用含金属的后冲洗液 进行磷酸盐化的方法 本发明涉及用酸性含锌磷酸盐化水溶液磷酸盐化金属表面的方法。为了改进防腐性能和漆粘合性能,在磷酸盐化之后紧接着用一种含锂、铜和/或银离子的溶液进行后冲洗。该方法适合用作金属表面涂漆尤其是电浸涂层前的预处理。该方法可用于处理钢制表面、镀锌或合金镀锌钢制表面、铝制表面、覆铝或合金覆铝钢制表面。
金属磷酸盐化的目的是,在金属表面产生固定共生的金属磷酸盐层,该层已经改进了防腐性能并与漆或其它有机涂层一起可大大提高漆粘合性能和有助于防止腐蚀时的表面下部迁移。这样的磷酸盐化方法早已公知。低锌-磷酸盐化方法特别适合用于涂漆前预处理,其中磷酸盐化溶液具有相对较低的例如0.5-2g/l的锌离子含量。在低锌-磷酸盐化浴中的一个重要参数是磷酸根离子与锌离子的重量比,它通常为大于8的数值,最高可为30。
已经表明,在锌-磷酸盐化浴中共同使用另外的多价阳离子可以形成防腐性能和漆粘合性能明显改进的磷酸盐层。例如,添加例如0.5-1.5g/l锰离子和例如0.3-2.0g/l镍离子的低锌法可以作为三阳离子方法用于涂漆例如汽车车身的阳离子电浸涂层进行金属表面的预处理。
在三阳离子方法中磷酸盐化溶液的高含量的镍离子和形成的磷酸盐层的镍和镍化物带来的缺点是,镍和镍化物对环境保护和工作处的卫生来说是不利地。因此,近来公开了越来越多的低锌-磷酸盐化方法,不用镍而形成与含镍法质量相似的高价值磷酸盐层。由于可能形成亚硝酸气体,人们越来越怀疑促进剂亚硝酸盐和硝酸盐。另外,用于镍的磷酸盐化浴磷酸盐化镀锌钢,如果磷酸盐化浴含有大量(>0.5g/l)硝酸盐,将导致防腐性能和漆粘合性能不够好。
例如DE-A-3920296公开了一种磷酸盐化方法,该法去除镍并除了锌离子、锰离子外还使用镁离子。这里所述的磷酸盐化浴液含有0.2-10g/l硝酸盐离子和起促进剂作用的的选自亚硝酸盐、氯酸盐的氧化剂或一种有机氧化剂。EP-A-60716公开了含有锌和锰作为主要阳离子并可含有镍作为选择组份的低锌-磷酸盐化溶液。必要的促进剂优先选自亚硝酸盐、间硝基苯磺酸盐或过氧化氢。EP-A-228151也公开了含有作为必要阳离子的锌和锰的磷酸盐化浴液。该磷酸盐化促进剂选自亚硝酸盐、硝酸盐、过氧化氢、间硝基苯甲酸盐或对硝基苯酚。
德国专利申请P4341041.3公开了一种用酸性磷酸盐化水溶液的磷酸盐化金属表面的方法,该溶液含有锌、锰和磷酸根离子和作为促进剂的间硝基苯磺酸或其水溶性盐,其中使金属表面与一种不含镍、钴、酮、亚硝酸盐和卤素的氧代阴离子的磷酸盐化溶液接触,该溶液含有
0.3-2g/l Zn(II)
1.3-4g/l(Mn)(II)
5-40g/l磷酸根离子
0.2-2g/l间硝基苯磺酸盐和
0.2-2g/l硝酸根离子。
DE-A-4330104公开了一种类似的方法,其中用0.1-5g羟胺作为促进剂来代替硝基苯磺酸盐。
根据磷酸盐化所用的溶液的组成、磷酸盐化方法所使用的促进剂、磷酸盐化溶液在金属表面上的涂覆方法和/或其它工艺参数,磷酸盐层在金属表面并不完全致密。而是或多或多少地留有一些大“孔”,其面积为磷酸盐化面积的0.5-2%,为了使金属表面上没有腐蚀性因素的侵蚀点,必须随后进行“再钝化”封闭这些孔。另外,再钝化也改进了此后涂覆的漆的粘合性。
早已公知,为此可用含铬盐的溶液。通过磷酸盐化产生的涂层的防腐性能尤其可以通过用含铬(VI)的溶液后处理表面而明显改进。改进防腐的结果首先是,沉积在金属表面上的一部分磷酸盐转化成金属(II)-铬-尖晶石。
