用于海底碳氢化合物积蓄层的感应极化绘图的方法和设备
技术领域
本发明描述了用于对与海床下的碳氢化合物相关联的不规则地带进行快速直接绘图的方法。该方法基于在由在海底积蓄层(reservoir)上移动的一致垂直的发射机/接收机线路测量的电磁场中观察到的感应极化效应。
背景技术
目前使用两种方法来检测深水区中的载有碳氢化合物的积蓄层并获得该积蓄层特性。
第一种方法是基于位于海水层以下的水平分层的电导部分的声音探测。该部分表示沉积物。在这些沉积物的某个深度嵌有含有碳氢化合物的薄的阻性积蓄层。强力发射机激发海水层和以下部分中的交流电流,且位于海床以上的不同地点的一个或多个电和/或磁记录器记录来自所述部分的电磁响应。这些响应的图像或其逆变和变换与地震数据、测井(logging)数据以及其它数据一起使用,以用于油气探测以及积蓄层评估和开发。
该方法已经在多个专利以及方法中被描述,例如Srnka的申请号为4,617,518和6,522,146的US专利;Tasci的申请号为5,563,513的US专利;Eidesmo等人的申请号为0052685、0048105、6,628,119的US专利;MacGregor等人的申请号为2006132137的US专利;Wright等人的申请号为1425612的EP专利;MacGregor和Sinha的国际公开号WO03/048812,WO-2004049008;GB公开2395563,MacGregor等人的AU公开20032855以及在后面所附的参考文件清单中提到的许多其它公开。
该方法可以在没有所谓的感应极化效应(IP)的情况中被使用,该IP能够使得包含积蓄层的结构的电磁响应失真。此外,该方法与地震勘探相比具有较低的分辨率,因此有效性相对较低。
另一种方法是基于对在由控制源在所述部分中传输的电流的影响下产生的辅助电场的分析。这些电场具有电磁特性,且是由在岩石的固体物质与间隙液体之间接触处产生的所谓双层中的过程造成的。这种效应被称为感应极化效应(IP)。
IP的特性取决于固体岩石的电阻率。在碳氢化合物存在于耐阻性地层之间的接触处的情况中,IP过程具有电子动力学特性。IP效应的强度取决于电解液浓度和空隙结构,且可以被用于进行碳氢化合物勘探。
IP效应可以在时域或频域中被测量。
在时域中,发射机激励一连串的矩形电流脉冲,在脉冲之间具有中止,并且记录器进行对在脉冲之间的中止中产生的电场的测量。IP效应本身表现为在没有IP效应时出现的时域响应中的特定变化。
在频域中,发射机生成不同频率的交变电流,并且记录器进行对响应的测量。IP效应本身表现为随着频率增加而电压减小以及电压相位相对于激励电流的负变化。
根据Kruglova等人(1976)以及Kirichek(1976)的论述,位于积蓄层区域的岩石在碳氢化合物的向上移动的影响下经历外成改变,这导致岩石的化学矿物学结构和物理特性改变。
创立IP效应的另一种机制已经由Pirson(1969,1976)和Oehler(1982)论述了,他们将其解释为浅的多孔寄主岩石中的黄铁矿累积,在该多孔寄主岩石中,黄铁矿分布在断面中、或分布在具有分散或类似水泥质地的原始颗粒之间。
已经提出了其它模型来解释IP效应,例如Schumacher(1969)提出的模型。但是在所有的这些模型中,导致IP效应的过程包含大量的岩石且不仅可以在积蓄层中或接近积蓄层中创建不规则,而且也可以在积蓄层以上的所述部分的不同层创建不规则。
基于IP效应的勘察的碳氢化合物勘探的已有方法以及上面引用的US专利(Kaufman,1978;Oehler,1982;Srnka,1986;Vinegar,1988;Stanley,1995;Wynn,2001;Conti,2005)和俄罗斯专利(Alpin,1968;Belash,1983;Kashik,1996;Nabrat,1997;Rykhlinksy,2004;Lisitsin,2006)已经用于检测电化学变化的沉积物,也就是可以由于黄铁矿累积向上扩展的变化地带。
根据Moiseev(2002)的论述,伴随碳氢化合物沉积的黄铁矿晕圈(halo)可以位于300-700米深的位置,而与其沉积深度无关。Moiseev还发现根据场调查,加强的极化率轮廓(contour)和碳氢化合物积蓄层投影之间的紧密关系可以被确定,其是碳氢化合物垂直移动的指示并给出了使用这种情况进行碳氢化合物勘探的几率。
