极电极。P阱1615是连接成二极管形式的双极型晶体管1645的集电极。N-电极1621是P阱1615内部的基极电极,而势垒金属硅化物电极1630作为基极区1621内部的发射极电极(N-阱和势垒金属硅化物1630形成肖特基基极发射极结)。通过N+电极1620和1622形成与基极区1621的连接。发射极1630作为二极管的正极,而基极1621和集电极1615连接到一起作为二极管的负极。势垒金属硅化物 电极1629、1631、1632、1634、1635、1636、1637、1638、1639、1640、1641、1642、1643和1644是用于与除了连接成二极管形式的双极型晶体管1645的发射极电极之外的半导体电极形成金属连接的优选的势垒金属硅化物电极。也可以直接与这些电极进行金属连接,但由于金属与势垒金属硅化物能共用相同的掩模步骤,因而优选前者的情况。N-衬底1609,P阱1615和N-电极1621在连接成二极管形式的双极型晶体管1645的位置处形成寄生双极型晶体管1646。由于连接成二极管形式的双极型晶体管1645要求器件1646的基极发射极结(1615和1621)处于同一电位,因此防止了寄生双极型晶体管1646的导通。
高压MOSFET 1647的源极和主体连接至高压双极型晶体管1648的基极,并连接至连接成二极管形式的双极型晶体管1645的正极。高压MOSFET1647的栅极连接至连接成二极管形式的双极型晶体管1645的负极,并且还作为开关器件的栅极端子。高压双极型晶体管1648的发射极电极作为开关器件的发射极端子。作为选择,也可以将高压MOSFET 1647的主体连接至高压双极型晶体管1648的发射极,而不将高压MOSFET 1647的主体连接至其自身的源极电极。如果高压MOSFET 1647的主体连接至其自身的源极,则由于其电位与高压双极型晶体管1648的基极电位相同,因此之后可以将P阱1617、1618和1619合并成单阱来节省芯片面积。因此,可以将超级结列1605和1606合并来省去其间用于隔离的N-区1612。
图17示出了通过高压超级结工艺将三个器件(即,高压MOSFET、高压双极型晶体管和二极管)集成为单片器件而形成本发明的高压MOSFET/双极型晶体管混合开关器件的另一可行的横截面。N-衬底1711作为高压MOSFET 1739的漏极。N-衬底区1713和1714作为高压双极型晶体管1740的基极。这些N-区通过N+背侧1701连接至开关器件的集电极端子。超级结P+列1702、1703、1704、1705、1706、1707和1708与N-衬底区一起用于承受高击穿电压。对于高压双极型晶体管1740,P阱1718和1719作为基极区,而N+电极1725、1726、1727和1728作为发射极电极。对于高压MOSFET1739,P阱1716和1717作为主体区,而N+电极1723和1724作为源极电极,以及多晶硅1736(其沟道表面的氧化层较薄且场区表面的氧化层较厚)作为栅极电极。P阱1715是连接成二极管形式的双极型晶体管1737的集电极。N-电极1721是P阱1715内部的基极电极,而P+电极1729作为基极区1721 内部的发射极电极。通过N+电极1720和1722形成与基极区1721的连接。发射极1729作为二极管的正极,而基极1721和集电极1715连接到一起作为二极管的负极。N-衬底1709、P阱1715和N-电极1721在连接成二极管形式的双极型晶体管1737的位置处形成寄生双极型晶体管1738。由于连接成二极管形式的双极型晶体管1737要求对器件1738的基极发射极结(1715和1721)进行金属连接,因此防止了寄生双极型晶体管1738的导通。P+电极1730、1731、1732、1733、1734和1735是用于与P阱1718和1719形成金属接触的可选电极,并且也可以直接与这些P阱进行金属连接。高压MOSFET1739的源极和主体连接至高压双极型晶体管1740的基极,并连接至双极型晶体管1737的二极管的正极。高压MOSFET 1739的栅极连接至连接为二极管形式的双极型晶体管1737的负极,并且还作为开关器件的栅极端子。高压双极型晶体管1740的发射极电极作为开关器件的发射极端子。作为选择,也可以将高压MOSFET1739的主体连接至高压双极型晶体管1740的发射极,而不将高压MOSFET 1739的主体连接至其自身的源极电极。如果将高压MOSFET 1739的主体连接至其自身的源极,则由于其电位与高压双极型晶体管1740的基极电位相同,因此之后可以将P阱1717、1718和1719合并成单阱来节省芯片面积。因此,可以将超级结列1705和1706合并来省去其间用于隔离的N-区1712。