使用含铬盐溶液的主要缺点在于,这种溶液是高毒性的。另外,在随后涂漆或其它涂层材料时会增加令人讨厌的气泡的形成。
因此,已经提出了许多后钝化磷酸盐化表面的其它可能性,例如使用锆盐(NL-PS7116498)、铯盐(EP-A-492713)、聚合的铝盐(WO-92/15724)、肌醇的低聚或聚磷酸酯与这些酯的水溶性碱金属或碱土金属盐相结合(DE-A-2403022)或者使用各种金属的氟化物(DE-A-2428065)。
EP-B-410497公开了一种含Al-、Zr-和氟离子的后冲洗液,其中该溶液可为络合氟化物的混合物或者为六氟锆酸铝的溶液。这三种离子的总量为0.1-2.0g/l。
DE-A-2100497涉及一种含铁表面的电泳涂色方法,应该解决的任务是,在不变色的前提下在含铁表面上涂覆白色或其它浅颜色。其解决方案是,用含铜的溶液冲洗可预先磷酸盐化的表面。其中提议后冲洗溶液的铜浓度为0.1-10g/l。DE-A-3400339同样描述了一种用于磷酸盐化金属表面的含铜的后冲洗液,其中铜含量为0.01-10g/l。但是并未注意,这种后冲洗液与不同的磷酸盐化方法结合会产生不同的结果。
在上述引用的磷酸盐层的后冲洗方法中,除了含铬的后冲洗液外,只有使用络合的钛和/或锆的氧化物溶液的这种方法可进行。此外还使用基于氨基取代的聚乙烯苯酚的有机活性后冲洗液。与含镍的磷酸盐化方法结合,这些无铬的后冲洗液满足了例如汽车工业对漆粘合性能和防腐性能所提出的高要求。然而,出于对环境和工作环境保护的目的,人们还在寻求在任何处理步骤中既不用镍又不用铬化物的磷酸盐化方法。用无铬后冲洗液的无镍磷酸盐化方法目前尚不能满足汽车工业使用的车身材料对漆粘合性和防腐性所提出的所有要求。因此,一直存在对后冲洗液的需求,它与无镍和无亚硝酸盐磷酸盐化方法和此后的阴极电浸涂结合时能可靠地满足对各种基质材料的防腐和漆粘合要求。本发明的任务在于,提出一种由环境保护和工作环境保护方面最佳的磷酸盐化方法和在阴极电浸涂前的特别合适的无铬后冲洗相结合的相应方法。
该任务的解决方案是一种钢制、镀锌钢和/或铝制和/其合金表面的磷酸盐化方法,所述合金至少50%重量由铁、锌或铝组成,其中用一种含锌的酸性磷酸盐化溶液进行磷酸盐化,接着用后冲洗液冲洗,其特征是,
a)磷酸盐化用一种pH值为2.7-3.6的溶液,该溶液不含亚硝酸盐和镍,含有
0.3-3g/l Zn(II),
5-40g/l磷酸根离子
和至少一种下列的促进剂:
0.2-2g/l间硝基苯磺酸根离子,
0.1-10g/l游离或化合形式的羟基胺,
0.05-2g/l间硝基苯甲酸离子,
0.05-2g/l对硝基苯酚,
1-70g/l游离或化合物形式的过氧化氢,
并在磷酸盐化之后进行或不进行用水的中间冲洗:
b)用一种pH值为3-7的水溶液进行后冲洗,该溶液含有0.001-10g/l一或多种下列的阳离子:锂离子、铜离子和/或银离子。
在本发明工艺步骤a)中使用的磷酸盐化溶液优选含有一或多种其它的金属离子,它对磷酸锌层的有利的防腐作用已由现有技术所公开。同时,磷酸盐化溶液可以含有一或多种下列阳离子:
0.2-4g/l锰(II),
0.2-2.5g/l镁(II),
0.2-2.5g/l钙(II),
0.01-0.5g/l铁(II),
0.2-1.5g/l锂(I),
0.02-0.8g/l钨(VI),
0.001-0.03g/l铜(II),
其中锰和/或锂的存在是特别优选的。二价铁存在的可能性依赖于下文后面所述的促进剂体系。所述浓度范围的铁(II)的存在的前提条件是采用不氧化该离子的促进剂。对此特别提出的例子是羟胺。
