电子光学结构及其制造方法 【技术领域】
本发明一般地涉及电子光学结构和器件及其制造方法,更具体地说,本发明涉及一种改进型电子光学结构以及一种用于以单片方式将电子光学结构与硅器件和电路集成在一起的方法。
背景技术
通常,通信系统将信息从一个地方发送到另一个地方。信息通常由其频率可以在几兆赫兹(MHz)至几百太赫兹(THz)之间变化的电磁载波承载。通常,光通信系统采用处于可见或近红外电磁波频谱内的高载频(例如:100THz)。
波导用于控制诸如光波或电磁波的波的方向。在最简单的方式中,波导包括至少被其折射率比纤心的折射率低的包层部分包围的纤心。波通过纤心传播时被包层反射。如果包层的折射率比纤心的折射率高,则波容易被包层吸收,而且不能通过纤心传输。
铌酸锶钡(SBN)是一种强光折射材料,而且,在最近几年,因为其在电子光学、全息存储、空间光线调制器、热电检测器、表面声波器件以及射束控制方面的潜在应用,所以得到广泛关注。SBN波导显示与集成光学系统和其它小型化器件具有高兼容性。
极大多数半导体分立器件和集成电路至少部分地均由硅制成,因为单晶硅衬底廉价、实用、质量高。
而且,最好将SBN的实用性与半导体电路组合在一起。如果可以将SBN导波膜(waveguiding film)制造在硅衬底上,将有助于将集成光学与微电子学联系起来。如果可以在诸如硅晶片的大的晶片(bulk wafer)上制造高质量单晶硅材料的导波膜,则可以实现利用了硅和导波材料的最佳特性的集成器件结构。此外,进行组合会产生新型电子光学和微电子器件,改进现有器件而且降低它们的制造成本。
已经建议了许多方式将SBN膜集成到大的衬底上。例如,将SBN膜组合到MgO(氧化镁)衬底上显示出某种优势,因为MgO的折射率低,所以存在0.5的折射率差。然而,硅衬底更适合应用集成用途。
X L Guo等人在“Pulsed Laser Deposition ofSrxBa1-xNb2O6/MgO Bilayered Films on Si wafer in Waveguilde Form”J.Phys.D:Appl. Phys.29,1996,pp.1632-35中建议了另一种方式,它描述了一种在p型硅晶片上制造SBN/MgO双层膜的方法。双层膜显示SBN膜地多晶生长和MgO缓冲层的强纹理生长。然而,正如X LGuo等人自己承认的那样,得到的多晶结构不如单晶结构理想,因此,还需要做其它努力以改善SBN膜的结晶性。
因此,需要一种具有高质量单晶特性的电子光学结构。尤其需要一种以单片方式与基于硅的电路系统集成在一起的电子光学结构,其中该结构是高质量的单晶材料。
【附图说明】
利用例子说明本发明,而且本发明并不局限于附图,在附图中,类似的参考编号代表类似的单元,附图包括:
图1、3和5示出根据本发明各种实施例的波导结构的原理剖视图;
图2示出最大可获得薄膜厚度与基质晶体与生长的结晶表层之间的晶格失配之间的关系的示意图;
图4和6示出根据本发明各种实施例的波导结构的俯视图的原理剖视图。
熟练技术人员明白,附图中的各单元是为了简化说明问题示出的,所以不一定按比例示出。例如,附图中某些单元的大小相对于其它单元被放大,从而有助于理解本发明的实施例。
发明详述
图1示出根据本发明实施例的波导结构20的一部分的原理剖视图。结构20包括单晶衬底22、含有单晶材料的调节缓冲层(accommodating buffer layer)24、单晶材料的底包层26、单晶材料的纤心28以及单晶材料的顶包层30。在此上下文中,术语“单晶”应该具有半导体工业领域采用的普通意义。该术语指单晶体材料,或者大致单晶体材料,而且应该包括具有较少瑕疵的材料,例如,在硅衬底或锗衬底或者硅和锗混合物衬底内经常发现的晶格位移,以及在半导体工业中经常发现的这种材料的外延层。
