减少13读框移位的方法.pdf

上传人:54 文档编号:43862 上传时间:2018-01-18 格式:PDF 页数:38 大小:9.12MB
返回 下载 相关 举报
摘要
申请专利号:

CN201380011165.2

申请日:

2013.02.26

公开号:

CN104136460A

公开日:

2014.11.05

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):C07K 14/775申请日:20130226|||公开

IPC分类号:

C07K14/775; C12N15/67

主分类号:

C07K14/775

申请人:

霍夫曼-拉罗奇有限公司

发明人:

阿德尔伯特·格罗斯曼; F·黑塞; 埃哈德·科佩茨基; 维尔马·劳; 克里斯蒂安·尚茨

地址:

瑞士巴塞尔

优先权:

2012.02.29 EP 12157513.8; 2012.04.02 EP 12162814.3

专利代理机构:

中科专利商标代理有限责任公司 11021

代理人:

张莹;王旭

PDF下载: PDF下载
内容摘要

本文报道了一种重组生产包含三肽QKK的多肽的方法,其特征在于所述方法包括从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的细胞的培养物的培养基回收多肽从而生产所述多肽的步骤,其中包含在所述多肽中的三肽QKK由寡核苷酸cag aaa aaa或寡核苷酸caa aag aaa编码。

权利要求书

1.  一种在大肠杆菌细胞中重组生产包含三肽QKK的(全长)多肽的方法,其特征在于所述方法包括以下步骤:
-从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的大肠杆菌细胞的培养物的培养基回收所述多肽,从而生产所述多肽,
其中包含在所述多肽中的三肽QKK由寡核苷酸cag aaa aaa,或寡核苷酸caa aag aaa编码。

2.
  一种在大肠杆菌中重组生产包含三肽QKK的全长多肽的过程中减少副产物形成的方法,其包括以下步骤:
-在编码多肽的核酸中,取代编码三肽QKK的寡核苷酸caa aaa aag(SEQ ID NO.01),或寡核苷酸caa aag aag(SEQ ID NO:02),或寡核苷酸cag aag aag(SEQ ID NO:03)中的一到三个核苷酸以获得寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05),从而产生取代的编码多肽的核酸,和
-从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽,从而在重组生产包含所述三肽QKK的多肽的过程中减少副产物形成。

3.
  根据权利要求1或2任一项所述的方法,其特征在于所述方法包括以下另外步骤中的一个或更多个:
-提供包含三肽QKK的多肽的氨基酸序列或编码核酸,和/或
-用编码所述多肽的取代的核酸转染细胞,和/或
-培养转染有所述取代的核酸的细胞(在适于表达所述多肽的条件下),和/或
-从细胞或培养基回收所述多肽,和/或
-任选地以一个或更多个层析步骤纯化生产的多肽。