磷酸盐化浴液不含镍且优选也不含钴。这意味着这些元素或离子不是特意向磷酸盐化浴液中添加的。但在实践中不排除由所处理的材料将微量的这些组份带入磷酸盐化浴液中。尤其不排除在磷酸盐化处理涂有锌-镍合金的钢时将镍离子带入到磷酸盐化浴液中。然后,其工艺条件是磷酸盐化浴液中的镍浓度不能超过0.01g/l,优选不超过0.0001g/l。磷酸盐化浴液优选不含有卤素的氧代阴离子。
类似于EP-A-321059所述,在本发明方法步骤中,在磷酸盐化浴液中存在六价钨的可溶性化合物,它对防腐性能和漆粘合性能是有利的。在本发明的磷酸盐化方法中,使用的磷酸盐化溶液含有20-800mg/l,优选50-600mg/l以水溶性钨酸盐、硅钨酸盐或/或硼钨酸盐形式存在的钨。其中所述阴离子是以其酸和/或其水溶性盐优选铵盐的形式使用。Cu(II)的应用已由EP-A-459541所公开。
在适用于不同基质的磷酸盐化浴液中,通常添加2.5g/l以下的游离和/或络合的氟化物,其中800mg/l以下为游离的氟化物。这种量的氟化物的存在对本发明的磷酸盐化浴液是有利的。不含氟化物时,浴液的铝含量不应超过3mg/l。在含有氟化物时,由于较高的铝含量可形成络合物,从而未络合的铝含量不超过3mg/l。因此,如果要磷酸盐化的表面至少部分地由铝组成或含有铝,使用含氟化物的浴液是有利的。在这种情况下,优选使用浓度为0.5-1.0g/l的只有游离氟化物而无络合氟化物的浴液。
对于锌表面的磷酸盐化,磷酸盐化浴液不一定含有所述的促进剂。但对于钢表面的磷酸盐化,则要求磷酸盐化溶液含有一种或多种促进剂。这些促进剂是现有技术中已知作为锌磷酸盐化浴液的组份。应理解为它是一种在金属表面上以化学方式结合因酸侵蚀而生成的氢,而其本身被还原的物质。另外,起氧化作用的促进剂的效果是,将钢表面腐蚀时释放的铁(II)离子氧化成三价,从而可以形成磷酸铁(III)而沉淀。在本发明方法的磷酸盐化浴液中使用的促进剂如前所述。
还可以加入10g/l以下的硝酸根离子作为助促进剂,这对钢表面的磷酸盐化特别有利。但在镀锌钢磷酸盐化时,优选使磷酸盐化溶液含有尽可能少的硝酸盐。硝酸盐浓度不应超过0.5g/l,因为在更高的硝酸盐浓度下有形成斑点的危险。这里指在磷酸盐层的白色的孔状缺陷。
出于环境保护的原因,特别优选是过氧化氢作促进剂,出于简化再生溶液配制可能性的技术原因,羟胺是特别优选的促进剂。但共同使用这两种促进剂是不利的,因为羟胺会被过氧化氢分解。如果用游离或化合形式的过氧化氢作为促进剂,则过氧化氢的浓度特别优选0.005-0.02g/l。其中可将过氧化氢本身加入磷酸盐化溶液中。也可以加入化合物形式的过氧化氢,它在磷酸盐化浴液中通过水解反应而提供过氧化氢。这些化合物的例子是过酸盐、如过硼酸盐、过碳酸盐、过氧代硫酸盐或过氧代二硫酸盐。过氧化氢的其它来源可以是离子过氧化物例如碱金属过氧化物。
羟胺可以作为游离碱、作为羟胺络合物或以羟铵盐形式使用。如果将游离的羟胺加入磷酸盐化浴液或一种磷酸盐化浴液浓缩液,由于溶液的酸性性质,它基本上作为羟基铵阳离子存在。硫酸盐以及磷酸盐特别适合于用作羟基铵盐。使用磷酸盐时,由于其可溶性良好,优选使用酸性盐。羟胺或其化合物在磷酸盐化浴液中的加入量要使计算的游离羟胺浓度为0.1-10g/l,优选0.2-6g/l,特别优选0.3-2g/l。由EP-B-315059已知,使用羟胺作为促进剂在铁表面上产生特别有利的球形和/或柱型磷酸盐晶体。在步骤b)进行的后冲洗特别适于作为这种磷酸盐层的再钝化。