根据本发明的一个实施例,结构20还包括位于衬底22与调节缓冲层24之间的非晶中间层32。非晶中间层有助于消除调节缓冲层内的应变,通过这样做,还有助于生长高晶格质量的调节缓冲层。
根据本发明的实施例,衬底22是单晶半导体晶片,最好具有较大直径。该晶片的材料可以是周期表中的IV组中的材料,而且最好是IVA组中的材料。例如,IV组半导体材料包括:硅、锗、硅和锗的混合物、硅和碳的混合物、硅、锗以及碳的混合物等。衬底22最好是含有硅或锗的晶片,最最好是半导体工业中使用的、直径约为200-300mm的高质量单晶硅衬底。
调节缓冲层24最好是为了使其结晶性与底层衬底兼容而且与上层化合物半导体材料兼容选择的单晶氧化物材料。例如,该材料可以是其晶格结构与衬底以及后续喷涂的包层材料基本匹配的氧化物。适合用于调节缓冲层的材料包括诸如碱土金属钛酸盐的金属氧化物,而且通常至少还可以包括两种不同的金属元素。在某些特殊应用中,金属氧化物可以包括3个或更多个不同金属元素。
可以根据特定波导结构的需要,选择层26、28和30的的包层和纤心材料。为了获得总内反射,或者至少为了大致获得总内反射,纤心28由其折射率与构成顶部包层30和底部包层26的材料的折射率不同的材料构成。更具体地说,纤心28的折射率大于顶部包层30和底部包层26的折射率,顶部包层30和底部包层26适于由同一种材料构成。根据典型实施例,选择用于纤心28的材料的折射率为n1,而选择用于顶部包层30和底部包层26的材料的折射率分别为n2和n3,其中n1>n2,而且n1>n3。
根据本发明的一个实施例,纤心层28以及包层26和30是强光照活化反应材料,例如,铌酸锶钡(SBN)。每个SBN层的厚度依赖于传输能量的特定波导。通常,光波导在电磁频谱的可见至近红外区内工作。在该实施例中,折射率为n3的底部包层26沉积在缓冲层24之上。包层26可以是SBN:60,其中60代表锶与钡的比例,而n3可以等于2.33。纤心层28沉积在底部包层之上,而且最好具有比n3高的折射率n1。纤心层28可以是SBN:75,而且n1可以等于2.35。顶部包层30可以沉积在纤心层28之上。根据此实施例的一个方面,顶部包层30与底部包层26为同一种材料(即:SBN:60,n1=2.33)。然而,如果周围介质的折射率低于纤心的折射率(例如:折射率等于1的空气),则不必在纤心上沉积附加包层,以下将做更详细说明。
在本发明的又一个实施例中,包层26和30是折射率为1.78的氧化镁(MgO)(n2和n3等于1.78)。纤心层28在SBN:50至SBN:75之间,而且最好为SBN:75,因为SBN:75的折射率高。然而,SBN:50至SBN:75适于该实施例以及以上讨论的实施例。
本实施例以及上述讨论的实施例描述了一种包层相对于纤心“对称”的对称配置。然而,应该理解,所有配置、对称、非对称均被认为属于本发明范围。非对称配置包括折射率不相同的包层材料,以下将做更详细说明。例如,底部包层的折射率低于或小于顶部包层的折射率,然而,无论如何,纤心的折射率通常大于两个包层的折射率。
根据本发明的一个实施例,在衬底22与生长的调节缓冲层之间的接合处,非晶中间层32生长在衬底22上。非晶中间层32最好是由衬底22的氧化作用产生的氧化物,非晶中间层32更最好是由生长层24期间的氧化硅(SiOx)构成。层32的厚度足以消除导致衬底22与调节缓冲层24的晶格常数失配的应变(通常在约0.5至5.0nm范围内)。在此,晶格常数指在表面平面上测量的单元的原子之间的距离。如果不利用非晶中间层消除这种应变,则这种应变会在调节缓冲层的晶体结构中产生缺陷。调节缓冲层晶体结构中的缺陷反过来又使得难以在单晶层26、28和30内实现高质量晶体结构。