由于连接成二极管形式的双极型器件的集电极、高压MOSFET的主体和高压双极型晶体管的基极区的阱的掺杂浓度较高,因此对于形成连接成二极管形式的双极型器件的集电极阱内部的轻掺杂反向区的工艺控制十分严格。图10中示出了缓解这个问题的方法,并且前文已对此进行了讨论。完成该横截面(对于普通双极型晶体管和肖特基双极型晶体管)的进一步结构与在图16和图17中图示的相似。可以使用这样的连接成二极管形式的双极型晶体管的结构来替代图16和图17中等同的部件。
图18示出了通过高压半超级结工艺将三个器件(即,高压MOSFET、高压双极型晶体管和二极管)集成为单片器件而形成本发明的高压MOSFET/双极型晶体管混合开关器件的一个可行的横截面。N-衬底1802作为高压MOSFET 1842的漏极和高压双极型晶体管1843的集电极。N-区1802通过N+背侧1801连接至开关器件的集电极端子。半超级结P+列1803、1804、1805、1806、1807、1808和1809与N-衬底1802一起用于承受高击穿电压。对于 高压双极型晶体管1843,P阱1813和1814作为基极区,而N+电极1820、1821、1822和1823作为发射极电极。对于高压MOSFET 1842,P阱1811和1812作为主体区,而N+电极1818和1819作为源极电极,以及多晶硅1828(其沟道表面的氧化层较薄且场区表面的氧化层较厚)作为栅极电极。P阱1810是连接成二极管形式的双极型晶体管1840的集电极。N-电极1816是P阱1810内部的基极电极,而势垒金属硅化物电极1825作为基极区1816内部的发射极电极(N-阱1816和势垒金属硅化物1825形成肖特基基极发射极结)。通过N+电极1815和1817形成与基极区1816的连接。发射极1825作为二极管的正极,而基极1816和集电极1810连接到一起作为二极管的负极。势垒金属硅化物电极1824、1826、1827、1829、1830、1831、1832、1833、1834、1835、1836、1837、1838和1839是用于与除了连接成二极管形式的双极型晶体管1840的发射极电极之外的半导体电极形成金属连接的优选的势垒金属硅化物电极。也可以直接与这些电极进行金属连接,但由于金属与势垒金属硅化物能共用相同的掩模步骤,因而优选前者的情况。N-衬底1802,P阱1810和N-电极1816在连接成二极管形式的双极型晶体管1840的位置处形成寄生双极型晶体管1841。由于连接成二极管形式的双极型晶体管1840要求器件1841的基极发射极结(1810和1816)处于相同电位,因此防止了寄生双极型晶体管1841的导通。高压MOSFET 1842的源极和主体连接至高压双极型晶体管1843的基极,并连接至连接成二极管形式的双极型晶体管1840的正极。高压MOSFET 1842的栅极连接至连接成二极管形式的双极型晶体管1840的负极,并且还作为开关器件的栅极端子。高压双极型晶体管1843的发射极电极作为开关器件的发射极端子。作为选择,也可以将高压MOSFET 1842的主体连接至高压双极型晶体管1843的发射极,而不将高压MOSFET 1842的主体连接至其自身的源极电极。如果高压MOSFET 1842的主体连接至其自身的源极,则由于其电位与高压双极型晶体管1843的基极电位相同,因此之后可以将P阱1812、1813和1814合并成单阱来节省芯片面积。因此,可以将超级结列1806和1807合并来省去其间用于隔离的N-区。