目前对于应用IP效应进行海洋碳氢化合物勘探只有很少的经验;同时陆地经验已经表明基于IP效应进行钻孔来进行碳氢化合物积蓄层的勘探有70%的成功率(Moiseev,2002)。
在实验数据中,IP效应的行为通常经由不同类型的模型来描述,岩石的电阻率ρ表示为频率相关的参数。电阻率与频率的相关性对于碳氢化合物绘图来说是很重要的,这是因为其提供关于指示碳氢化合物的存在性的参数的较高分辨率。
对描述电阻率与频率的相关性的已有模型的全面回顾和分析由Dias(1968;1972,2000)给出,其证明IP效应可以由下式来适当地表述:
ρ=ρ0[1-η(1-1/tωτ1(1+1μ))]---(1)]]>
其中,μ=tωτ+(tωτ2)1/2,τ=rC,τ1=(R+RS)C,τ2=(αC)2,η=(ρ0-ρ∞)/ρ0。这里τ、τ1和τ2是与不同弛豫模式相关的弛豫时间,
ρ是复合电阻率,
ρ0和ρ∞分别是直流和最高频率的ρ的实际值。
η是代表IP效应强度的极化率。
这5个参数(ρ0、η、τ、τ1、和τ2)完全描述了复合电阻率的频率相关性且可以用于进行岩石物理学的解释(Dias,2000;Nelson等人,1982;Mahan等人,1986)。给出IP效应的现象学描述的参数r、R、RS、C以及α是电阻、电容以及等效电路模拟的某个系数(Dias,2000)。弛豫时间τ、τ1和τ2与微粒(IP的源)之间的间隔紧密相关。
公知且广泛应用的科尔-科尔模型具有4个参数且不如Dias的公式精确。
ρ的复合特性是典型IP效应,很大程度上增加了对碳氢化合物目标的电磁场的敏感度,并使得利用IP效应作为碳氢化合物指示的方法更多地用于碳氢化合物绘图。
被认为是本发明的先驱的Kashik等人(RU 2069375C1,1996)使用三条垂直线:一条用于发射机,两条用于接收机。这三条线被放置在浮冰中凿的不同的孔中。发射机产生脉冲型电流,而接收机测量电场的垂直分量。接收机线之间的水平方向的距离按顺序是勘探深度的1-2倍。在两个相邻线中测量的电场幅度之间的差值被用作判读(interpretation)参数。该发明的缺点是不能够控制浮冰的移动,这大幅降低了其可能性和生产率;缺少在海洋中不同层的电场的垂直分量的测量限制了噪声抑制和判读的可能性。
发明内容
本发明的目的是弥补或减少现有技术中的至少一个缺陷。
通过在以下描述中和权利要求中载明的特征来实现该目的。
本发明提供一种直接观察并快速确定IP的快速方法。
本发明还提供用于通过IP效应的特性描述来建立并勾画区域,由此增加检测到碳氢化合物积蓄层的可能性的方法。
此外,本发明提供能够评估对勘定区域中潜在的碳氢化合物积蓄层的岩石特性的岩石物理学判读有用的一些参数。
此外,本发明提供用于处理在勘定期间记录的数据的方法,以用于确定表征产生IP效应的岩石的岩石物理学特性的参数。这些参数用于通过海床上的积蓄层边缘的平面投影以及CSEM、地震、测井以及其它用于判读的地质及地球物理学方法一起来进行绘图。
在第一个方面,本发明更具体地涉及一种电磁勘定方法,该方法基于对感应极化效应的检测以及对该感应极化效应的特性的评估以用于为海底碳氢化合物目标绘图,其特征在于,该方法包括:
a)在水体中垂直放置至少一个电线,该电线形成发射电磁能量的电磁发射机,该电磁能量用于在水体以及下面介质中激励电磁场,该相同的电线被用作接收机,以用于测量电场的垂直分量;
b)提供作为电场的垂直分量的空间分布的勘定数据以及在以水体中随时间的视电阻率形式的介质响应;
c)执行对电场的垂直分量以及响应的空间/时间分析以检测感应极化效应并确定该感应极化效应的强度以及弛豫时间;以及
d)为由感应极化效应的特性透视图描述的不规则地带绘图以用于对地下碳氢化合物积蓄层的勘探。
通过提供电磁能量,垂直部署的多导体电缆中的一个导体优选用作电磁发射机,用于在水体和地下介质中激励电磁场,该电缆中的其它导体,具有不同的长度且终端(terminate)为电极,用作测量介质响应的接收机。
有利地,多个垂直部署的多导体电缆中的每个电缆具有用于提供电磁能量的一个导体,该导体用作在水体和下面介质中激励电磁场的电磁发射机,并且所述电缆中其它导体,具有不同长度且终端是电极,用作测量介质响应的接收机。
优选地,一个或多个接收机在测量期间是固定的。
一个或多个接收机由舰船拖着。
优选地,至少一个发射机在时域中发射电磁能量作为间断的一串的不同极性的电流脉冲,且具有尖锐终端,以至少一个接收机在时域响应没有被发射电流掩盖时在相邻电流脉冲之间流逝的时间期间测量时域响应。