根据本发明的一个实施例,调节缓冲层24是SrzBa1-zTiO3的单晶层,其中z在0至1之间,而非晶中间层32是在硅衬底与调节缓冲层的接合处产生的氧化硅(SiOx)层。选择Z的值以获得一个或多个与后续产生的包层26的相应晶格常数接近匹配的晶格常数。调节缓冲层的厚度可以是几个单层至几百埃(100)。通常,最好使调节缓冲层的厚度足以将单晶氧化物层与衬底隔离,从而获得要求的电特性和光学特性。通常,厚度大于100nm的各层几乎不能提供其它好处,反而会增加不必要的成本,然而,在需要时,可以产生较厚的层。在此实施例中,氧化硅非晶中间层的厚度可以为约0.5-5nm,而且最好为约1.5-2.5nm。
衬底22是诸如单晶硅衬底的单晶衬底。单晶衬底晶体结构的特征在于晶格常数和晶格取向。同样,调节缓冲层24也是单晶材料,该单晶材料晶格的特征在于晶格常数和晶体取向。调节缓冲层与单晶衬底的晶格常数必须接近匹配,或者必须为相对于一个晶体取向转动另一个晶体取向,实现晶格常数基本匹配。在此上下文中,术语“基本大于”和“基本匹配”意味着晶格常数足够接近以允许在底层生长高质量结晶层。
图2示出作为基质晶体与生长晶体的晶格常数之间失配的函数,高结晶质量的生长晶体层的可实现厚度与失配的关系的示意图。曲线42示出高结晶质量材料的范围。曲线42的右侧区域表示具有大量缺陷的层。如果没有晶格失配,则从理论上说,可以在基质晶体上生长无限厚的、高质量外延层。随着晶格常数失配的提高,高质量结晶层的可实现厚度迅速降低。作为基准点,如果基质晶体与生长层之间的晶格常数失配大于约2%,则不可能实现超过约20nm的单晶外延层。
根据本发明的一个实施例,衬底22是(100)或(111)取向单晶硅晶片,而且调节缓冲层24是钛酸锶钡层。通过将钛酸材料的晶体取向相对于硅衬底晶片的晶体取向转动45°,可以使这两种材料的晶格常数基本实现匹配。在此例中,非晶中间层32的结构中包括氧化硅层,如果它足够厚,则可以用于降低钛酸单晶层内的应变,钛酸单晶层内的应变是由于基质硅晶片与生长钛酸层之间的晶格常数失配产生的。因此,根据本发明实施例,可以实现高质量、厚单晶钛酸层。
再参考图1,包层26是外延生长单晶材料层,而且该单晶材料的特征也在于晶体晶格常数和晶体取向。根据本发明的一个实施例,层26的晶格常数不同于层22的晶格常数。为了使此外延生长单晶层26内实现高结晶质量,调节缓冲层24必须具有高结晶质量。此外,为了使层26实现高结晶质量,要求基质晶体(在此例中为单晶调节缓冲层)与生长晶体的晶体晶格常数基本匹配。由于选择的材料适当,所以通过相对于基质晶体的取向转动生长晶体的晶体取向,可以使晶格常数基本匹配。
下面的例子说明了一种根据本发明的一个实施例,制造诸如图1所示结构的波导结构的方法。该方法首先提供包括硅或锗的单晶半导体衬底。根据本发明的优选实施例,半导体衬底是具有(100)取向的硅晶片。衬底最好取向为轴向,最多偏轴约0.5°。至少部分半导体衬底具有裸面,但是衬底的其它部分可以包括其它结构,如下所述。在此上下文中,术语“裸”指清洗衬底上该部分的表面以去除任何氧化物、污物或其它异物。众所周知,裸硅极易发生反应,而且容易产生纯净氧化物。术语“裸”的本意包括这种纯净氧化物。还有意使薄膜氧化硅生长在半导体衬底上,但是这种生长的氧化物对于本发明的方法并不是必需的。为了在单晶衬底上外延生长单晶氧化物层,必须首先去除纯净氧化物层,以露出底层衬底的晶体结构。最好利用分子束外延(MBE)执行如下过程,但是根据本发明也可以使用其它外延方法。首先,通过在MBE设备内热沉积锶、钡、锶和钡的组合,或者其它碱土金属或碱土金属的组合的薄膜层,去除纯净氧化物。在使用锶的情况下,将衬底加热到约750℃的温度,以使锶与纯净氧化硅氧化物层发生反应。锶用于还原氧化硅以保留无氧化硅的表面。显示2×1有序结构的得到的表面包括锶、氧和硅。该2×1有序结构产生一个模板(template)用于有序生长单晶氧化物底层。该模板提供必要化学特性和物理特性以对上层的结晶生长过程产生成核作用(nucleate)。