4.
  根据权利要求2至3任一项所述的方法,其特征在于以一至五个层析步骤纯化生产的多肽。

5.
  根据在前权利要求中任一项所述的方法,其特征在于所述多肽是载 脂蛋白A-I,或具有载脂蛋白A-I功能的其变体,或其融合多肽。

6.
  根据权利要求5所述的方法,其特征在于所述多肽具有选自包含SEQ ID NO:09至SEQ ID NO:14的组的氨基酸序列。

7.
  根据权利要求5至6任一项所述的方法,其特征在于所述多肽具有SEQ ID NO:11的氨基酸序列。

说明书

减少1->3读框移位的方法
本发明属于重组多肽生产领域。本文报道了一种重组生产具有减少的副产物含量的多肽的方法,其中通过修饰在翻译或转录过程中减少移码(frameshift)的编码核酸实现副产物含量的减少。 
发明背景
蛋白质在现今的医用组合中发挥重要作用。对于人的应用,每种药用物质必须满足不同的标准。为了保证生物药剂对人的安全性,尤其必须将会引起严重危害的核酸,病毒,和宿主细胞蛋白质移除。为了满足质量管理规格标准(regulatory specification),一个或更多个纯化步骤必须按照制造工艺。 
可以例如通过原核细胞(比如大肠杆菌)生产重组多肽。重组生产的多肽占原核细胞的多肽含量的大多数并且经常在原核细胞内沉积为不溶的聚集体,即为所谓的包涵体。为了分离重组多肽,必须将细胞破碎并且必须在从细胞碎片分离包涵体之后将包含在包涵体中的重组多肽溶解。对于增溶离液剂,使用比如脲或盐酸胍。为了切开二硫键,尤其在碱性条件下加入还原剂,比如二硫赤藓醇,二硫苏糖醇,或β-巯基乙醇。溶解聚集的多肽之后,必须将重组多肽的对于生物活性至关重要的球状结构重建。在该所谓的复性过程中,例如通过针对合适的缓冲液透析(缓慢)降低还原剂的浓度,其允许变性的多肽重折叠为其生物活性结构。复性后,纯化重组多肽到对于预期用途可接受的纯度。例如,对于作为治疗性蛋白质的使用,必须建立大于90%的纯度。 
重组生产的多肽通常伴有来自生产细胞的核酸,内毒素,和/或多肽。除了宿主细胞来源的副产物,在粗制多肽制备物中还存在多肽来源的副产物。除了别的以外,可以存在研究的多肽的截短的变体。 
WO 95/25786中报道了在细菌表达系统中生产人载脂蛋白AI。Karathanasis,S.K.,等人,报道了人载脂蛋白A-1基因的分离和表征(Proc. Natl.Acad.Sci.USA 80(1983)6147-6151)。由Gurvich,O.L.,等人在EMBO Journal(22(2003)5941-5950)中报道了在大肠杆菌的编码区中引导显著的移码水平的序列是常见的。Graversen,J.H.,等人,报道了载脂蛋白A-1的三聚化阻滞血浆清除并保持抗动脉粥样硬化的性质(J.Cardiovascular Pharmacology 51(2008)170-177)。 
发明概述
已经发现,编码三肽QKK的寡核苷酸可以是在编码包含三肽QKK的多肽的核酸的转录或翻译过程中1->3移码的点。由于移码的出现,产生具有不编码的氨基酸序列的无义多肽。 
因此,作为一个方面,本文报道了重组生产包含三肽QKK(SEQ ID NO:06)的多肽的方法,其特征在于所述方法包括以下步骤: 
-从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的细胞的培养物的培养基回收所述多肽从而生产所述多肽。 
其中包含在所述多肽中的三肽QKK由寡核苷酸cag aag aag(SEQ ID NO:03),或寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)编码。 
在一个实施方案中,包含在所述多肽中的三肽QKK由寡核苷酸caa aag aaa(SEQ ID NO:04)或寡核苷酸cag aaa aaa(SEQ ID NO:05)编码。 
如本文报道的一个方面是编码在其氨基酸序列中包含三肽QKK的多肽的核酸,其中所述三肽QKK由寡核苷酸cag aag aag(SEQ ID NO:03),或寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)编码。 
如本文报道的一个方面是编码在其氨基酸序列中包含三肽QKK的多肽的核酸,其中所述三肽QKK由寡核苷酸caa aag aaa(SEQ IDNO:04)或寡核苷酸cag aaa aaa(SEQ ID NO:05)编码。 
如本文报道的一个方面是包含如本文报道的核酸的细胞。 