如果选择含锂磷酸盐化浴液,则锂离子浓度优选范围为0.4-1g/l。其中,特别优选含有锂作为唯一一价阳离子的磷酸盐化浴液。按照所需要磷酸根离子与二价阳离子和锂离子的比例,需要加入其它的碱性物质,以便调整磷酸盐化浴液的游离酸含量。在这种情况下,优选使用氨,以致含锂的磷酸盐化浴液还含有约0.5-2g/l的铵离子。在这种情况下,使用碱性钠化合物如氢氧化钠是不利的,因为在含锂的磷酸盐化浴液中存在钠离子会恶化所得涂层的防腐性能。在不含锂的磷酸盐化浴液中,优选通过添加碱性钠化合物如碳酸钠或氢氧化钠来调整游离酸。
用除了锌和必要时的锂以外还含有锰(II)的磷酸盐化浴液可得到特别好的防腐性能。磷酸盐化浴液的锰含量应为0.2-4g/l,因为锰含量再少就不再对磷酸盐层的防腐性能有积极影响,锰含量更高也不再出现其它的积极影响。优选0.3-2g/l,特别是0.5-1.5g/l的含量。磷酸盐化浴液的锌含量优选为0.45-2g/l之间。在含锌表面磷酸盐化时,由于腐蚀作用有可能使处理浴液的实际锌含量升高到3g/l。以什么形式将锌离子和锰离子加入磷酸盐化浴液并不重要。原则上,特别可以使用氧化物和/或碳酸盐作为锌和/或锰源。
在钢表面上应用磷酸盐化方法时,铁以铁(II)离子形式进入溶液。如果磷酸盐化浴液不含能强烈氧化铁(II)的任何物质,二价铁首先由于空气氧化而变成三价状态,从而作为磷酸铁(III)而沉淀。因此,磷酸盐化浴液中的铁(II)含量可以明显高于含氧化剂的浴液中的含量。例如在含羟胺的磷酸盐化浴液中就是这种情况。在这种意义上,铁(II)浓度在50ppm以下是正常的,其中在操作过程中也可以短时出现500ppm以下的浓度。这样的铁(II)浓度对本发明的磷酸盐化方法是无害的。
在磷酸盐化浴液中磷酸根离子对锌离子的重量比可以在很宽的范围内变化,该范围为3.7-30。特别优选10-20之间的重量比。计算时磷酸盐化浴液的总的磷含量视为以磷酸根离子PO43-形式存在。因此,在计算重量化时,忽略磷酸盐化浴液的pH值为3-3.4时,事实上只有极少量磷酸根是真正以三价阴离子存在。在该pH值下,估计磷酸根是负一价二氢磷酸根阴离子,并有少量未离解的磷酸和负二价磷酸氢阴离子。
游离酸和总酸的含量作为控制磷酸盐化浴液的其它参数方面专业人员是公知的。在实施例中给出了用于测定这些参数的方法。游离酸的量值为0和1.5点之间,总酸量在15和30点之间,这是工业上常见的范围,也是本发明所适合的。
磷酸盐化可以用喷雾、浸渍或喷雾浸渍而实施。作用时间通常为大约1-4分钟。磷酸盐化溶液的温度范围约为40-60℃。在磷酸盐化之前,优选用含磷酸钛的活化浴液进行现有技术常用的提纯和活化步骤。
在磷酸盐化步骤a)和后冲洗步骤b)之间,用水进行中间冲洗。但这并不是必需的,甚至放弃中间冲洗更有利,因为二次冲洗溶液和粘在磷酸盐化表面上的磷酸盐化溶液发生反应,这有利于防腐。
在步骤b)中所使用的后冲洗液pH值优选为3.4-6之间,温度优选为20-50℃。在方法b)中所用水溶液的阳离子浓度优选以下范围:锂(I)0.02-2g/l,尤其0.2-1.5g/l,铜(II)0.002-1g/l,尤其0.01-0.1g/l和银(I)0.002-1g/l,尤其0.01-0.1g/l。其中,所述金属离子可以单独或以混合物形式存在。特别优选含有铜(II)的后冲洗溶液。
所述金属离子以什么形式加入后冲洗溶液并不重要,只要能保证金属化合物以所述金属离子浓度溶解就行。但金属化合物应当避免含有促进腐蚀的阴离子如氯化物。特别优选使用硝酸盐或羧酸盐特别是乙酸盐形式的金属离子。只要能在所选的浓度和pH值条件下溶解,磷酸盐也适用。这也适用于硫酸盐。
