阵列信号随机噪声自适应模型去噪方法.pdf

上传人:32 文档编号:4662040 上传时间:2018-10-26 格式:PDF 页数:12 大小:8.72MB
返回 下载 相关 举报
摘要
申请专利号:

CN201210282327.3

申请日:

2012.08.09

公开号:

CN102819043A

公开日:

2012.12.12

当前法律状态:

授权

有效性:

有权

法律详情:

专利权人的姓名或者名称、地址的变更 IPC(主分类):G01V 1/36变更事项:专利权人变更前:恒泰艾普石油天然气技术服务股份有限公司变更后:恒泰艾普集团股份有限公司变更事项:地址变更前:100084 北京市海淀区农大南路1号院硅谷亮城2号楼A座七层变更后:100084 北京市海淀区丰秀中路3号院4号楼401室|||授权|||实质审查的生效IPC(主分类):G01V 1/36申请日:20120809|||公开

IPC分类号:

G01V1/36

主分类号:

G01V1/36

申请人:

泰艾普石油天然气技术服务股份有限公司

发明人:

谢桂生; 孙庚文; 周青春; 田迎春

地址:

100084 北京市海淀区农大南路1号院硅谷亮城2号楼A座七层

优先权:

专利代理机构:

北京海虹嘉诚知识产权代理有限公司 11129

代理人:

张涛;王键

PDF下载: PDF下载
内容摘要

本发明公开了一种阵列信号随机噪声自适应模型去噪方法,采用自适应的方式估计信号模型,而不是采用复杂的计算求取预测算子,大大提高计算效率,有效避免预测算子长度不够或强噪声导致预测算子失真,影响去噪效果和不保幅的问题,去噪方法简单,去噪效果好,振幅保真性好。包括以下步骤:1)首先根据地震数据处理范围,进行时窗划分;2)计算时窗内各地震道在频率空间域的频率谱;3)在频率空间域内,自适应所有地震道的信号模型;4)在频率空间域内,对每一地震道的指定范围的各个频率的实际振幅值与该地震道的信号模型的相应频率的振幅值进行比较,进行噪声振幅压制处理。

权利要求书

1.一种阵列信号随机噪声自适应模型去噪方法,其特征在于,包括以下步骤:
1)时窗划分:设定地震数据处理范围,确定时窗划分方案,所述时窗划分
是指将含有随机噪声的原始地震记录划分为对应于不同时段的一个或多个时窗;
2)计算时窗内所有地震道的频率谱:在某一时窗内,对所有地震道的数据
在所选取的时窗内进行付氏变换,将所有地震道的数据从时间空间域变换到频率
空间域,得到各地震道的频率谱;
3)自适应估计所有地震道的信号模型:在频率空间域内,根据得到的某一
时窗的各地震道的频率谱,计算所有地震道的信号模型;所述信号模型的计算是
指,对于某一地震道,选定使该地震道处于中间位置的空间窗,确定所选定的空
间窗包含的相邻于该地震道的地震道道数,根据所选定的空间窗内各地震道的频
率谱,由所述各地震道频率谱上的同一频率点的振幅值大小,自适应估计该地震
道的信号模型的相应频率的振幅值;
4)对各地震道振幅值进行压制处理:在频率空间域内,将每一地震道的指
定范围的各个频率的实际振幅值与该地震道的信号模型的相应频率的振幅值进
行比较,当某频率的实际振幅值大于该地震道的信号模型的相应频率的振幅值与
预定的阈值的乘积时,则将该频率的振幅值压制到设定的振幅水平上,当某频率
的振幅值小于或等于该地震道的信号模型的相应频率的振幅值与预定的阈值的
乘积时,则该频率的振幅值不变,由此得到每一地震道异常振幅压制后的频率谱;
5)将得到的每一地震道异常振幅压制后的频率谱反变换回到时间空间域,
得到空间时间域地震道数据;
6)对每个划分的时窗,重复所述步骤2)至步骤5),直到将划分的时窗的
数据处理完毕,输出去噪后的地震数据。
2.根据权利要求1所述的阵列信号随机噪声自适应模型去噪方法,其特征
在于,所述步骤1)中,所述时窗划分包括固定时窗划分或可变时窗划分,所述
固定时窗划分是指划分的时窗大小相同,时窗与时窗之间的重合长度也相同;
所述可变时窗划分是指时窗划分的大小、时窗划分的个数、每个时窗的起止时
间或时窗与时窗之间的重合长度是可改变的。
3.根据权利要求1所述的阵列信号随机噪声自适应模型去噪方法,其特征在
于,所述步骤3)中,所述自适应估计信号模型的振幅值是指采用中值、均值或
者中值和均值组合的估计方法确定组成信号模型的相应频率点的振幅值;所述
中值估计方法是指,将所述空间窗内的各地震道的同一频率点的振幅值按大小
进行排序,取排序后的中值作为信号模型的相应频率的振幅值;所述均值估计
方法是指,将所述空间窗内的各地震道的同一频率点的振幅值累加求算术平均
值,作为信号模型的相应频率的振幅值;所述中值和均值组合估计方法是指,
将所述空间窗内的各地震道的同一频率点的振幅值按大小进行排序,取排序后
的中值,在中值附近取相邻多个值累加求算术平均值,作为信号模型的相应频
率的振幅值。
4.根据权利要求1所述的阵列信号随机噪声自适应模型去噪方法,其特征在
于,所述步骤3)中,包括对自适应估计得出的各地震道的信号模型进行优化处
理的步骤,所述优化处理的步骤包括对信号模型进行空间域平滑或频率域平滑,
所述空间域平滑是指,用时窗内某频率的振幅值及其相邻若干地震道相同频率
的振幅值进行加权平均,所得值作为该频率的振幅值的替代值,以滤去小振幅
的扰动;所述频率域平滑是指,时窗内某地震道的各个频率的振幅值用该频率
的振幅值及其相邻若干频率的振幅值进行加权平均,所得值作为该频率的振幅
替代值,以滤去小振幅的扰动。
5.根据权利要求1所述的阵列信号随机噪声自适应模型去噪方法,其特征在
于,所述步骤4)中,将某频率的振幅值压制到设定的振幅水平上是指,将某频
率的振幅值压制到该地震道的信号模型的相应频率的振幅值与所述预定阈值的
乘积的水平,或者该地震道的信号模型的相应频率的振幅值水平,或者是折衷
水平;或者是零水平;所述折衷水平是指,介于信号模型的振幅水平和信号模
型振幅水平与所述预定阈值的乘积的之间的振幅水平,通过对预定阈值乘以一
个介于0~1之间的数来实现。