如本文报道的一个方面是用于编码包含于将在大肠杆菌中表达的多肽中的三肽QKK的寡核苷酸cag aag aag(SEQ ID NO:03),或寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)的 用途。 
如本文报道的一个方面是用于编码包含于将在大肠杆菌中表达的多肽中的三肽QKK的寡核苷酸caa aag aaa(SEQ ID NO:04)或寡核苷酸cag aaa aaa(SEQ ID NO:05)的用途。 
以下具体说明如本文报道的所有方面的实施方案。 
在一个实施方案中,所述三肽QKK由寡核苷酸caa aag aaa(SEQ ID NO:04)编码。 
在一个实施方案中,所述三肽QKK由寡核苷酸eag aaa aaa(SEQ ID NO:05)编码。 
在一个实施方案中,所述(全长)多肽包含约50个氨基酸残基至约500个氨基酸残基。在一个实施方案中,所述(全长)多肽包含约100个氨基酸残基至约400个氨基酸残基。在一个实施方案中,所述(全长)多肽包含约250个氨基酸残基至约350个氨基酸残基。 
在一个实施方案中,所述细胞是原核细胞。在一个实施方案中,所述原核细胞是大肠杆菌(E.coli)细胞,或芽胞杆菌(bacillus)细胞。 
在一个实施方案中,所述细胞是真核细胞。在一个实施方案中,所述细胞是CHO细胞,或HEK细胞,或BHK细胞,或NSO细胞,或SP2/0细胞,或酵母细胞。 
在一个实施方案中,所述多肽是异源多聚多肽。在一个实施方案中,所述多肽是抗体或抗体片段。 
在一个实施方案中,所述多肽是同源多聚多肽。在一个实施方案中,所述多肽是同源二聚体或同源三聚体。 
在一个实施方案中,所述多肽是人载脂蛋白A-I或其变体或包含其的融合多肽,其中所述变体或所述融合多肽显示人载脂蛋白A-I的体外和体内功能。在一个实施方案中,所述载脂蛋白A-I变体具有选自SEQ ID NO:09至SEQ ID NO:14的组的氨基酸序列。 
发明详述
定义: 
术语″氨基酸″指羧基α-氨基酸类,其可以直接或以前体的形式由核 酸编码。个体氨基酸被由三个核苷酸组成的核酸(所谓密码子或碱基三联体)编码。每个氨基酸由至少一个密码子编码。由不同密码子编码相同氨基酸被称为“遗传密码的简并”。术语”氨基酸”指天然存在的羧基α-氨基酸并且包括丙氨酸(三字母代码:ala,单字母代码:A),精氨酸(arg,R),天冬酰胺(asn,N),天冬氨酸(asp,D),半胱氨酸(cys,C),谷氨酰胺(gln,Q),谷氨酸(glu,E),甘氨酸(gly,G),组氨酸(his,H),异亮氨酸(ile,I),亮氨酸(leu,L),赖氨酸(lys,K),甲硫氨酸(met,M),苯丙氨酸(phe,F),脯氨酸(pro,P),丝氨酸(ser,S),苏氨酸(thr,T),色氨酸(trp,W),酪氨酸(tyr,Y),和缬氨酸(val,V)。 
术语″载脂蛋白A-I″指具有蛋白质-脂和蛋白质-蛋白质相互作用性质的,两亲的,螺旋多肽。载脂蛋白A-I由肝和小肠合成为267个氨基酸残基的前载脂蛋白原(prepro-apolipoprotein),其以载脂蛋白原(pro-apolipoprotein)分泌,所述载脂蛋白原被切割为具有243个氨基酸残基的成熟多肽。载脂蛋白A-I由6至8个不同氨基酸重复(每个由被接头部分(常常是脯氨酸)分开的22个氨基酸残基组成)组成,并且在一些情况下由通过一些残基构成的区段组成。在GenPept数据库入口(database entry)NM-000039或数据库入口X00566;GenBank NP-000030.1(gi 4557321)中报道了代表性的人载脂蛋白A-I氨基酸序列。存在人载脂蛋白A-I(SEQ ID NO:07)的天然存在的变体,比如P27H,P27R,P28R,R34L,G50R,L84R,D113E,A-A119D,D127N,K131的缺失,K131M,W132R,E133K,R151C(氨基酸残基151从Arg改变为Cys,载脂蛋白A-I-Paris),E160K,E163G,P167R,L168R,E171V,P189R,R197C(氨基酸残基173从Arg改变为Cys,载脂蛋白A-I-Milano)和E222K。还包括的是具有保守氨基酸修饰的变体。 
术语“密码子”指由编码限定的氨基酸的三个核苷酸组成的寡核苷酸。由于遗传密码的简并性,一些氨基酸由多于一种密码子编码。这些编码相同氨基酸的不同密码子在个体宿主细胞中具有不同的相对使用频率。因此,特定氨基酸可以由一组不同的密码子编码。同样地,多肽的氨基酸序列可以由不同核酸编码。因此,特定氨基酸可以由一组不同的密码子编码,其中这些密码子中的每个具有给定的宿主细胞中的使用频率。 
表:大肠杆菌密码子使用(密码子|编码的氨基酸|使用频率[%]) 