在一个具体的实施方式中,将金属离子锂、铜和/或银与六氟钛酸盐离子和/或特别优选的六氟锆酸盐离子一起加入后冲洗溶液。其中,所述阴离子的优选浓度范围为100-500ppm。作为所述六氟阴离子的来源,可以使用其酸或其在所述浓度和pH条件下的水溶性盐,尤其是其碱金属和/或铵盐。六氟阴离子优选至少部分地以其酸形式作用,并在酸性溶液中溶解锂、铜和/或银的碱性化合物。这里可以使用例如所述金属的氢氧化物、氧化物或羧酸盐。由此避免了同时使用金属和可能起干扰作用的阴离子。如果需要,可以用氨调节pH值。
此外,后冲洗溶液可以与铈(III)和/或铈(IV)离子一起含有锂、铜和/或银离子,其中铈离子的总浓度为0.01-1g/l。
另外,后冲洗溶液除了锂、铜和/或银离子之外还可以含有铝(III)化合物,其中铝的浓度为0.01-1g/l。作为铝化合物,一方面可以使用多铝化合物例如聚合的氯化羟铝或聚合的硫酸氢氧化铝(WO92/15724),但也可以使用例如已由EP-B-410497所公开的络合的铝-镐-氟化物。
在步骤a)中磷酸盐化的金属表面在步骤b)中通过喷雾、浸渍或喷雾/浸渍与后冲洗溶液相接触,其接触时间为0.5-10分钟,优选40-120秒。由于工程设备简单,在步骤b)中将后冲洗溶液喷雾到在步骤a)中磷酸盐化的金属表面上。
处理溶液在作用结束后和接着涂漆之前原则上不要求冲洗。例如可以对本发明在步骤a)中磷酸盐化并在b)中后冲洗的金属表面不再冲洗即行干燥并涂漆。例如粉涂。然而,本发明的特别设计作为阴极电浸涂之前的预处理。为了避免污染漆料浴,优选在步骤b)后冲洗后冲洗掉金属表面上的后冲洗溶液,优选用贫盐或无盐的水。使本发明预处理的金属表面干燥,然后再放入电浸涂槽中。然而,为了加速生产周期,优选不进行该干燥。
实施例
在汽车制造用的钢板上检验本发明的方法。其中按浸渍方法进行车身制造中常用的下列工艺步骤:
1.用碱性清洗剂(Ridoline1558,Henkel KGaA),在工业用水中的2%溶液,55℃,清洗5分钟。
2.在室温下用工业用水冲洗1分钟。
3.在室温下用在去离子水中的0.5%含磷酸钛液体活化剂(FixodineL,Henkel KGaA)浸渍活化1分钟。
4.步骤a):按表1(以完全去离子水配制)的磷酸盐化浴液进行磷酸盐化。磷酸盐化浴液中除了表1所列的阳离子外必要时还含有钠或铵离子来调节游离酸。浴液不含任何亚硝酸盐和卤素的氧代阴离子。温度:56℃,时间:3分。
游离酸的点值计算是将10ml浴液pH值滴定到3.6所需0.1当量浓度的氢氧化钠的ml数。总酸的点值的计算类似地为滴定到pH8.5所需的ml数。
5.必要时(参见表3)在室温下用工业用水冲洗1分钟。
6.步骤b):用表2的一种溶液喷射进行后冲洗。
7.用去离子水冲洗。
8.用压缩空气吹干以检验未涂漆的钢板,否则在湿态下用阴极电浸涂涂层。
作为涂层防腐性能的快速测试法,进行电流密度/电势测量。该方法例如已由A.Losch,J.W.Schultze,D.Speckmann所公开:“A New electrochemicalMethod for Determination of the Free Surface of Phosphate Layers”,Appl.Surf.Sci.52,29-38(1991)。为此,将不涂漆的磷酸盐化样品板夹在聚酰胺样品夹上,使其空出43cm2的测试表面。