说明书

阵列信号随机噪声自适应模型去噪方法

技术领域

本发明涉及地震勘探数据处理技术领域,特别是涉及一种阵列信号随机噪声
自适应模型去噪方法。

背景技术

一般的信号处理关心的是时域信号,而阵列信号处理所关心的是时、空域信
号。阵列信号处理是现代信号处理的重要研究内容之一,也是当前研究热点,应
用范围极广,可用于雷达、声纳、导航、通讯、射电天文、医疗诊断和地震勘探
等众多领域。阵列信号处理是将一组传感器在空间的不同位置按一定规则布置形
成传感器阵列,用传感器阵列发射能量和(或)接收空间信号,获得信号源的观
测数据并加以处理。阵列信号处理的目的是从这些观测数据中提取信号的有用特
征,获取信号源的属性等信息。

由阵列传感器感应的传播信号是时间和空间的函数,受传播介质性质的影
响,而且往往伴随着干扰和噪声。有些传播信号是确定性信号,其波形、频率和
带宽是已知的。此时,对于一个由M个传感器组成的阵列,阵元m在t时刻的输
出ym(t)可以表示为:

ym(t)=s(t)+nm(t)    (1)

其中s(t)表示有效信号,nm(t)表示阵元m接收到的噪音干扰。

此类阵列信号资料的处理相对简单。而地震勘探使用的地震信号则大不相
同,这是因为地震信号的传播介质——地质介质(包括复杂近地表和复杂地下介
质)比较复杂,对地震信号有较强的改造作用,地震信号在介质中传播时,其路
径、振动强度和波形将随介质的弹性性质及几何形态的不同而变化,因此不同空
间位置的阵元接收到的有效信号是不同的,尽管其激发源相同。但相邻传感器接
收到的有效信号是缓变的,有规律的。如果掌握了这些变化规律,根据接收波的
旅行时间和速度资料,就可推断波的传播路径和介质的结构;而根据波的振幅、
频率及地层速度等参数,则有可能推断岩石的性质,从而达到勘探的目的。为了
获得较为理想的有效信号,尽最大程度的压制噪音,提高信噪比颇为重要。此时,
对于一个由M个传感器组成的阵列,阵元m在t时刻的输出ym(t)可以表示为:

ym(t)=sm(t)+nm(t)    (2)

其中sm(t)表示阵元m接收到的有效信号,它是我们无法精确计算求解的,nm(t)
表示阵元m接收到的噪音干扰。

地震勘探中,由于复杂的地表和地质条件的影响,各种干扰波都十分发育,
严重影响了地震资料的成像。从接收条件来说有效波和干扰波之间可能存在以下
差别:①频谱不同;②波从地下向地面的入射方向或质点振动方向不同;③视速
度或时差不同;④出现的统计规律不同。阵列信号处理的目的主要是最大限度地
提高地震记录的信噪比,这主要通过两种技术手段来实现:一是组合法抗干扰技
术,二是滤波技术。组合法利用了波在传播方向上的差异压制噪音干扰;所谓组
合,指的是以多个检波器组成一个地震道的输入或者多个震源同时激发构成一个
总的震源,前者称为组合检波,后者称为组合激发;一个组合作为一个阵元,组
合内的各个成员认为是子阵元,因其空间间距较小,可以认为子阵元接收到的有
效信号是相同的,噪音干扰是随机的,通过组合达到加强有效信号,压制噪音的
目的。滤波技术有预测滤波、小波变换去噪、时间空间滤波或频率波数滤波等,
对地震阵列信号,不仅能够按照动力学特征而且可以根据运动学特征或者二者的
综合特征对振动进行滤波去噪。在高分辨率地震反射资料处理中,它们被广泛用
于提高地震记录的信噪比。

f-x域预测滤波去噪技术是假定在频率空间域(f-x域)的相干信号是可预测
的,而随机噪声是不可预测的,同时假定同相轴是线性的。预测滤波通过使用维
纳滤波来获得隐含有效信号的最小平方近似。该方法虽然可以在一定程度上移除
一些随机噪声,但其效果主要依赖地震记录本身的信噪比。当随机噪声能量较弱
或者求取的预测算子长度很大时,随机噪声对于预测算子的影响是可以忽略的,
但是当随机噪声能量很强时,所求的预测算子会受噪声的影响而产生失真,同时
由于各种条件的限制,我们也不可能使得预测算子的长度很大。这样利用f-x域
预测滤波方法就不能保证预测算子的准确性,进而就不能保证预测滤波结果的准
确。而且其假定条件在处理复杂地区地震资料时难以满足。该方法不保幅。

小波变换是一种多尺度、多分辨率的时频分解方法,能够展示不同频率范围
内信号和噪声的时间分布特征。常规的基于小波变换的去噪方法采用多尺度分
解,较好地保留了信号的细节信息,可以有效地消除地震资料中的随机噪声,对
于精确地震勘探十分重要,但是该类方法的应用难点在于理想的处理参数比较难
以选择(小波基函数的选择,分解层数选择、重建小波系数时的阈值的选则等一
些待确定的因素),降低了实际去噪效果,仅仅应用小波变换并不能有效地消除
随机噪声,往往需要结合其它一些去噪方法才能有效地进行去噪处理。

发明内容

本发明公开了一种阵列信号随机噪声自适应模型去噪方法,采用自适应的方
式估计信号模型,而不是采用复杂的计算求取预测算子,大大提高计算效率,有
效避免预测算子长度不够或强噪声导致预测算子失真,影响去噪效果和不保幅的
问题,去噪方法简单,去噪效果好,振幅保真性好。

本发明的技术方案是:

一种阵列信号随机噪声自适应模型去噪方法,其特征在于,包括以下步骤:

1)时窗划分:设定地震数据处理范围,确定时窗划分方案,所述时窗划分
是指将含有随机噪声的原始地震记录划分为对应于不同时段的一个或多个时窗;

2)计算时窗内所有地震道的频率谱:在某一时窗内,对所有地震道的数据
在所选取的时窗内进行付氏变换,将所有地震道的数据从时间空间域变换到频率
空间域,得到各地震道的频率谱;

3)自适应估计所有地震道的信号模型:在频率空间域内,根据得到的某一
时窗的各地震道的频率谱,计算所有地震道的信号模型;所述信号模型的计算是
指,对于某一地震道,选定使该地震道处于中间位置的空间窗,确定所选定的空
间窗包含的相邻于该地震道的地震道道数,根据所选定的空间窗内各地震道的频
率谱,由所述各地震道频率谱上的同一频率点的振幅值大小,自适应估计该地震
道的信号模型的相应频率的振幅值;

4)对各地震道振幅值进行压制处理:在频率空间域内,将每一地震道的指
定范围的各个频率的实际振幅值与该地震道的信号模型的相应频率的振幅值进
行比较,当某频率的实际振幅值大于该地震道的信号模型的相应频率的振幅值与
预定的阈值的乘积时,则将该频率的振幅值压制到设定的振幅水平上,当某频率
的振幅值小于或等于该地震道的信号模型的相应频率的振幅值与预定的阈值的
乘积时,则该频率的振幅值不变,由此得到每一地震道异常振幅压制后的频率谱;