优选地,电流脉冲以及中断的持续时间按照以下方式来规定:使得所述电磁场渗透深度被提供,超过积蓄层所在深度的两到三倍甚至更多,优选地,持续时间的范围在0.1秒到30秒。
在第二方面中,本发明更具体地涉及用于对海底碳氢化合物目标进行电磁勘定的勘定设备,其特征在于,一个或多个生成器用于生成具有尖锐终端的不同极性的电流脉冲,该生成器被连接到可潜入水中的系统,该系统包括:
至少一个电线,用于发射电磁能量到水体以及下面的介质中,并用于接收电场的垂直分量,所述电线中的至少一个电线是垂直部署的多导体电缆,在该多导体电缆中,至少一个导体用于在被提供来自生成器的电磁能量时在水体以及下面的介质中激励电磁场,并且该电缆中的其它导体,具有不同长度且终端是电极,用于接收电场的垂直分量用于记录介质响应。
在第三个方面,本发明涉及一种水面舰船,其特征在于,该水面舰船运载根据权利要求8所述的勘定设备。
在第四个方面,本发明涉及一种计算机设备,该计算机设备装载有机器可读指令,该机器可读指令用于执行根据权利要求1-7中任意一项权利要求所述的电磁勘定的方法。
附图说明
以下描述了优选实施方式的非限定性示例,其在附图中显示,其中:
图1a至图1c示出了可以用于包含碳氢化合物的潜在区域的快速IP绘图的可能的配置;
图2a和2b描述了数字建模的结果,该数字建模具有在有IP效应和没有IP效应时的不同部分的随时间的视电阻率的曲线;以及
图3示出了用于碳氢化合物勘定的可能方法。
具体实施方式
在第一个示例性实施方式中,单个发射机被安装在舰船上,该发射机包括垂直部署的、伸长的单芯导电电缆,该电缆终端是电极,且该电缆被浸入到水体中。舰船缓慢移动,且发射机发射具有尖锐终端的间断的电流脉冲,而具有电极的同一个电缆用于在相邻电流脉冲之间的时间逝去期间测量介质响应。这在NO 323889中有进一步描述,其在这里被全部合并作为引用。
图1a示出了第一个示例性实施方式,其中舰船1漂浮在在水面82上,其拖着垂直伸长的电缆2,该电缆2的终端是电极4,所述电缆2被浸入到水体8中,朝向海床81。生成器(未示出)被安装在舰船1上,且用于发射具有尖锐终端的间断的电流脉冲到电缆2中。具有电极4的电缆用于在两个脉冲之间的中止期间记录来自下面的介质83(即为绘图目标的地下结构)的响应。位置监控系统6用于确定在勘定期间舰船1的位置。
在第二个示例性实施方式中,生成器被安装在舰船上并被连接到垂直部署的、伸长的多芯导电电缆(包含电极),该电缆被浸入到水体中。舰船在水平方向上缓慢移动,且发射机在电缆的导体中的一个导体上发射具有尖锐终端的间断的电流脉冲,而该电缆的导体中的其它导体(具有不同长度,且终端是电极)用于在相邻电流脉冲之间的时间逝去期间测量在离海床不同距离处的介质响应。这种配置能够抑制海床附近局部不均匀性的影响,并增加响应确定及其判读的精确性。
图1b中示出了第二个示例性实施方式,其中舰船1拖着被浸入到水体8中的垂直伸长的多导体电缆3。电缆3的导体(未示出)中的一个导体(其终端是电极4)被连接到作为间断电流的源的生成器(未示出)。终端是非极化的电极5的其它电缆导体(未示出)形成记录系统,该记录系统用于测量在水体8中的不同层的介质的响应。位置监控系统6用于确定在勘定时舰船1的位置。
在第三个示例性实施方式中,多个发射机以垂直部署的、伸长的多芯导电电缆的形式被安装在舰船上以及在舰船1后面的相关浮标上,该电缆的终端是电极,该电缆被浸入到水体中,发射机电缆配置对应于以上第二示例性实施方式所述的配置。舰船在水平方向缓慢移动,且每个发射机在一个电缆的芯上发射间断的尖锐终端的电缆脉冲,而电缆的其它芯(具有不同长度,且终端是电极)中每一个芯用于在相邻电缆脉冲之间的时间流逝期间测量在离海床不同距离处的介质响应。这种配置有可能堆叠信号、抑制海床附近局部不均匀性的影响(产生由于IP效应使其复杂化的深层的IP目标的分离)、并且增加响应确定和判读的精确性。
图1c示出了该第三个示例性实施方式,其中舰船1拖着垂直部署的、伸长的第一多导体电缆3,该第一多导体电缆3被浸入到水体8中。此外,通过拖着绳索9,舰船1拖着悬挂在浮标7并被浸入到水体8中的一个或多个垂直的且伸长的第二多导体电缆3’。多导体电缆3,3’(终端为电极4)的每个导体中的一个导体(未示出)被连接到作为间断的电流的源的生成器。多导体电缆3,3’的导体(未示出)中的其它导体的终端是非极化电极5,用于测量离海床和舰船1不同距离处的介质响应。位置监控系统6用于确定在勘定期间船1的位置和浮标7的位置。