以下表中″代表性的取代″标题下提供代表性的改变。保守取代显示在以下表中″优选的取代″标题下并且如下文中关于氨基酸侧链类型进一步描述。 
表.


非保守取代需要将这些类型中的一种的成员交换为另一种类型。 
术语″保守氨基酸修饰″指不影响或改变多肽的特性的氨基酸序列的修饰。可以通过本领域已知的标准技术,比如位点定向的诱变和PCR-介导的诱变引入修饰。保守氨基酸修饰包括其中氨基酸残基被具有类似侧链的氨基酸残基替代的修饰。本领域中已经限定了具有类似侧链的氨基酸残基家族。这些家族包括具有碱性侧链(例如赖氨酸,精氨酸,组氨酸),酸性侧链(例如天冬氨酸,谷氨酸),不带电极性侧链(例如甘氨酸,天冬酰胺,谷氨酰胺,丝氨酸,苏氨酸,酪氨酸,半胱氨酸,色氨酸),非极性侧链(例如丙氨酸,缬氨酸,亮氨酸,异亮氨酸,脯氨酸,苯丙氨酸,甲硫氨酸),β-分枝侧链(例如苏氨酸,缬氨酸,异亮氨酸),和芳香侧链(例如酪氨酸,苯丙氨酸,色氨酸,组氨酸)的氨基酸。 
术语“多肽的变体”指氨基酸序列以多达十个,在一个实施方案中从约两个至约五个,添加,缺失,和/或取代不同于“母体”多肽的氨基酸序列的多肽。可以通过基于如由Riechmann,L.,等人,Nature 332(1988) 323-327,和Queen,C.,等人,Proc.Natl.Acad.Sci.USA 86(1989)10029-10033描述的分子模型的诱变进行氨基酸序列修饰。 
可以使用公知的算法,比如BLOSUM 30,BLOSUM 40,BLOSUM 45,BLOSUM 50,BLOSUM 55,BLOSUM 60,BLOSUM 62,BLOSUM 65,BLOSUM 70,BLOSUM 75,BLOSUM 80,BLOSUM 85,或BLOSUM 90计算不同氨基酸序列的同源性和同一性。在一个实施方案中,所述算法是BLOSUM 30。 
交替使用术语″宿主细胞″,″宿主细胞系″,和″宿主细胞培养物″并且指已引入外源核酸的细胞,包括此种细胞的子代。宿主细胞包括″转化体″和″转化的细胞,″其包括原代转化的细胞和从中来源的不考虑传代数量的子代。子代核酸含量可以不与亲代细胞完全相同,但可以包含突变。具有与在最初转化的细胞中筛选或选择的相同功能或生物活性突变的子代包括在本文中。 
术语“核酸”和“核酸序列”指由个体核苷酸(还称为碱基)‘a’,‘c’,‘g’,和‘t’(或RNA中的‘u’)组成的聚合分子,即DNA,RNA,或其修饰。该多核苷酸分子可以是天然存在的多核苷酸分子或合成的多核苷酸分子或一种或更多种天然存在的多核苷酸分子与一种或更多种合成的多核苷酸分子的组合。该定义还包括的是其中一个或更多个核苷酸被改变(例如通过诱变),缺失,或添加的天然存在的多核苷酸分子。核酸可以是分离的,或整合入另一条核酸,例如整合入表达盒,质粒,或宿主细胞的染色体。核酸以其由个体核苷酸组成的核酸序列为特征。术语“寡核苷酸”指由至多10个个体核苷酸(也成为碱基)′a′,′c′,′g′,和′t′(或RNA中的′u′)组成的聚合分子。 
对于本领域技术人员来说,将例如多肽的氨基酸序列转变为编码该氨基酸序列的相应的核酸序列的工艺和方法是公知的。因此,核酸以其由个体核苷酸组成的核酸序列为特征并且类似地以由此编码的多肽的氨基酸序列表征。 
有关参考多肽序列的“百分数(%)氨基酸序列同一性″定义为经比对序列和引入缺口(如果需要)以获得最大百分数序列同一性,和不考虑任何保守取代作为序列同一性的部分之后,候选序列中与参考多肽序列中氨基 酸残基的相同的氨基酸残基的百分数。可以以不同方式实现为了百分数氨基酸序列同一性的目的的比对,所述方式在本领域技术内,例如,使用公众可获得的计算机软件,比如BLAST,BLAST-2,ALIGN或Megalign(DNASTAR)软件。本领域熟练技术人员可以确定用于比对序列的合适参数,包括获得跨被比较序列的全长的最大比对所需的任何算法。然而,为了本文的目的,使用序列比较计算机程序ALIGN-2产生%氨基酸序列同一性值。ALIGN-2序列比较计算机程序由Genentech,Inc.创作,并且已将原代码与用户文献资料提交美国版权局,Washington D.C.,20559,其中其在美国版权登记号TXU510087下登记。ALIGN-2程序可从Genentech,Inc.,South San Francisco,California由公众获得,或可以从源代码编辑。应该将ALIGN-2程序编辑用于在UNIX操作系统(包括数字的UNIX V4.0D)上使用。所有序列比较参数由ALIGN-2程序设定并且不改变。 
在将ALIGN-2用于氨基酸序列比较的情况下,如下计算给定氨基酸序列A相对(to)、与(with)、或针对(against)给定氨基酸序列B(其可以备选地叙述为相对(to)、与(with)、或针对(against)给定氨基酸序列B具有或包含某一%氨基酸序列同一性的给定氨基酸序列A)的%氨基酸序列同一性: 
100乘以分数X/Y 
其中X是通过序列比对程序ALIGN-2中的A和B的程序比对得分为相同匹配的氨基酸残基的数量,并且其中Y是B中氨基酸残基的总数量。将理解其中氨基酸序列A的长度与氨基酸序列B的长度不相等,A相对B的%氨基酸序列同一性将不等于B相对A的%氨基酸序列同一性。除非另有特别说明,否则如在紧接的上一段中使用ALIGN-2计算机程序获得本文使用所有%氨基酸序列同一性值。 
术语″重组多肽″和“重组生产的多肽”指通过重组方法制备,表达或产生的多肽,比如分离自宿主细胞,比如大肠杆菌,NSO,BHK,或CHO细胞的多肽。 
术语″取代″指改变母体核酸中一个特定核苷酸以获得取代的/改变的核酸。 
如本文报道的方法:
例如在Ausubel,F.M.,等人(编辑),Current Protocols in Molecular Biology,卷I至III,John Wiley and Sons,Inc.,New York(1997);Sambrook,J.,等人,Molecular Cloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(1989),Morrison,S.L.,等人,Proc.Natl.Acad.Sci.USA 81(1984)6851-6855;US 5,202,238和US 5,204,244中描述了对于本领域技术人员已知的用于进行本发明的方法和技术。 
对于每种生物,给出了用于编码限定的氨基酸的密码子的特征的(独特)使用。例如氨基酸谷氨酰胺(单字母代码为Q)可以由两种不同密码子编码(由于遗传密码的简并性),即cag和caa。人中,所述两种谷氨酰胺密码子分别具有74%和26%的使用频率。在大肠杆菌中,所述使用频率是类似的,即分别为82%和18%。氨基酸赖氨酸(K)也可以由两种不同密码子编码,即aag和aaa。人中,所述两种不同的编码赖氨酸的密码子分别具有59%和41%使用频率,然而大肠杆菌中,所述两种不同的编码赖氨酸的密码子具有非平均的(non-even)的使用频率,分别是20%和80%。已发现,包含在编码包含所述三肽QKK的多肽的核酸中的编码三肽QKK的寡核苷酸,在编码包含三肽QKK的多肽的核酸的转录或翻译的过程中可以是1->3移码(突变)的点。由于移码的出现,产生具有不编码的氨基酸序列,最可能是无义或截短的氨基酸序列的多肽。 
更详细地,已发现,依赖于编码三肽QKK并包含在更大的(即至少50个氨基酸残基)编码多肽的核酸中的寡核苷酸,1->3移码在寡核苷酸的转录或翻译过程中发生。移码的频率依赖于个体密码子的组合(参见下表)。 
表。