5)将得到的每一地震道异常振幅压制后的频率谱反变换回到时间空间域,
得到空间时间域地震道数据;

6)对每个划分的时窗,重复所述步骤2)至步骤5),直到将划分的时窗的
数据处理完毕,输出去噪后的地震数据。

所述步骤1)中,所述时窗划分包括固定时窗划分或可变时窗划分,所述固
定时窗划分是指划分的时窗大小相同,时窗与时窗之间的重合长度也相同;所述
可变时窗划分是指时窗划分的大小、时窗划分的个数、每个时窗的起止时间或时
窗与时窗之间的重合长度是可改变的。

所述步骤3)中,所述自适应估计信号模型的振幅值是指采用中值、均值或
者中值和均值组合的估计方法确定组成信号模型的相应频率点的振幅值;所述中
值估计方法是指,将所述空间窗内的各地震道的同一频率点的振幅值按大小进行
排序,取排序后的中值作为信号模型的相应频率的振幅值;所述均值估计方法是
指,将所述空间窗内的各地震道的同一频率点的振幅值累加求算术平均值,作为
信号模型的相应频率的振幅值;所述中值和均值组合估计方法是指,将所述空间
窗内的各地震道的同一频率点的振幅值按大小进行排序,取排序后的中值,在中
值附近取相邻多个值累加求算术平均值,作为信号模型的相应频率的振幅值。

所述步骤3)中,包括对自适应估计得出的各地震道的信号模型进行优化处
理的步骤,所述优化处理的步骤包括对信号模型进行空间域平滑或频率域平滑,
所述空间域平滑是指,用时窗内某频率的振幅值及其相邻若干地震道相同频率的
振幅值进行加权平均,所得值作为该频率的振幅值的替代值,以滤去小振幅的扰
动;所述频率域平滑是指,时窗内某地震道的各个频率的振幅值用该频率的振幅
值及其相邻若干频率的振幅值进行加权平均,所得值作为该频率的振幅替代值,
以滤去小振幅的扰动。

所述步骤4)中,将某频率的振幅值压制到设定的振幅水平上是指,将某频
率的振幅值压制到该地震道的信号模型的相应频率的振幅值与所述预定阈值的
乘积的水平,或者该地震道的信号模型的相应频率的振幅值水平,或者是折衷水
平;或者是零水平;所述折衷水平是指,介于信号模型的振幅水平和信号模型振
幅水平与所述预定阈值的乘积的之间的振幅水平,通过对预定阈值乘以一个介于
0~1之间的数来实现。

本发明的技术效果:

本发明提供的阵列信号随机噪声自适应模型去噪方法,通过对实际资料的去
噪处理,表明具有以下优点:

(1)采用自适应的方式估计信号模型,而不是采用复杂的计算求取预测算子,
方法简单,去噪能力强,非常适合剔除野值和不正常值,并可压制部分强面波(地
滚波)干扰,提高地震数据的信噪比,噪音越强该技术压制效果越好;

(2)振幅保真性好,算法收敛;本发明的方法并非简单的移除受噪音污染的
频率谱成分,而是基于邻域信号模型的谱估计,努力预测受噪音污染的频率的实
际真实振幅谱;同时该方法是数据驱动和自适应的,由于它利用地震记录中有效
信号和噪音在不同时间、空间位置的频率、振幅、信号模型三方面的特征来识别
噪音并给予压制,使用正确的设置参数只会移除某空间位置的某一(些)频率(范
围)的异常振幅,而不会改变其它,因此该方法在大多数情况下是保幅的、收敛
的。这意味着该方法几乎可以被应用到任何数据体,而副作用很小。

(3)不降低纵向分辨率;

(4)由于采用了时窗划分设计,并且窗口大小设计灵活,该方法可以是局部
化的去噪方法,实现定点、外科手术式的局部去噪处理,又可以将时窗设计的很
大,甚至是整个数据体一个时窗,这样就实现全局自适应去噪,能较好地适应复
杂构造。

附图说明

图1为某地区实际地震原始单炮记录。

图2为经本发明方法去噪处理后的单炮记录。

图3为经本发明方法去噪处理后的噪音剖面。

具体实施方式

以下结合附图对本发明的实施例做进一步的详细说明。

一种阵列信号随机噪声自适应模型去噪方法,包括以下步骤:

1)进行时窗划分:设定地震数据处理范围,确定时窗划分方案,所述时窗
划分是指将含有随机噪声的原始地震记录划分为对应于不同时段的一个或多个
时窗;

2)计算时窗内所有地震道的频率谱:在某一时窗内,对所有地震道的数据
在所选取的时窗内进行付氏变换,将所有地震道的数据从时间空间域变换到频率
空间域,得到各地震道的频率谱;

3)自适应估计所有地震道的信号模型:在频率空间域内,根据得到的某一
时窗的各地震道的频率谱,计算所有地震道的信号模型;所述信号模型的计算是
指,对于某一地震道,选定使该地震道处于中间位置的空间窗,确定该空间窗内
包含的相邻于该地震道的地震道道数,根据所选定的空间窗内各地震道的频率
谱,由所述各地震道频率谱上的同一频率点的振幅值大小,采用自适应的方式估
计该地震道的信号模型的相应频率的振幅值;

一般而言,对于选定的空间窗,该空间窗内包含的相邻于该地震道的地震道
道数,也即窗口的宽度,根据去噪要求,通过试验确定,也可以参考最多连续噪
音道数的2倍进行选择;

4)对各地震道振幅值进行压制处理:在频率空间域内,将每一地震道的指
定范围的各个频率的实际振幅值与该地震道的信号模型的相应频率的振幅值进
行比较,当某频率的实际振幅值大于该地震道的信号模型的相应频率的振幅值与
预定的阈值的乘积时,则将该频率成分的振幅值压制到设定的振幅水平上,当某
频率的振幅值小于或等于该地震道的信号模型的相应频率的振幅值与预定的阈
值的乘积时,则该频率的振幅值不变,由此得到每一地震道异常振幅压制后的频
率谱;

其中预定的阈值也称为压制因子,阈值的大小根据去噪要求,通过试验确
定,也可以根据含有噪音的地震数据的振幅谱中噪音的振幅水平和有效信号的振
幅水平进行比较选择;

5)将得到的每一地震道异常振幅压制后的频率谱反变换回到时间空间域,
得到空间时间域地震道数据;

6)对每个划分的时窗,重复所述步骤2)至步骤5),直到将每个时窗的数
据处理完毕,输出去噪后的地震数据。

其中,步骤1)中,时窗划分包括固定时窗划分或可变时窗划分,固定时窗
划分是指划分的时窗大小相同,时窗与时窗之间的重合长度也相同;可变时窗划
分是指时窗划分的大小、时窗划分的个数、每个时窗的起止时间或时窗与时窗之
间的重合长度是可改变的。