图2a和2b示出了区分来自浅目标和深目标的IP效应的几率。所述部分的参数是:
图2a:h1=300m,
ρ1=0.3Ωm(海水),
h2=1000m,
ρ2=1Ωm(沉积物),
h3=50m,
ρ3=40Ωm(碳氢化合物层),
ρ4=1Ωm。
曲线1、2、3涉及没有IP效应的情况下的模型,而曲线4、5、6涉及具有IP效应的情况下的模型(极化率m=0.1)。
图2b:h1=300m,
ρ1=0.3Ωm(海水),
h2=300m,
ρ2=1Ωm(沉积物),
h3=50m,
ρ3=40Ωm(碳氢化合物层),
ρ4=1Ωm。
曲线1、2、3涉及没有IP效应的情况下的模型,而曲线4、5、6涉及具有IP效应的情况下的模型(极化率m=0.1)。
发射机线2的长度为300m,而接收机线与发射机线2,3,3’一致(coincide)且长度等于1m。接收机线距离海床的距离分别为0m(曲线1、4),100m(曲线2、5)以及300m(曲线3、6)。
垂直线7标记IP效应的开始(在图2a中t=0.6s,在图2b中t=0.11s)。
在图3中,箭头指示勘定的起始点和结束点;参考标记1-4是IP效应强度不规则的轮廓。
根据本发明的第一个示例性实施方式,只使用一根线,形成发射机和接收机的垂直且一致的设置(图1a)。该设置提供了对阻性碳氢化合物目标在电磁场中的最大敏感性。电场的垂直分量具有对阻性目标(积蓄层)的最大敏感性。此外,发射机与接收机的一致提供了测量的IP场中的最大振幅。
在本发明的另一个配置中使用了不同长度的多个接收机线,该多个接收机线是以多导体电缆3中的导体的形式的,该接收机线与单个发射机线一致(图1b)。接收机线离海床81越长,它们对浅层响应介质越不敏感。在不同层测量的垂直电场的空间分析提供了区分由海床附近的响应介质产生的IP效应与深层响应介质产生的IP效应以及估计响应介质的深度的可能性。
产生IP效应的响应介质的深度的简单估计可以通过使用时间延迟t0(图2a和2b中的垂直线7)来完成,对于IP效应的开始:
(见图2a),
(见图2b)。在均匀介质中电磁场的渗透深度h为
米;图2a和2b中模型的深度分别近似等于1000m,400m,即接近真实值。有不同的确定时间延迟的方法,例如从具有IP效应的区域测量的响应、或通过使用由不存在IP效应表征的独立部分参数建立的响应来确定时间延迟的方法。
本发明的另一种配置包括多个垂直发射机和多芯接收机线3、3’,该多芯接收机线3、3’被水平隔开、部署在离海床不同的距离处(图2c),这提供了抑制产生局部IP不规则的浅层不均匀性的影响。在一些情况中,空间分布测量的系统能够提供关于产生IP效应的目标深度的信息。
本发明的优选配置提供较高性能的勘定,该优选配置为多个发射机和接收机3、3’,该接收机3、3’由舰船1拖着。舰船1不时地停住和/或在启动-停止时段工作。
本发明与Kashik等人(RU 2069375C1,1996)的比较显示了为发射机和接收机使用一致的线3、3’的可能性,以及在舰船1移动时同时在不同层和不同位置进行对电场的垂直分量的空时测量的可能性,大体上提供了用于为远景区域绘图和搜索碳氢化合物区域的新的可能性。
本发明的另一个优点是确定判读参数ρ0、η、τ、τ1、和τ2的方式,这些参数被插入到公式(1)中。这些参数通过两个步骤的过程来确定:
1)将测量的垂直的电场变换成视电阻率ρe;
2)根据以下最小函数评估判读参数:
Σn=1NΣm=1Mwmm|ρnme-ρnmc|---(2)]]>
这里
是测量的关于在第m个位置的第n个时间采样的视电阻率;N和M分别是时间采样和位置的总数,
是针对包含产生IP效应的目标的介质的某电子模型的直接问题解决的结果;wmn是允许数据精确性、先验地质和地球物理信息等的
采样的权重。
参考文献
公开号 公开日期 申请人
US专利公开
4114086 12/1978 Kaufman
4360359 11/1982 Oehler
4617518 10/1986 Srnka
4743854 05/1988 Vinegar
5444374 08/1995 Stanley等人
5563513 10/1996 Tasci
6236212 05/2001 Wynn
0052685A1 03/2003 Ellingsrud等人
0048105A1 03/2003 Ellingsrud等人