根据本发明的变换实施例,可以转换纯净氧化硅,而且可以制备衬底表面,以通过利用低温MBE方法以及通过后续将结构加热到约750℃的温度,在衬底表面上沉积诸如氧化锶、氧化锶钡、或者氧化钡的碱土金属氧化物,来生长单晶氧化物层。在此温度,在氧化锶与纯净氧化硅之间发生固态反应以还原沉积氧化硅,而且留下在衬底表面上具有锶、氧和硅的2×1有序结构。此外,这样还可以产生用于后续生长有序单晶氧化物层的模板。
根据本发明的一个实施例,从衬底表面上去除氧化硅后,将衬底冷却到约200-800℃的温度,然后,利用分子束外延,在模板层上生长钛酸锶层。通过打开MBE设备内的开关以辐照锶源、钛源和氧源,开始执行MBE过程。锶和钛的比例为1∶1。首先,将部分氧压力设置为最小值,从而以每分钟约0.3-0.5nm的生长速率,生长理想配比的钛酸锶。在首先生长了钛酸锶后,部分氧压力升高到高于初始最小值。剩余氧压使得在底层衬底与生长的钛酸锶层之间的接合处生长非晶氧化硅层。在底层衬底表面上,氧通过生长钛酸锶层扩散到氧与硅发生化学反应的接合处,导致生长氧化硅层。通过相对于底层衬底的2×1有序结构将结晶取向转动45°,生长钛酸锶作为有序单晶体。在非晶氧化硅中间层内消除了因为硅衬底与生长晶体之间的稍许失配而在钛酸锶层内产生的应变。
在钛酸锶层生长到要求厚度时,单晶钛酸锶被模板层覆盖,模板层有助于后续生长要求的包层材料的外延层。为了后续生长SBN层,通过沉积材料的1-2原子层以形成Sr-O键来终止生长,完成钛酸锶单晶层的MBE生长。作为一种选择,如果调节缓冲层是钛酸钡,则还可以形成Ba-O键。
一旦形成了单晶调节缓冲层24,就能够形成单晶波导。在一个实施例中,利用金属有机化合物的化学汽相沉积(MOCVD)方法,将SBN:60层沉积在层24上,而且为了实现晶格匹配,最好是轴向取向。利用同样的方法,将最好为SBN:75的纤心层28沉积在底部包层26上。在对称配置中,纤心被同样的包层材料包围,在这种情况下,SBN:60的包层30被沉积在纤心层上。纤心层和包层的厚度均根据引入波导(纤心)的光的波长发生变化。
图3以剖视图示出根据本发明又一个实施例的波导结构40。除了省略了顶部包层之外,结构40与上述说明的波导结构20相同。如上所述,最好利用其折射率比纤心的折射率低的材料或衬底包围纤心。结构40包括折射率为n1的纤心28和折射率为n3的底部包层26,其中n1>n3。在非对称系统中,顶部包层和底部包层具有不同折射率,或者完全省略其中一个包层。只要外围包层或者介质具有比纤心的折射率低的折射率,波,例如光波就可以通过纤心连续传播,而且损耗小。
根据本实施例的一个方面,底部包层26的折射率为n3,纤心层28的折射率为n1,而且空气接入纤心28,其中空气的折射率通常为1,而且1<n1>n3。
应该明白,可以使上述描述的结构20和40以及以下的结构产生图形,而且可以蚀刻它们。具体地说,可以以半导体工业内众所周知的方式,图形化或者蚀刻波导结构的纤心和/或包层。更具体地说,可以图形化或者蚀刻结构中的感兴趣的层以加强波的传播、确定波的输入和输出等。
图4示出根据本发明实施例的波导结构45的部分俯视图的原理剖视图。除了波导结构45包括用于形成调制器的附加单元外,结构45与上述波导结构20和40相同。具体地说,结构45包括结构46,结构46包括纤心层和包层以及电极47。