测试是在无氧条件下(充氮)于pH=7.1的含有0.32MH3BO3、0.026M Na2B4O7.10H2O和0.5M NaNO3的电解溶液中进行。用正常电势E0=0.68伏的标准水银电极作参考电极。先不加外来电势使样品在电解溶液中浸渍5分钟。此后,对电势变化为20mV/s的标准-水银电极记录在-0.7和1.3之间的环路的电流值(Voltamogramme)。为了评价,测出对标准水银电极的电势为-0.3伏时的电流密度。在电势为-0.3时负的电流密度表示涂层的组份还原。电流密度高表示屏蔽作用差,电流密度低表示磷酸盐层对腐蚀电流具有良好的屏蔽作用。
层重通过称重磷酸盐化的板,在0.5%(重量)的铬酸溶液中溶解磷酸盐层后重新称重确定。
在表2的后冲洗溶液中,Li以碳酸盐、Cu以乙酸盐和Ag以硫酸盐、TiF62-和ZrF62-以游离酸形式而使用。Ce(III)以硝酸盐,Ce(IV)以硫酸盐和AL(III)以组成约为Al(OH)2.5Cl的聚氯化羟铝形式而使用。pH值用磷酸下调和用氨水上调。
表1:磷酸盐化浴液和涂层重量
组份 对比例 实施例1 实施例2 实施例3 实施例4
Zn(II)(g/l) 1.0 1.0 1.0 1.0 1.0
磷酸盐(g/l) 14 14 14 14 14
Li(II)(g/l) - - - - 0.5
Mn(II)(g/l) 1.0 1.0 1.0 1.0 1.0
Ni(II)(g/l) 0.8 - - - -
SiF62-(g/l) 0.96 0.96 0.96 0.96 0.96
游离F-(g/l) 0.22 0.22 0.22 0.22 0.22
NH2OH(g/l) 0.66 0.66 - - 0.66
间硝基苯磺酸(g/l) - - 0.7 - -
H2O2(g/l) - - - 13 -
pH值 3.4 3.4 3.2 3.4 3.4
游离酸(点) 1.0 1.0 1.1 1.0 1.0总酸(点) 23 23 24 23 23层重(g/cm2) 2.3 2.1 2.2 1.9 2.0表2:后冲洗溶液和工艺参数、浓度[ppm]组份 对比 对比 对比 实施 实施 实施 实施 实施 实施 实施
例v 例w 例x 例a 例b 例c 例d 例e 例f 例gLi(I) - - - 800 400 - - - 400 -Cu(II) - - - - - 10 10 50 10 10Ag(I) - - - - - - - - - -Ce(III) - 110 - - - - - - - -Ce(IV) - 320 - - - - - - - -Al(III) - - 200 - - - - - - 200TiF62- - - - - - - - - - -ZrF62- 250 - - - 250 - - - - -pH 4.0 4.2 3.8 4.0 4.0 3.6 3.6 3.6 3.8 3.8浴温(℃) 40 40 40 40 35 50 30 45 40 40处理时间(秒) 60 60 60 60 60 60 120 60 60 60表2:(续)组份 实施例h 实施例I 实施例k 实施例l 实施例m 实施例nLi(I) - - - 400 - 500Cu(II) 30 30 - - - -Ag(I) - - 30 30 20 -Ce(III) - - - - - 110Ce(IV) - - - - - 320Al(III) - - - - - -TiF62- 200 - - - - -ZrF62- - 250 - - 200 -pH 3.6 3.6 3.4 3.4 3.4 4.2浴温(℃) 40 40 40 40 40 40处理时 60 60 30 60 60 60间(秒)