6628119B1 10/2003 Eidesmo等人
6842006 01/2005 Conti等人
2006132137 06/2006 MacGregor等人
俄罗斯专利公开
SU 1122998A 06/1983 Belash
SU 266091A1 11/1968 Alpin
RU 2069375C1 11/1996 Kashik等人
RU 2094829C1 10/1997 Nabrat等人
RU 2236028C1 09/2004 Rykhlinsky等人
RU 2253881C1 09/2006 Lisitsin等人
其它专利公开
WO 01/57555A1 09/2001 Ellingsrud等人
WO 02/14906A1 02/2002 Ellingsrud等人
WO 03/025803A1 03/2003 Srnka等人
WO 03/034096A1 04/2003 Sinha等人
WO 03/048812A1 06/2003 MacGregor等人
WO 2004/049008A1 04/2004 MacGregor等人
WO 2006/073315 01/2006 Johnstad等人
EP 1425612B1 02/2006 Wright等人
其它公开
Cole K.S.,Cole R.H.,1941.Dispersion and absorption in the dielectrics.J.Chern.Phys.N9,pp.341-351.
Dias,C.A.,1968.A non-grounded method for measuring elec5 tricalinduced polarization and resistivity:ph.D.thesis,Univ.California,Berkely.
Dias,C.A.,1972,Analytical model for a polarizable medium at radio andlower frequencies:J.Geophys.Res.,77,pp.4945-4956.
Dias,C.A.,2000.Developments in a model to describe low-frequencyelectrical polarization of rocks.Geophysics,v.65,N2,PP.437-451.
Davydycheva S.,Rykhlinsky N.,Legeido P.,2006.Electrical prospectingmethod for hydrocarbon search using the induced-polarization effect.Geophysics,v.71,N4,pp.G179-G189(在俄罗斯).
Eidesmo T.,Ellingsrud S.,MacGregor L.M.,Constable S.,Sinha M.C.,Johansen S.E.,Kong N.,Westerdahl H.,2002.Sea Bed Logging(SBL),a newmethod for remote and direct identi-fication of hydrocarbon filled layers indeepwater areas.First Break,20,March,pp.144-152.
Ellingsrud S.,Sinha M.C.,Constable S.,MacGregor L.M.,Eidesmo T.,Johansen S.E.,2002.Remote sensing of hydrocarbon layers by Sea Bed Logging(SBL):Results from a cruise off-shore Angola.The Leading Edge,21,pp.972-982.
Kirichek M.A.,Korolkov Yu.S.,Kruglova Z.D.,1976.Electrical surveyingat direct prospecting for oil and gas deposits.In:Materials of VIII All-unionresearch conference,Tumen-Moscow,pp.5-7(在俄罗斯).