一般当地震资料比较复杂,有效信号在浅、中、深层的表现特征差异较大,
噪音特征变化也较大时,采用可变时窗划分方案;而当地震资料有效信号在浅、
中、深层的表现特征差异不大,噪音特征变化也不大时,可以采用固定时窗划分
方案。实际确定时窗划分方案时,要通过测试确定,以实际去噪效果作为判定标
准。

另外,设定固定时窗划分的各个相同频率成分的压制因子相同,可变时窗
划分的各个相同频率成分的压制因子是可改变的;一般而言,对某一地震道浅层
有效信号频率往往较高,而深层信号有效信号频率往往较低,因此要保护有效信
号,浅层要压制的频率成分和深层要压制的频率成分是不一样的,因此,可变时
窗划分时设定不同的压制因子。

步骤3)中,自适应估计信号模型的振幅值是指采用中值、均值或者中值和
均值组合估计方法确定信号模型的相应频率点的振幅值;其中,中值估计方法是
指,将空间窗内的各地震道的同一频率点的振幅值按大小进行排序,取排序后的
中值作为信号模型的相应频率的振幅值;中值估计方法是基于排序统计理论的
一种非常有效的非线性信号处理方法,可被用于建立信号道模型和抑制噪声
的处理,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域
中各点值的中值代替,让周围的像素值或序列值接近真实值,从而消除孤立
的噪声点;一般首先采用该方法,该方法的去噪效果相对较狠,噪音越强,去
噪效果越好;均值估计方法是指,将空间窗内的各地震道的同一频率点的振幅值
累加求算术平均值,作为信号模型的相应频率的振幅值;均值估计方法是一种
线性估计方法,其采用的主要方法为邻域平均法,其基本原理是把数字图像
或数字序列中一点的值用该点的一个邻域中各点值的平均值代替;由于振幅
最大值和最小值均参与信号模型的计算,所以该方法的去噪效果相对较轻,特别
是当噪音能量很强,比周围有效信号能量强很多时,它会直接导致均值较大,对
噪音的压制能力受到限制;中值和均值组合估计方法是指,将空间窗内的各地震
道的同一频率点的振幅值按大小进行排序,取排序后的中值,在中值附近取相邻
多个值累加求算术平均值,作为信号模型的相应频率的振幅值;该方法是将中值
附近的相邻几个值累加取平均值,它既能克服强噪音能量的影响,又能避免伤及
有效信号,处于中值估计和均值估计方法两种方法的折衷状态。

步骤3)中,还包括对自适应估计得出的各地震道的信号模型进行优化处理
的步骤,优化处理的步骤包括对信号模型进行空间域平滑或频率域平滑,空间域
平滑是指,用时窗内某频率的振幅值及其相邻若干地震道相同频率的振幅值进行
加权平均,所得值作为该频率的振幅值的替代值,以滤去小振幅的扰动;频率域
平滑是指,时窗内某地震道的各个频率的振幅值用该频率的振幅值及其相邻若干
频率的振幅值进行加权平均,所得值作为该频率的振幅替代值,以滤去小振幅的
扰动。

步骤4)中,将某频率的振幅值压制到设定的振幅水平上是指,将某频率的
振幅值压制到(1)该地震道的信号模型的相应频率的振幅值水平,或者(2)该
地震道的信号模型的相应频率的振幅值与所述预定阈值的乘积的水平,或者是
(3)零水平,或者是(4)折衷水平;所述折衷水平是指,介于信号模型的振幅
水平和信号模型振幅与所述预定阈值的乘积的水平之间的振幅水平,通过对预定
阈值乘以一个介于0~1之间的数来实现。

一般而言,首先采用(2)方式,将该频率成分的振幅值压制到该地震道的
信号模型的相应频率的振幅值与所述预定阈值的乘积的水平;当(2)方式去噪
效果没有达到要求,可以采用(1)方式,将某频率的振幅值压制到该地震道的
信号模型的相应频率的振幅值水平,或(4)方式,将某频率的振幅值压制到折
衷水平,即介于信号模型的振幅水平和信号模型振幅与所述预定阈值的乘积的水
平之间的振幅水平;如果需要将噪音压制的更狠,即便伤到一些有效信号也可以
承受,可以采用(3)方式,将某频率的振幅值压制到零水平。

如图1所示,为某地区实际地震原始单炮记录。噪音严重,频带很宽,信噪
比很低。采用本发明的方法进行去噪处理,得到如图2所示的去噪处理后的单炮
记录,有效去除了噪音,明显提高了信噪比,同相轴更加连续和清晰。将原始数
据与去噪后的剖面数据相减得到如图3所示的差值剖面,即去掉的噪音剖面,可
见去掉的地震记录成分是大量的强噪音,不含有效地震信息,说明本发明的方法
具有较强的噪音识别和较好的振幅保真性。

应当指出,以上所述具体实施方式可以使本领域的技术人员更全面地理解本
发明创造,但不以任何方式限制本发明创造。一切不脱离本发明创造的精神和范
围的技术方案及其改进,其均涵盖在本发明创造专利的保护范围当中。

阵列信号随机噪声自适应模型去噪方法.pdf_第1页
第1页 / 共12页
阵列信号随机噪声自适应模型去噪方法.pdf_第2页
第2页 / 共12页
阵列信号随机噪声自适应模型去噪方法.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《阵列信号随机噪声自适应模型去噪方法.pdf》由会员分享,可在线阅读,更多相关《阵列信号随机噪声自适应模型去噪方法.pdf(12页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102819043 A (43)申请公布日 2012.12.12 CN 102819043 A *CN102819043A* (21)申请号 201210282327.3 (22)申请日 2012.08.09 G01V 1/36(2006.01) (71)申请人 恒泰艾普石油天然气技术服务股份 有限公司 地址 100084 北京市海淀区农大南路 1 号院 硅谷亮城 2 号楼 A 座七层 (72)发明人 谢桂生 孙庚文 周青春 田迎春 (74)专利代理机构 北京海虹嘉诚知识产权代理 有限公司 11129 代理人 张涛 王键 (54) 发明名称 阵列信号随机噪声自适应模型。

2、去噪方法 (57) 摘要 本发明公开了一种阵列信号随机噪声自适应 模型去噪方法, 采用自适应的方式估计信号模型, 而不是采用复杂的计算求取预测算子, 大大提高 计算效率, 有效避免预测算子长度不够或强噪声 导致预测算子失真, 影响去噪效果和不保幅的问 题, 去噪方法简单, 去噪效果好, 振幅保真性好。 包 括以下步骤 : 1) 首先根据地震数据处理范围, 进 行时窗划分 ; 2) 计算时窗内各地震道在频率空间 域的频率谱 ; 3) 在频率空间域内, 自适应所有地 震道的信号模型 ; 4) 在频率空间域内, 对每一地 震道的指定范围的各个频率的实际振幅值与该地 震道的信号模型的相应频率的振幅值进。