编码QKK三肽的寡核苷酸 1→3移码发生 caa aaa aag(SEQ ID NO:01) 10% caa aag aag(SEQ ID NO:02) 30% cag aag aag(SEQ ID NO:03) 低于检测极限 caa aag aaa(SEQ ID NO:04) 低于检测极限 cag aaa aaa(SEQ ID NO:05) 低于检测极限

可以看出,在大肠杆菌中,如果三肽QKK由核酸caa aaa aag和caa  aag aag编码,则1->3移码发生。目前惊奇地发现可以通过使用核酸序列cag aag aag(SEQ ID NO:03),或caa aag aaa(SEQ ID NO:04),或cag aaa aaa(SEQ ID NO:05)阻止该移码。这样,可以通过使用SEQ ID NO:03,或SEQ ID NO:04,或SEQ ID NO:05的核酸编码多肽中的三肽QKK改善全长多肽的表达产量(同样地,非全长多肽副产物的形成可以被减少)。 
因此,如本文报道的一个方面是一种在大肠杆菌中重组生产包含三肽QKK(SEQ ID NO:06)的(全长)多肽的方法,其特征在于所述方法包括以下步骤: 
-从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的细胞的培养物的培养基回收所述多肽从而生产所述多肽, 
其中包含在所述多肽中的三肽QKK由寡核苷酸cag aag aag(SEQ ID NO:03),或寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)编码。 
因此,如本文报道的一个方面是在大肠杆菌中重组生产包含三肽QKK(SEQ ID NO:06)的(全长)多肽的方法,其特征在于所述方法包括以下步骤: 
-从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的细胞的培养物的培养基回收所述多肽,从而生产所述多肽, 
其中包含在所述多肽中的三肽QKK由寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)编码。 
在一个实施方案中,所述方法包括以下步骤: 
-提供包含编码所述多肽的核酸的细胞, 
-培养所述细胞(在适于表达所述多肽的条件下), 
-从细胞或培养基回收所述多肽。 
-任选地以一个或更多个层析步骤纯化生产的多肽。 
在一个实施方案中,通过取代编码三肽QKK的寡核苷酸caa aaa aag(SEQ ID NO.01),或寡核苷酸caa aag aag(SEQ ID NO:02)中的一至三个核苷酸以获得寡核苷酸cag aag aag(SEQ ID NO:03),或寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)获得包含编码三肽QKK的寡核苷酸cag aag aag(SEQ ID NO:03),或寡核苷酸caa  aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)的编码多肽的核酸。 
在一个实施方案中,以一至五个层析步骤纯化生产的多肽。在一个实施方案中,以二至四个层析步骤纯化生产的多肽。在一个实施方案中,以三个层析步骤纯化生产的多肽。 
一般的层析方法和其用途对于本领域技术人员来说是已知的。参见例如,Heftmann,E.(编辑),Chromatography,第5版,Part A:Fundamentals and Techniques,Elsevier Science Publishing Company,纽约(1992);Deyl,Z.(编辑),Advanced Chromatographic and Electromigration Methods in Biosciences,Elsevier Science BV,Amsterdam,荷兰(1998);Poole,C.F.,和Poole,S.K.,Chromatography Today,Elsevier Science Publishing Company,纽约(1991);Scopes,R.K.,Protein Purification:Principles and Practice(1982);Sambrook,J.,等人(编辑),Molecular Cloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(1989);或Ausubel,F.M.,等人(编辑),Current Protocols in Molecular Biology,卷I至III,John Wiley&Sons,Inc.,纽约(1997)。 
如本文报道的一个方面是编码在其氨基酸序列中包含三肽QKK的多肽的核酸,其中所述三肽QKK由寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)编码。 
如本文报道的一个方面是包含如本文报道的核酸的细胞。 
如本文报道的一个方面是用于编码包含在所述多肽中的三肽QKK的寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05)的用途。 