图19示出了通过高压半超级结工艺将三个器件(即,高压MOSFET、高压双极型晶体管和二极管)集成为单片器件而形成本发明的高压MOSFET/双极型晶体管混合开关器件的另一可行的横截面。N-衬底1902作为高压MOSFET 1934的漏极和高压双极型晶体管1935的集电极。N-衬底1902通过 N+背侧1901连接至开关器件的集电极端子。半超级结P+列1903、1904、1905、1906、1907、1908和1909与N-衬底1902一起用于承受高击穿电压。
对于高压双极型晶体管1935,P阱1913和1914作为基极区,而N+电极1920、1921、1922和1923作为发射极电极。对于高压MOSFET 1934,P阱1911和1912作为主体区,而N+电极1918和1919作为源极电极,以及多晶硅1925(其沟道表面的氧化层较薄且场区表面的氧化层较厚)作为栅极电极。P阱1910是连接成二极管形式的双极型晶体管1932的集电极。N-电极1916是P阱1910内部的基极电极,而P+电极1924作为基极区1916内部的发射极电极。通过N+电极1915和1917形成与基极区1916的连接。发射极1924作为二极管的正极,而基极1916和集电极1910连接到一起作为二极管的负极。N-衬底1902,P阱1910和N-电极1916在连接成二极管形式的双极型晶体管1932的位置处形成寄生双极型晶体管1933。由于连接成二极管形式的双极型晶体管1932要求对器件1933的基极发射极结(1910和1916)进行金属连接,从而防止了寄生双极型晶体管1933的导通。P+电极1926、1927、1928、1929、1930和1931是用于与P阱1913和1914形成金属接触的可选电极,也可以直接与这些P阱进行金属连接。高压MOSFET 1934的源极和主体连接至高压双极型晶体管1935的基极,并连接至双极型晶体管1932的二极管的正极。高压MOSFET 1934的栅极连接至连接成二极管形式的双极型晶体管1932的负极,并同时作为开关器件的栅极端子。
高压双极型晶体管1935的发射极电极作为开关器件的发射极端子。作为选择,也可以将高压MOSFET 1934的主体连接至高压双极型晶体管1935的发射极,而不将高压MOSFET 1934的主体连接至其自身的源极电极。如果高压MOSFET 1934的主体连接至其自身的源极,则由于其电位与高压双极型晶体管1935的基极电位相同,因此之后可以将P阱1912、1913和1914合并成单阱来节省芯片面积。因此,可以将半超级结列1906和1907合并来省去其间用于隔离的N-区。
由于连接成二极管形式的双极型器件的集电极、高压MOSFET的主体和高压双极型晶体管的基极区的阱的掺杂浓度较高,因此对于形成连接成二极管形式的双极型器件的集电极阱内部的轻掺杂反向区的工艺控制十分严格。图10中示出了缓解这个问题的方法,并且前文已对此进行了讨论。完成该横截面(对于普通的双极型晶体管和肖特基双极型晶体管)的进一步结构与 在图18和图19中图示的相似。可以使用这样的连接成二极管形式的双极型晶体管的结构来替代图18和图19中的等同部件。

高压半导体功率开关器件.pdf_第1页
第1页 / 共44页
高压半导体功率开关器件.pdf_第2页
第2页 / 共44页
高压半导体功率开关器件.pdf_第3页
第3页 / 共44页
点击查看更多>>
资源描述

《高压半导体功率开关器件.pdf》由会员分享,可在线阅读,更多相关《高压半导体功率开关器件.pdf(44页珍藏版)》请在专利查询网上搜索。

本发明公开了一种三端子高压达林顿双极型晶体管功率开关器件,其包括:两个高压双极型晶体管,两者的集电极连接在一起作为集电极端子,第一高压双极型晶体管的基极作为基极端子,第一高压双极型晶体管的发射极连接到第二高压双极型晶体管的基极(内部基极),并且第二高压双极型晶体管的发射极作为发射极端子;二极管,其正极连接到所述内部基极(第一高压双极型晶体管的发射极,或第二高压双极型晶体管的基极),并且其负极连接到。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电子电路


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1