3、行比较, 进行噪声振幅压制处理。 (51)Int.Cl. 权利要求书 2 页 说明书 6 页 附图 3 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 2 页 说明书 6 页 附图 3 页 1/2 页 2 1. 一种阵列信号随机噪声自适应模型去噪方法, 其特征在于, 包括以下步骤 : 1) 时窗划分 : 设定地震数据处理范围, 确定时窗划分方案, 所述时窗划分是指将含有随 机噪声的原始地震记录划分为对应于不同时段的一个或多个时窗 ; 2) 计算时窗内所有地震道的频率谱 : 在某一时窗内, 对所有地震道的数据在所选取的 时窗内进行付氏变换, 将所有地震道的数据从时间空。

4、间域变换到频率空间域, 得到各地震 道的频率谱 ; 3) 自适应估计所有地震道的信号模型 : 在频率空间域内, 根据得到的某一时窗的各地 震道的频率谱, 计算所有地震道的信号模型 ; 所述信号模型的计算是指, 对于某一地震道, 选定使该地震道处于中间位置的空间窗, 确定所选定的空间窗包含的相邻于该地震道的地 震道道数, 根据所选定的空间窗内各地震道的频率谱, 由所述各地震道频率谱上的同一频 率点的振幅值大小, 自适应估计该地震道的信号模型的相应频率的振幅值 ; 4) 对各地震道振幅值进行压制处理 : 在频率空间域内, 将每一地震道的指定范围的各 个频率的实际振幅值与该地震道的信号模型的相应频率。

5、的振幅值进行比较, 当某频率的实 际振幅值大于该地震道的信号模型的相应频率的振幅值与预定的阈值的乘积时, 则将该频 率的振幅值压制到设定的振幅水平上, 当某频率的振幅值小于或等于该地震道的信号模型 的相应频率的振幅值与预定的阈值的乘积时, 则该频率的振幅值不变, 由此得到每一地震 道异常振幅压制后的频率谱 ; 5) 将得到的每一地震道异常振幅压制后的频率谱反变换回到时间空间域, 得到空间时 间域地震道数据 ; 6) 对每个划分的时窗, 重复所述步骤 2) 至步骤 5) , 直到将划分的时窗的数据处理完 毕, 输出去噪后的地震数据。 2. 根据权利要求 1 所述的阵列信号随机噪声自适应模型去噪方。

6、法, 其特征在于, 所述 步骤 1) 中, 所述时窗划分包括固定时窗划分或可变时窗划分, 所述固定时窗划分是指划分 的时窗大小相同, 时窗与时窗之间的重合长度也相同 ; 所述可变时窗划分是指时窗划分的 大小、 时窗划分的个数、 每个时窗的起止时间或时窗与时窗之间的重合长度是可改变的。 3. 根据权利要求 1 所述的阵列信号随机噪声自适应模型去噪方法, 其特征在于, 所述 步骤 3) 中, 所述自适应估计信号模型的振幅值是指采用中值、 均值或者中值和均值组合的 估计方法确定组成信号模型的相应频率点的振幅值 ; 所述中值估计方法是指, 将所述空间 窗内的各地震道的同一频率点的振幅值按大小进行排序,。

7、 取排序后的中值作为信号模型的 相应频率的振幅值 ; 所述均值估计方法是指, 将所述空间窗内的各地震道的同一频率点的 振幅值累加求算术平均值, 作为信号模型的相应频率的振幅值 ; 所述中值和均值组合估计 方法是指, 将所述空间窗内的各地震道的同一频率点的振幅值按大小进行排序, 取排序后 的中值, 在中值附近取相邻多个值累加求算术平均值, 作为信号模型的相应频率的振幅值。 4. 根据权利要求 1 所述的阵列信号随机噪声自适应模型去噪方法, 其特征在于, 所述 步骤 3) 中, 包括对自适应估计得出的各地震道的信号模型进行优化处理的步骤, 所述优化 处理的步骤包括对信号模型进行空间域平滑或频率域平。

8、滑, 所述空间域平滑是指, 用时窗 内某频率的振幅值及其相邻若干地震道相同频率的振幅值进行加权平均, 所得值作为该频 率的振幅值的替代值, 以滤去小振幅的扰动 ; 所述频率域平滑是指, 时窗内某地震道的各个 频率的振幅值用该频率的振幅值及其相邻若干频率的振幅值进行加权平均, 所得值作为该 权 利 要 求 书 CN 102819043 A 2 2/2 页 3 频率的振幅替代值, 以滤去小振幅的扰动。 5. 根据权利要求 1 所述的阵列信号随机噪声自适应模型去噪方法, 其特征在于, 所述 步骤 4) 中, 将某频率的振幅值压制到设定的振幅水平上是指, 将某频率的振幅值压制到该 地震道的信号模型的相。

9、应频率的振幅值与所述预定阈值的乘积的水平, 或者该地震道的信 号模型的相应频率的振幅值水平, 或者是折衷水平 ; 或者是零水平 ; 所述折衷水平是指, 介 于信号模型的振幅水平和信号模型振幅水平与所述预定阈值的乘积的之间的振幅水平, 通 过对预定阈值乘以一个介于 0 1 之间的数来实现。 权 利 要 求 书 CN 102819043 A 3 1/6 页 4 阵列信号随机噪声自适应模型去噪方法 技术领域 0001 本发明涉及地震勘探数据处理技术领域, 特别是涉及一种阵列信号随机噪声自适 应模型去噪方法。 背景技术 0002 一般的信号处理关心的是时域信号, 而阵列信号处理所关心的是时、 空域信号。

10、。 阵 列信号处理是现代信号处理的重要研究内容之一, 也是当前研究热点, 应用范围极广, 可用 于雷达、 声纳、 导航、 通讯、 射电天文、 医疗诊断和地震勘探等众多领域。阵列信号处理是将 一组传感器在空间的不同位置按一定规则布置形成传感器阵列, 用传感器阵列发射能量和 (或) 接收空间信号, 获得信号源的观测数据并加以处理。阵列信号处理的目的是从这些观 测数据中提取信号的有用特征, 获取信号源的属性等信息。 0003 由阵列传感器感应的传播信号是时间和空间的函数, 受传播介质性质的影响, 而 且往往伴随着干扰和噪声。有些传播信号是确定性信号, 其波形、 频率和带宽是已知的。此 时, 对于一个。