如本文报道的一个方面是在大肠杆菌中重组生产包含三肽QKK的(全长)多肽过程中减少副产物形成的方法,所述方法包括以下步骤: 
-在编码所述多肽的核酸中,取代编码三肽QKK的寡核苷酸caa aaa aag(SEQ ID NO.01),或寡核苷酸caa aag aag(SEQ ID NO:02)中的一至三个核苷酸以获得寡核苷酸cag aag aag(SEQ ID NO:03),或寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05),从而生产取代的编码多肽的核酸,和 
-从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽从而减少在重组生产包含三肽QKK的多肽的过程中的副产物形成。 
如本文报道的一个方面是在大肠杆菌中重组生产包含三肽QKK的(全长)多肽的过程中减少副产物形成的方法,所述方法包括以下步骤: 
-在编码多肽的核酸中,取代编码三肽QKK的寡核苷酸caa aaa aag(SEQ ID NO.01),或寡核苷酸caa aag aag(SEQ ID NO:02)中的一至三个核苷酸以获得寡核苷酸caa aag aaa(SEQ ID NO:04)或寡核苷酸cag aaa aaa(SEQ ID NO:05),从而生产取代的编码多肽的核酸,和 
-从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽从而在重组生产包含三肽QKK的多肽的过程中减少副产物形成。 
如本文报道的一个方面是增加在大肠杆菌中重组生产的包含三肽QKK的(全长)多肽的表达的方法,所述方法包括以下步骤: 
-在编码所述多肽的核酸中,取代编码三肽QKK的寡核苷酸caa aaa aag(SEQ ID NO.01),或寡核苷酸caa aag aag(SEQ ID NO:02)中的一至三个核苷酸以获得寡核苷酸cag aag aag(SEQ ID NO:03),或寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05),从而生产取代的编码多肽的核酸,和 
-从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽从而增加多肽的表达。 
如本文报道的一个方面是增加在大肠杆菌中重组生产的包含三肽QKK的(全长)多肽的表达的方法,所述方法包括以下步骤: 
-在编码多肽的核酸中,取代编码三肽QKK的寡核苷酸caa aaa aag(SEQ ID NO.01),或寡核苷酸caa aag aag(SEQ ID NO:02),或寡核苷酸cag aag aag(SEQ ID NO:03)中的一至三个核苷酸以获得寡核苷酸caa aag aaa(SEQ ID NO:04),或寡核苷酸cag aaa aaa(SEQ ID NO:05),从而生产取代的编码多肽的核酸,和 
-从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽从而增加多肽的表达。 
在各个之前的方面的一个实施方案中,所述方法包括以下进一步步骤的一个或更多个: 
-提供包含三肽QKK的多肽的氨基酸序列或编码核酸,和/或 
-用编码所述多肽的取代的核酸转染细胞,和/或 
-培养转染有取代的核酸的细胞(在适于表达所述多肽的条件下),和/或 
-从细胞或培养基回收所述多肽,和/或 
-任选地以一个或更多个层析步骤纯化生产的多肽。 
在一个实施方案中以一至五个层析步骤纯化生产的多肽。在一个实施方案中,以二至四个层析步骤纯化生产的多肽。在一个实施方案中,以三个层析步骤纯化生产的多肽。 
以下以在原核细胞中生产的重组多肽,即在大肠杆菌中生产的四连蛋白-载脂蛋白A-I融合多肽举例证明如本文报道的方法。 
四连蛋白-载脂蛋白A-I融合多肽包含(在N-末端至C-末端方向)人四连蛋白三聚化结构元件和野生型人载脂蛋白A-I。人四连蛋白三聚化结构元件的氨基酸序列可以截短前9个氨基酸,这样,以位置10的异亮氨酸残基(天然存在的截短位点)起始。作为该截短的结果,位置4的苏氨酸残基的O-糖基化位点被删除。四连蛋白三聚化结构元件和人载脂蛋白A-I间的五个氨基酸残基SLKGS(SEQ ID NO:08)被移除。 
为了改善的表达和纯化,可以构建包含N-末端纯化标签,例如六组氨酸-标签,和用于移除纯化标签的蛋白酶切割位点的构建体。在一个实施方案中,所述蛋白酶是IgA蛋白酶,并且所述蛋白酶切割位点是IgA蛋白酶切割位点。作为蛋白酶的特异切割的结果,蛋白酶切割位点的一些氨基酸残基保留在多肽的N-末端,即在IgA蛋白酶切割位点的情况下,两个氨基酸残基-如第一丙氨酸或甘氨酸或丝氨酸或苏氨酸和如第二脯氨酸-被保留在多肽,例如四连蛋白-载脂蛋白A-I融合多肽的N-末端。 
四连蛋白三聚化结构元件提供允许形成四连蛋白-载脂蛋白A-I同源三聚体的结构域,所述同源三聚体通过每个个体四连蛋白-载脂蛋白A-I单体之间的非共价相互作用构成。 
在一个实施方案中,所述载脂蛋白A-I融合多肽是包含保守氨基酸取 代的变体。 