表3:在电势为-0.3V时电流密度的测量结果(μA/cm2)磷酸盐化溶液 用城市用水进行中间冲洗 不用城市用水进行中间冲洗后冲洗 对比 例1 实施 例1 实施 例2 实施 例3 实施 例4 对比 例1 实施 例1 实施 例2 实施 例3 实施 例4对比例v 0 25 28 30 15 5 30 35 38 21对比例w 0 24 30 35 21 - - - - -对比例x 0 18 25 22 16 - - - - -无 5 28 35 42 20 - - - - -实施例a - 2 8 5 10 - 0 0 2 5实施例b - 0 4 2 0 - - - - -实施例c - 10 12 13 4 - 0 5 3 0实施例d - 0 0 3 0 - 0 0 0 0实施例e - 0 0 0 0 - 0 0 0 0实施例f - 0 0 0 0 - - - - -实施例g - 0 3 2 0 - 0 0 0 0实施例h - 0 0 0 0 - - - - -实施例I - 0 0 0 0 - - - - -实施例k - 3 0 5 4 - 0 0 0 0实施例l - 0 0 0 5 - - - - -实施例m - 0 0 0 0 - - - - -实施例n - 0 0 0 3 - - - - -
为了检测防腐性能,将钢板试样(1405号钢)和电解镀锌钢板试样按前面所述的通用工艺流程用具有下列浴液参数的磷酸盐化溶液以浸渍方法进行磷酸盐化:
Zn 1.2g/l
Mn 1.0g/l
PO43- 14.6g/l
羟基硫酸铵1.8g/l
SiF6- 0.8g/l
游离酸0.7点值
总酸23.0点值
浴温50℃
处理时间3分钟
样板在40℃用城市用水进行1分钟中间冲洗,接着浸入在去离子水中的下列后冲洗液中(表4)。此后再用去离子水冲洗,干燥并涂漆。
表4:后冲洗溶液 对比例y 实施例p 实施例q 实施例r 实施例sZrF62- 225 - - 225 225Cu2+(ppm) - 10 50 10 50pH 4.0 3.6 3.6 3.6 3.6
涂漆时采用BASF公司的阴极电浸涂用漆FT 85-7042灰色。在VDA气候变化试验(VDA-Wechselklimatest)621-415之后进行防腐性能检测。结果以裂缝处漆面下的迁移形式列于表5中。此外,还按“VW石块冲击试验”(VW Steinschlagtest)检测了漆粘合性,该试验按K值评价。K值高漆粘合性差,K值低漆粘合性好。结果同样列于表5中。
表5:防腐性能值和漆粘合性参数 后冲洗溶液 漆面下迁移(mm) K值 钢 镀锌钢 钢 镀锌钢 去离子水 1.8 4-5 7-8 9 对比例4 1.3 3-4 6 8 实施例p 1.2 6 实施例q 1.0 2.5-3.5 6 8 实施例r 1.2 2.1-3 6 8 实施例s 1.1 6
另外,还按VDE 621-414进行了露天大气腐蚀试验。为此,在KTL涂层样板上涂了一层全漆(VW白色)。露天放置6个月后,发现以下的(表6)漆面下迁移(半缝宽):
表6:露天大气腐蚀后的漆面下迁移(μ/2,mm) 后冲洗溶液 钢 镀锌钢 去离子水 1.8 0.1 对比例4 1.2 0.1 实施例p 1.2 0.1 实施例q 0.9 0.1 实施例r 1.3 实施例s 1.0 0.1