11、由 M 个传感器组成的阵列, 阵元 m 在 t 时刻的输出 ym(t) 可以表示为 : 0004 ym(t)=s(t)+nm(t) (1) 0005 其中 s(t) 表示有效信号, nm(t) 表示阵元 m 接收到的噪音干扰。 0006 此类阵列信号资料的处理相对简单。而地震勘探使用的地震信号则大不相同, 这 是因为地震信号的传播介质地质介质 (包括复杂近地表和复杂地下介质) 比较复杂, 对 地震信号有较强的改造作用, 地震信号在介质中传播时, 其路径、 振动强度和波形将随介质 的弹性性质及几何形态的不同而变化, 因此不同空间位置的阵元接收到的有效信号是不同 的, 尽管其激发源相同。但相邻传感。

12、器接收到的有效信号是缓变的, 有规律的。如果掌握了 这些变化规律, 根据接收波的旅行时间和速度资料, 就可推断波的传播路径和介质的结构 ; 而根据波的振幅、 频率及地层速度等参数, 则有可能推断岩石的性质, 从而达到勘探的目 的。为了获得较为理想的有效信号, 尽最大程度的压制噪音, 提高信噪比颇为重要。此时, 对于一个由 M 个传感器组成的阵列, 阵元 m 在 t 时刻的输出 ym(t) 可以表示为 : 0007 ym(t)=sm(t)+nm(t) (2) 0008 其中 sm(t) 表示阵元 m 接收到的有效信号, 它是我们无法精确计算求解的, nm(t) 表示阵元 m 接收到的噪音干扰。 。

13、0009 地震勘探中, 由于复杂的地表和地质条件的影响, 各种干扰波都十分发育, 严重影 响了地震资料的成像。从接收条件来说有效波和干扰波之间可能存在以下差别 : 频谱不 同 ; 波从地下向地面的入射方向或质点振动方向不同 ; 视速度或时差不同 ; 出现的 统计规律不同。阵列信号处理的目的主要是最大限度地提高地震记录的信噪比, 这主要通 过两种技术手段来实现 : 一是组合法抗干扰技术, 二是滤波技术。 组合法利用了波在传播方 向上的差异压制噪音干扰 ; 所谓组合, 指的是以多个检波器组成一个地震道的输入或者多 个震源同时激发构成一个总的震源, 前者称为组合检波, 后者称为组合激发 ; 一个组合。

14、作为 一个阵元, 组合内的各个成员认为是子阵元, 因其空间间距较小, 可以认为子阵元接收到的 说 明 书 CN 102819043 A 4 2/6 页 5 有效信号是相同的, 噪音干扰是随机的, 通过组合达到加强有效信号, 压制噪音的目的。滤 波技术有预测滤波、 小波变换去噪、 时间空间滤波或频率波数滤波等, 对地震阵列信号, 不 仅能够按照动力学特征而且可以根据运动学特征或者二者的综合特征对振动进行滤波去 噪。在高分辨率地震反射资料处理中, 它们被广泛用于提高地震记录的信噪比。 0010 f-x 域预测滤波去噪技术是假定在频率空间域 (f-x 域) 的相干信号是可预测的, 而随机噪声是不可预。

15、测的, 同时假定同相轴是线性的。预测滤波通过使用维纳滤波来获得 隐含有效信号的最小平方近似。该方法虽然可以在一定程度上移除一些随机噪声, 但其效 果主要依赖地震记录本身的信噪比。当随机噪声能量较弱或者求取的预测算子长度很大 时, 随机噪声对于预测算子的影响是可以忽略的, 但是当随机噪声能量很强时, 所求的预测 算子会受噪声的影响而产生失真, 同时由于各种条件的限制, 我们也不可能使得预测算子 的长度很大。这样利用 f-x 域预测滤波方法就不能保证预测算子的准确性, 进而就不能保 证预测滤波结果的准确。而且其假定条件在处理复杂地区地震资料时难以满足。该方法不 保幅。 0011 小波变换是一种多尺。

16、度、 多分辨率的时频分解方法, 能够展示不同频率范围内信 号和噪声的时间分布特征。常规的基于小波变换的去噪方法采用多尺度分解, 较好地保留 了信号的细节信息, 可以有效地消除地震资料中的随机噪声, 对于精确地震勘探十分重要, 但是该类方法的应用难点在于理想的处理参数比较难以选择 (小波基函数的选择, 分解层 数选择、 重建小波系数时的阈值的选则等一些待确定的因素) , 降低了实际去噪效果, 仅仅 应用小波变换并不能有效地消除随机噪声, 往往需要结合其它一些去噪方法才能有效地进 行去噪处理。 发明内容 0012 本发明公开了一种阵列信号随机噪声自适应模型去噪方法, 采用自适应的方式估 计信号模型。

17、, 而不是采用复杂的计算求取预测算子, 大大提高计算效率, 有效避免预测算子 长度不够或强噪声导致预测算子失真, 影响去噪效果和不保幅的问题, 去噪方法简单, 去噪 效果好, 振幅保真性好。 0013 本发明的技术方案是 : 0014 一种阵列信号随机噪声自适应模型去噪方法, 其特征在于, 包括以下步骤 : 0015 1) 时窗划分 : 设定地震数据处理范围, 确定时窗划分方案, 所述时窗划分是指将含 有随机噪声的原始地震记录划分为对应于不同时段的一个或多个时窗 ; 0016 2) 计算时窗内所有地震道的频率谱 : 在某一时窗内, 对所有地震道的数据在所选 取的时窗内进行付氏变换, 将所有地震。

18、道的数据从时间空间域变换到频率空间域, 得到各 地震道的频率谱 ; 0017 3) 自适应估计所有地震道的信号模型 : 在频率空间域内, 根据得到的某一时窗的 各地震道的频率谱, 计算所有地震道的信号模型 ; 所述信号模型的计算是指, 对于某一地震 道, 选定使该地震道处于中间位置的空间窗, 确定所选定的空间窗包含的相邻于该地震道 的地震道道数, 根据所选定的空间窗内各地震道的频率谱, 由所述各地震道频率谱上的同 一频率点的振幅值大小, 自适应估计该地震道的信号模型的相应频率的振幅值 ; 0018 4) 对各地震道振幅值进行压制处理 : 在频率空间域内, 将每一地震道的指定范围 说 明 书 C。

19、N 102819043 A 5 3/6 页 6 的各个频率的实际振幅值与该地震道的信号模型的相应频率的振幅值进行比较, 当某频率 的实际振幅值大于该地震道的信号模型的相应频率的振幅值与预定的阈值的乘积时, 则将 该频率的振幅值压制到设定的振幅水平上, 当某频率的振幅值小于或等于该地震道的信号 模型的相应频率的振幅值与预定的阈值的乘积时, 则该频率的振幅值不变, 由此得到每一 地震道异常振幅压制后的频率谱 ; 0019 5) 将得到的每一地震道异常振幅压制后的频率谱反变换回到时间空间域, 得到空 间时间域地震道数据 ; 0020 6) 对每个划分的时窗, 重复所述步骤 2) 至步骤 5) , 直。