在一个实施方案中,所述四连蛋白-载脂蛋白A-I融合多肽包含表达和纯化标签,并具有以下氨基酸序列 
CDLPQTHSLGSHHHHHHGSVVAPPAPIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ(SEQ ID NO:09). 
在一个实施方案中,所述四连蛋白-载脂蛋白A-I融合多肽(IVN)具有以下氨基酸序列 
IVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ(SEQ ID NO:10). 
因此,在一个优选的实施方案中,所述四连蛋白-载脂蛋白A-I融合多肽(PIVN)具有以下氨基酸序列 
PIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQFFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ(SEQ ID NO:11). 
在一个实施方案中,所述四连蛋白-载脂蛋白A-I融合多肽(XPIVN)具有以下氨基酸序列 
(G,S,T)PIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ(SEQ ID NO:12). 
因此,在一个实施方案中,所述四连蛋白-载脂蛋白A-I融合多肽(APIVN)具有以下氨基酸序列 
APIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ(SEQ ID NO:13), 
在一个实施方案中,所述包含六组氨酸标签的四连蛋白-载脂蛋白A-I融合多肽(XIVN)具有以下氨基酸序列 
HHHHHHXIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ(SEQ ID NO:14), 
其中X可以是以下氨基酸序列中的任一个:A,G,S,P,AP,GP, SP,PP,GSAP(SEQ ID NO:15),GSGP(SEQ ID NO:16),GSSP(SEQ ID NO:17),GSPP(SEQ ID NO:18),GGGS(SEQ ID NO:19),GGGGS(SEQ ID NO:20),GGGSGGGS(SEQ ID NO:21),GGGGSGGGGS(SEQ ID NO:22),GGGSGGGSGGGS(SEQ ID NO:23),GGGGSGGGGSGGGGS(SEQ ID NO:24),GGGSAP(SEQ ID NO:25),GGGSGP(SEQ ID NO:26),GGGSSP(SEQ ID NO:27),GGGSPP(SEQ ID NO:28),GGGGSAP(SEQ ID NO:29),GGGGSGP(SEQ ID NO:30),GGGGSSP(SEQ ID NO:31),GGGGSPP(SEQ ID NO:32),GGGSGGGSAP(SEQ ID NO:33),GGGSGGGSGP(SEQ ID NO:34),GGGSGGGSSP(SEQ ID NO:35),GGGSGGGSPP(SEQ ID NO:36),GGGSGGGSGGGSAP(SEQ ID NO:37),GGGSGGGSGGGSGP(SEQ ID NO:38),GGGSGGGSGGGSSP(SEQ ID NO:39),GGGSGGGSGGGSPP(SEQ ID NO:40),GGGGSAPP(SEQ ID NO:41),GGGGSGP(SEQ ID NO:42),GGGGSSP(SEQ ID NO:43),GGGGSPP(SEQ ID NO:44),GGGGSGGGGSAP(SEQ ID NO:45),GGGGSGGGGSGP(SEQ ID NO:46),GGGGSGGGGSSP(SEQ ID NO:47),GGGGSGGGGSPP(SEQ ID NO:48),GGGGSGGGGSGGGGSAP(SEQ ID NO:49),GGGGSGGGGSGGGGSGP(SEQ ID NO:50),GGGGSGGGGSGGGGSSP(SEQ ID NO:51),和GGGGSGGGGSGGGGSPP(SEQ ID NO:52), 
必须指出的是,如果多肽在大肠杆菌菌株中重组生产,N-末端甲硫氨酸残基通常不被大肠杆菌蛋白酶有效切除。因此,N-末端甲硫氨酸残基部分存在于生产的多肽中。 
在大肠杆菌中重组生产SEQ ID NO:09的四连蛋白-载脂蛋白A-I融合多肽。可以检测到主要的副产物(约占总蛋白的10%)。 
通过Lys-C肽图谱分析(mapping)(LC-ESI-MS/MS)和自上而下(top-down)MS,确认氨基酸残基1至148(赖氨酸)的N-末端氨基酸序列是正确的(如SEQ ID NO:13中给出的)。截短的副产物的C-末端氨基酸序列是VARRNGTVQTES(SEQ ID NO:53)。自靶四连蛋白-载脂蛋白A-I融合多肽的序列的偏离从三肽QKK开始。C-末端氨基酸序列的改变是由于在翻译或转录过程中阅读框的1->3移码(参见图1)。 