外部调制器通常通过在纤心区内引入电荷或电场来改变行波的特性。例如,在将电压施加到电极47上时,产生受控电场。在此例中,利用外围包层或空气的内反射,光波(如hv所示)可以通过纤心传播。对电极47施加的电压在行波路径上产生某个电场或电荷。在电场的作用下,波特性发生变化(调制),因此改变(调制)了行波的传播方式、相位等(如hv’所示)。
根据本实施例的一个方面,利用半导体工业通常采用的硅器件加工技术,至少在部分硅衬底上成型利用虚线48简略示出的电子元件。电子元件48与电极47实现电连接,如线49所示。元件48可以是被适当配置以将电信号送到电极47的有源半导体元件,例如,诸如CMOS集成电路的集成电路。此外,或者作为一种选择,元件48还可以包括一个或多个无源元件。可以对电子元件48覆盖适当绝缘材料(未示出)以防止发生短路等。
图5示出根据本发明又一个实施例的波导结构50的原理剖视图。结构50与上述结构20和45相同。结构50包括适于传播波的纤心54。如上所述,结构50包括其折射率最好比纤心54的折射率低的顶部包层。然而,应该明白,可以省略顶部包层(如图3所示),而且可以将其折射率比纤心54的折射率低的、诸如空气的适当介质接入纤心。
结构50进一步包括一个或多个位于介质材料52之上的电极56。根据本实施例的一个方面,可以将结构50成型为上述结构20、40和45那样。然后,深蚀刻构成结构45的各层以露出各区域内的衬底。例如,深蚀刻结构50以成型“台面(mesa)”,该台面在其它层之间包括纤心和包层。然后,在剩余台面的附近区域内沉积介质物质52。合适的介质材料包括诸如SiO2和SiN3的材料。然后,可以将电极56设置在介质层52之上,并与台面实现电连接。根据本实施例的又一个方面,电子元件58与电极56实现电连接以提供电荷或电场。因此,可以使基于氧化物的电子光学器件与硅电路系统完全实现单片集成。
图6示出根据本发明又一个实施例的波导结构60的原理剖视图。利用上述描述的任何一种方法制造结构60,而且还可以利用Mach-Zehnder等配置制造结构60。Mach-Zehnder干涉仪设计62包括两个臂,这两个臂使行波(如hv所示)分裂,并继续沿着两个相同的、但是隔离开的路径传播。如果没有外部电压,则Mach-Zehnder干涉仪的两个臂上的光场承受同样的相位偏移和相长干涉。在该干涉仪的一个臂上,可以将电压施加到一个或多个电极64上,这样可以相移相应的波(通常是所示的“调制”光波hv’)。附加相移会破坏相长干涉的性质而且降低传送强度。具体地说,在两个臂之间的相差等于π时,不传送光,因为在这种情况下,发生破坏性干涉。因此,调制器的电“开关”特性可以控制光的数量或者无光。至少部分成型在结构60的衬底(例如:硅半导体衬底)上的电子元件66可以正确连接到电极64上以提供调制所需的电信号。
上述方法说明了一种利用传统MBE和MOCVD方法描述的、用于形成包括:硅衬底、上层氧化物层、单晶纤心层以及单晶包层的波导结构的方法。然而,应该明白,还可以利用化学汽相沉积(CVD)、物理汽相沉积(PVD)、脉冲激光沉积(PLD)等实现上述方法。
在以上的说明中,参考特定实施例对本发明进行了说明。然而,本技术领域内的普通技术人员明白,可以在以下的权利要求所述的本发明范围内,对其做各种修改和变化。因此,说明书和附图具有说明性意义,而没有限制意义,而且所有这些修改和变化均属于本发明范围。
以上参考特定实施例对本发明的益处、其它优势以及解决问题的方案进行了说明。然而,不将本发明的益处、优势、解决问题的方案以及可以使任意益处、优势或者解决方案变得更明确的任何元素理解为是任何一项或所有权利要求的一种决定性的、必需的、或者本质特征或要素。在此,使用的术语“包括”或其其它变形试图覆盖不排除在外的内容,以致包括一系列元素的过程、方法、物品或设备不仅包括这些元素,而且还可以包括未明确列出的,或者这些过程、方法或设备固有的其它元素。