20、到将划分的时窗的数据处理 完毕, 输出去噪后的地震数据。 0021 所述步骤 1) 中, 所述时窗划分包括固定时窗划分或可变时窗划分, 所述固定时窗 划分是指划分的时窗大小相同, 时窗与时窗之间的重合长度也相同 ; 所述可变时窗划分是 指时窗划分的大小、 时窗划分的个数、 每个时窗的起止时间或时窗与时窗之间的重合长度 是可改变的。 0022 所述步骤 3) 中, 所述自适应估计信号模型的振幅值是指采用中值、 均值或者中值 和均值组合的估计方法确定组成信号模型的相应频率点的振幅值 ; 所述中值估计方法是 指, 将所述空间窗内的各地震道的同一频率点的振幅值按大小进行排序, 取排序后的中值 作为信号。

21、模型的相应频率的振幅值 ; 所述均值估计方法是指, 将所述空间窗内的各地震道 的同一频率点的振幅值累加求算术平均值, 作为信号模型的相应频率的振幅值 ; 所述中值 和均值组合估计方法是指, 将所述空间窗内的各地震道的同一频率点的振幅值按大小进行 排序, 取排序后的中值, 在中值附近取相邻多个值累加求算术平均值, 作为信号模型的相应 频率的振幅值。 0023 所述步骤 3) 中, 包括对自适应估计得出的各地震道的信号模型进行优化处理的步 骤, 所述优化处理的步骤包括对信号模型进行空间域平滑或频率域平滑, 所述空间域平滑 是指, 用时窗内某频率的振幅值及其相邻若干地震道相同频率的振幅值进行加权平均。

22、, 所 得值作为该频率的振幅值的替代值, 以滤去小振幅的扰动 ; 所述频率域平滑是指, 时窗内某 地震道的各个频率的振幅值用该频率的振幅值及其相邻若干频率的振幅值进行加权平均, 所得值作为该频率的振幅替代值, 以滤去小振幅的扰动。 0024 所述步骤 4) 中, 将某频率的振幅值压制到设定的振幅水平上是指, 将某频率的振 幅值压制到该地震道的信号模型的相应频率的振幅值与所述预定阈值的乘积的水平, 或者 该地震道的信号模型的相应频率的振幅值水平, 或者是折衷水平 ; 或者是零水平 ; 所述折 衷水平是指, 介于信号模型的振幅水平和信号模型振幅水平与所述预定阈值的乘积的之间 的振幅水平, 通过对预。

23、定阈值乘以一个介于 0 1 之间的数来实现。 0025 本发明的技术效果 : 0026 本发明提供的阵列信号随机噪声自适应模型去噪方法, 通过对实际资料的去噪处 理, 表明具有以下优点 : 0027 (1) 采用自适应的方式估计信号模型, 而不是采用复杂的计算求取预测算子, 方法 简单, 去噪能力强, 非常适合剔除野值和不正常值, 并可压制部分强面波 (地滚波) 干扰, 提 高地震数据的信噪比, 噪音越强该技术压制效果越好 ; 0028 (2) 振幅保真性好, 算法收敛 ; 本发明的方法并非简单的移除受噪音污染的频率 说 明 书 CN 102819043 A 6 4/6 页 7 谱成分, 而是。

24、基于邻域信号模型的谱估计, 努力预测受噪音污染的频率的实际真实振幅谱 ; 同时该方法是数据驱动和自适应的, 由于它利用地震记录中有效信号和噪音在不同时间、 空间位置的频率、 振幅、 信号模型三方面的特征来识别噪音并给予压制, 使用正确的设置参 数只会移除某空间位置的某一 (些) 频率 (范围) 的异常振幅, 而不会改变其它, 因此该方法 在大多数情况下是保幅的、 收敛的。 这意味着该方法几乎可以被应用到任何数据体, 而副作 用很小。 0029 (3) 不降低纵向分辨率 ; 0030 (4) 由于采用了时窗划分设计, 并且窗口大小设计灵活, 该方法可以是局部化的去 噪方法, 实现定点、 外科手术。

25、式的局部去噪处理, 又可以将时窗设计的很大, 甚至是整个数 据体一个时窗, 这样就实现全局自适应去噪, 能较好地适应复杂构造。 附图说明 0031 图 1 为某地区实际地震原始单炮记录。 0032 图 2 为经本发明方法去噪处理后的单炮记录。 0033 图 3 为经本发明方法去噪处理后的噪音剖面。 具体实施方式 0034 以下结合附图对本发明的实施例做进一步的详细说明。 0035 一种阵列信号随机噪声自适应模型去噪方法, 包括以下步骤 : 0036 1) 进行时窗划分 : 设定地震数据处理范围, 确定时窗划分方案, 所述时窗划分是指 将含有随机噪声的原始地震记录划分为对应于不同时段的一个或多个。

26、时窗 ; 0037 2) 计算时窗内所有地震道的频率谱 : 在某一时窗内, 对所有地震道的数据在所选 取的时窗内进行付氏变换, 将所有地震道的数据从时间空间域变换到频率空间域, 得到各 地震道的频率谱 ; 0038 3) 自适应估计所有地震道的信号模型 : 在频率空间域内, 根据得到的某一时窗的 各地震道的频率谱, 计算所有地震道的信号模型 ; 所述信号模型的计算是指, 对于某一地震 道, 选定使该地震道处于中间位置的空间窗, 确定该空间窗内包含的相邻于该地震道的地 震道道数, 根据所选定的空间窗内各地震道的频率谱, 由所述各地震道频率谱上的同一频 率点的振幅值大小, 采用自适应的方式估计该地。

27、震道的信号模型的相应频率的振幅值 ; 0039 一般而言, 对于选定的空间窗, 该空间窗内包含的相邻于该地震道的地震道道数, 也即窗口的宽度, 根据去噪要求, 通过试验确定, 也可以参考最多连续噪音道数的 2 倍进行 选择 ; 0040 4) 对各地震道振幅值进行压制处理 : 在频率空间域内, 将每一地震道的指定范围 的各个频率的实际振幅值与该地震道的信号模型的相应频率的振幅值进行比较, 当某频率 的实际振幅值大于该地震道的信号模型的相应频率的振幅值与预定的阈值的乘积时, 则将 该频率成分的振幅值压制到设定的振幅水平上, 当某频率的振幅值小于或等于该地震道的 信号模型的相应频率的振幅值与预定的。