Kruglova Z.D.,Anufriev A.A.,Yakovlev A.P.,1976.On nature of inducedpolarization of oil deposits in PreCaspian depression.Prospecting Geophysics,issue 71,pp.78-82(在俄罗斯)
Legeido P.Yu.,Mandelbaum M.M.,Rykhlinsky N.I.,1997.Self-descriptiveness of differential electrical prospecting methods at study ofpolarized media.Geophysics,Irkutsk,N3,pp.49-56(在俄罗斯).
Legeido P.Yu.,Mandelbaum M.M.,Rykhlinsky N.I.,1999.Differential-normalized method of electrical prospecting.Geophysics,Irkutsk,Special issue,pp.40-44(在俄罗斯).
MacGregor L.,Sinha M.,2000.Use of marine controlled-sourceelectromagnetic sounding for sub-basalt exploration.Geophysical prospecting,v.48,pp.1091-1106.
MacGregor L.,Sinha M.,Constable S.,2001.Electrical resistivity of theValu Fa Ridge,Lau Basin,from marine controlled-source electromagneticsounding.Geoph.J.Intern.,v.146,pp.217-236.
MacGregor L.,Tompkins M.,Weaver R.,Barker N.,2004.Marine activesource EM sounding for hydrocarbon detection.66th EAGE Conference &Exhibition,Paris,France,6-10 June 2004.
Mahan M.K.,Redman J.D.,Strangway D.W.,1986.Complex resistivity ofsynthetic sulphide bearing rocks.Geophys.Prospecting,v.34,pp.743-768.
Marine MT in China with Phoenix equipment,2004.Published by PhoenixGeophysics Ltd.,issue 34,pp.1-2,December 2004.
Moiseev V.S.,2002.The method of induced polarization for oil prospectivesearch.″Nauka ll,Novosibirsk,p.136(在俄罗斯).
Nabighian M.N.,Macnae J.C.,2005.Electrical and EM methods,1980-2005.The Leading Edge;2005;v.24,pp.S42-S45.
Nebrat A.G.,Sochelnikov V.V.,1998.Electrical prospecting for polarizedmedia by transient field method.Geophysics,N6,pp.27-30(在俄罗斯).
Nelson P.H.,Hansen W.H.and Sweeney M.J.,1982.Induced polarizationresponse of zeolitic conglomerate and carbonaceous siltstone,Geophysics,v.47,pp.71-88.
Pelton W.H.,Ward S.H.,Hallof P.G.,Sill W.R.,Nelson P.H.,1978.Mineral discrimination and removal of inductive coupling with multi-frequencyIP.Geophysics,43,pp.588-609.
Pirson,S.J.,1969,Geological,geophysical,and geochemical modificationof sediments in the environments of oil fields,in W.B.Heroy,ed.,Unconventional methods in exploration for petroleum and natural gas,symposium 1:Dallas,Texas,Southern Methodist University Press,pp.159-186.
Pirson,S.J.,1976,Predictions of hydrocarbons in place bymagneto-electrotelluric exploration:oil and Gas Journal,May 31,pp.82-86.
Thompson A.H.,Sumner J.R.,Hornbostel S.C.,2007.Electromagnetic-to-seismic conversion:A new direct hydrocarbon indicator.TheLeading Edge,April,pp.428-435.
Schumacher,D.,1996,Hydrocarbon-induced alteration of soils andsediments,In:D.Schumacher and M.A.Abrams,eds.,Hy-drocarbon migrationand its near surface expression:AAPG Memoir 66,pp.71-89.
Thompson A.H.,Hornbostel S.,Burns J.,Murray T.,Raschke R.,Wride J.,McCammon P.,Sumner J.,Haake G.,Bixby M.,Ross W.,White B.S.,Zhou M.,Peczak P.,2007.Field tests of electroseismic hydrocarbon detection.Geophysics,v.72,N1,pp.NI-N9.
Tong M.,Li L.,Wang W.,Jiang Y.,2006.A time-domaininduced-polarization method for estimating permeability in a shaly sand reservoir.Geophysical Prospecting,v.54,issue 5,pp.623-631.
Yakubovsky Yu.V.Electrical Prospecting,M.Nedra,1980,pp.264-271(在俄罗斯).
Ulrich C.,Slater L.D.,2004.Induced polarization measurements onunsaturated,unconsolidated sands.Geophysics,v.69,N3,pp.702-771.
Wynn J.,Laurent K.,1998.A high resolution electrical geophysicalapproach to mapping marine sediments in the Atlantic coastal shelf and the Gulfof Mexico.SEG,Expanded Abstracts.