28、阈值的乘积时, 则该频率的振幅值不变, 由此得到 每一地震道异常振幅压制后的频率谱 ; 0041 其中预定的阈值也称为压制因子, 阈值的大小根据去噪要求, 通过试验确定, 也可 说 明 书 CN 102819043 A 7 5/6 页 8 以根据含有噪音的地震数据的振幅谱中噪音的振幅水平和有效信号的振幅水平进行比较 选择 ; 0042 5) 将得到的每一地震道异常振幅压制后的频率谱反变换回到时间空间域, 得到空 间时间域地震道数据 ; 0043 6) 对每个划分的时窗, 重复所述步骤 2) 至步骤 5) , 直到将每个时窗的数据处理完 毕, 输出去噪后的地震数据。 0044 其中, 步骤 1)。

29、 中, 时窗划分包括固定时窗划分或可变时窗划分, 固定时窗划分是指 划分的时窗大小相同, 时窗与时窗之间的重合长度也相同 ; 可变时窗划分是指时窗划分的 大小、 时窗划分的个数、 每个时窗的起止时间或时窗与时窗之间的重合长度是可改变的。 0045 一般当地震资料比较复杂, 有效信号在浅、 中、 深层的表现特征差异较大, 噪音特 征变化也较大时, 采用可变时窗划分方案 ; 而当地震资料有效信号在浅、 中、 深层的表现特 征差异不大, 噪音特征变化也不大时, 可以采用固定时窗划分方案。 实际确定时窗划分方案 时, 要通过测试确定, 以实际去噪效果作为判定标准。 0046 另外, 设定固定时窗划分的。

30、各个相同频率成分的压制因子相同, 可变时窗划分的 各个相同频率成分的压制因子是可改变的 ; 一般而言, 对某一地震道浅层有效信号频率往 往较高, 而深层信号有效信号频率往往较低, 因此要保护有效信号, 浅层要压制的频率成分 和深层要压制的频率成分是不一样的, 因此, 可变时窗划分时设定不同的压制因子。 0047 步骤 3) 中, 自适应估计信号模型的振幅值是指采用中值、 均值或者中值和均值组 合估计方法确定信号模型的相应频率点的振幅值 ; 其中, 中值估计方法是指, 将空间窗内的 各地震道的同一频率点的振幅值按大小进行排序, 取排序后的中值作为信号模型的相应频 率的振幅值 ; 中值估计方法是基。

31、于排序统计理论的一种非常有效的非线性信号处理方法, 可被用于建立信号道模型和抑制噪声的处理, 其基本原理是把数字图像或数字序列中一点 的值用该点的一个邻域中各点值的中值代替, 让周围的像素值或序列值接近真实值, 从而 消除孤立的噪声点 ; 一般首先采用该方法, 该方法的去噪效果相对较狠, 噪音越强, 去噪效 果越好 ; 均值估计方法是指, 将空间窗内的各地震道的同一频率点的振幅值累加求算术平 均值, 作为信号模型的相应频率的振幅值 ; 均值估计方法是一种线性估计方法, 其采用的主 要方法为邻域平均法, 其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域 中各点值的平均值代替 ; 由于振。

32、幅最大值和最小值均参与信号模型的计算, 所以该方法的 去噪效果相对较轻, 特别是当噪音能量很强, 比周围有效信号能量强很多时, 它会直接导致 均值较大, 对噪音的压制能力受到限制 ; 中值和均值组合估计方法是指, 将空间窗内的各地 震道的同一频率点的振幅值按大小进行排序, 取排序后的中值, 在中值附近取相邻多个值 累加求算术平均值, 作为信号模型的相应频率的振幅值 ; 该方法是将中值附近的相邻几个 值累加取平均值, 它既能克服强噪音能量的影响, 又能避免伤及有效信号, 处于中值估计和 均值估计方法两种方法的折衷状态。 0048 步骤 3) 中, 还包括对自适应估计得出的各地震道的信号模型进行优。

33、化处理的步 骤, 优化处理的步骤包括对信号模型进行空间域平滑或频率域平滑, 空间域平滑是指, 用时 窗内某频率的振幅值及其相邻若干地震道相同频率的振幅值进行加权平均, 所得值作为该 频率的振幅值的替代值, 以滤去小振幅的扰动 ; 频率域平滑是指, 时窗内某地震道的各个频 率的振幅值用该频率的振幅值及其相邻若干频率的振幅值进行加权平均, 所得值作为该频 说 明 书 CN 102819043 A 8 6/6 页 9 率的振幅替代值, 以滤去小振幅的扰动。 0049 步骤 4) 中, 将某频率的振幅值压制到设定的振幅水平上是指, 将某频率的振幅值 压制到 (1) 该地震道的信号模型的相应频率的振幅值。

34、水平, 或者 (2) 该地震道的信号模型 的相应频率的振幅值与所述预定阈值的乘积的水平, 或者是 (3) 零水平, 或者是 (4) 折衷水 平 ; 所述折衷水平是指, 介于信号模型的振幅水平和信号模型振幅与所述预定阈值的乘积 的水平之间的振幅水平, 通过对预定阈值乘以一个介于 0 1 之间的数来实现。 0050 一般而言, 首先采用 (2) 方式, 将该频率成分的振幅值压制到该地震道的信号模型 的相应频率的振幅值与所述预定阈值的乘积的水平 ; 当 (2) 方式去噪效果没有达到要求, 可以采用 (1) 方式, 将某频率的振幅值压制到该地震道的信号模型的相应频率的振幅值水 平, 或 (4) 方式,。

35、 将某频率的振幅值压制到折衷水平, 即介于信号模型的振幅水平和信号模 型振幅与所述预定阈值的乘积的水平之间的振幅水平 ; 如果需要将噪音压制的更狠, 即便 伤到一些有效信号也可以承受, 可以采用 (3) 方式, 将某频率的振幅值压制到零水平。 0051 如图 1 所示, 为某地区实际地震原始单炮记录。噪音严重, 频带很宽, 信噪比很低。 采用本发明的方法进行去噪处理, 得到如图 2 所示的去噪处理后的单炮记录, 有效去除了 噪音, 明显提高了信噪比, 同相轴更加连续和清晰。 将原始数据与去噪后的剖面数据相减得 到如图 3 所示的差值剖面, 即去掉的噪音剖面, 可见去掉的地震记录成分是大量的强噪音, 不含有效地震信息, 说明本发明的方法具有较强的噪音识别和较好的振幅保真性。 0052 应当指出, 以上所述具体实施方式可以使本领域的技术人员更全面地理解本发明 创造, 但不以任何方式限制本发明创造。一切不脱离本发明创造的精神和范围的技术方案 及其改进, 其均涵盖在本发明创造专利的保护范围当中。 说 明 书 CN 102819043 A 9 1/3 页 10 图 1 说 明 书 附 图 CN 102819043 A 10 2/3 页 11 图 2 说 明 书 附 图 CN 102819043 A 11 3/3 页 12 图 3 说 明 书 附 图 CN 102819043 A 12 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 测量;测试


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1