测试了编码三肽QKK的寡核苷酸的不同变体。已经发现寡核苷酸caa aag aag(SEQ ID NO:02)甚至进一步将截短的副产物量增加到30%。与其相比,通过使用寡核苷酸cag aag aag(SEQ ID NO:03),caa aag aaa(SEQ ID NO:04)和cag aaa aaa(SEQ ID NO:04),可以将截短的副产物形成减少 到低于使用的LC-MS方法的检测极限(参见图2)。 
提供以下实施例,序列表和图以帮助理解本发明,其真正范围列于所附的权利要求中。人们理解,可以在不偏离本发明的精神的情况下,在所列出的工序中进行修饰。 
序列表描述
SEQ ID NO:01寡核苷酸caa aaa aag. 
SEQ ID NO:02寡核苷酸caa aag aag. 
SEQ ID NO:03寡核苷酸cag aag aag. 
SEQ ID NO:04寡核苷酸caa aag aaa. 
SEQ ID NO:05寡核苷酸cag aaa aaa. 
SEQ ID NO:06三肽QKK. 
SEQ ID NO:07人载脂蛋白A-I. 
SEQ ID NO:08移除的SLKGS多肽. 
SEQ ID NO:09包含表达和纯化标签的四连蛋白-载脂蛋白A-I融合多肽。 
SEQ ID NO:10四连蛋白-载脂蛋白A-I融合多肽(IVN). 
SEQ ID NO:11四连蛋白-载脂蛋白A-I融合多肽(PIVN). 
SEQ ID NO:12四连蛋白-载脂蛋白A-I融合多肽(XPIVN). 
SEQ ID NO:13四连蛋白-载脂蛋白A-I融合多肽(APIVN). 
SEQ ID NO:14包含六组氨酸标签的四连蛋白-载脂蛋白A-I融合多肽(XIVN)。 
SEQ ID NO:15至52接头多肽。 
SEQ ID NO:53主要副产物的C-末端氨基酸序列。 
SEQ ID NO:54干扰素片段。 
SEQ ID NO:55六组氨酸标签。 
SEQ ID NO:56IgA蛋白酶切割位点。 
附图描述
图1不同阅读框导致不同氨基酸序列,其中1->3移码导致具有确定的C-末端氨基酸序列的截短的产物(ΔMW=-14369Da)。 
图2关于1->3移码副产物形成的包含编码三肽QKK的不同寡核苷酸的构建体的LC-MS分析。 
材料和方法
蛋白质确定:
通过使用基于氨基酸序列计算的摩尔消光系数确定280nm处的光密度(OD),确定蛋白质浓度。 
重组DNA技术:
如在Sambrook,J.,等人,Molecular Cloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York(1989)描述的使用标准方法操作DNA。根据制造商的使用说明使用分子生物学试剂。 
实施例1
大肠杆菌表达质粒的制备和描述 
通过重组方法制备四连蛋白-载脂蛋白A-I融合多肽。以N-末端至C-末端方向表达的融合多肽的氨基酸序列如下: 
-氨基酸甲硫氨酸(M), 
-具有CDLPQTHSL(SEQ ID NO:54)的氨基酸序列的干扰素序列片段, 
-GS接头, 
-具有HHHHHH(SEQ ID NO:55)的氨基酸序列的六组氨酸标签, 
-GS接头, 
-具有VVAPPAP(SEQ ID NO:56)的氨基酸序列的IgA蛋白酶切割位点,和 
-具有SEQ ID NO:10的氨基酸序列的四连蛋白-载脂蛋白A-I。 
如上文描述的四连蛋白-载脂蛋白A-I融合多肽为前体多肽,使用IgA蛋白酶的体外酶切割从所述前体多肽释放最终四连蛋白-载脂蛋白A-I融合多肽。 
用已知的重组方法和技术,通过将合适的核酸片段连接组装编码所述前体多肽的融合基因。通过DNA测序验证通过化学合成的核酸序列。如 下制备用于生产编码SEQ ID NO:09的融合多肽的SEQ ID NO:10的四连蛋白-载脂蛋白A-I融合多肽的表达质粒。 
制备大肠杆菌表达质粒:
质粒4980(4980-pBRori-URA3-LACI-SAC)是用于在大肠杆菌中表达核心链霉亲和素的表达质粒。其通过将源自质粒1966(1966-pBRori-URA3-LACI-T-重复;在EP-B 1422237中报道的)的3142bp长的EcoRI/CelII-载体片段与435bp长的编码核心链霉亲和素的EcoRI/CelII-片段连接产生。 
核心链霉亲和素大肠杆菌表达质粒包含以下元件: 
-来自载体pBR322的用于在大肠杆菌中复制的复制起点(根据Sutcliffe,G.,等人,Quant.Biol.43(1979)77-90,对应于bp位置2517-3160), 
-酿酒酵母(Saccharomyces cerevisiae)的编码乳清苷5’-磷酸脱羧酶的URA3基因(Rose,M.,等人,Gene 29(1984)113-124),其允许通过补充大肠杆菌pyrF突变株(尿嘧啶营养缺陷型)进行质粒选择, 
-核心链霉亲和素表达盒,所述表达盒包含 
-T5杂合启动子(根据Bujard,H.,等人,Methods.Enzymol.155(1987)416-433和Stueber,D.,等人,Immunol.Methods IV(1990)121-152的T5-PN25/03/04杂合启动子),其包括根据Stueber,D.,等人(见前)的合成的核糖体结合位点, 
-核心链霉亲和素基因, 
-两个源自噬菌体的转录终止子,)-T0终止子(Schwarz,E.,等人,Nature 272(1978)410-414)和fd-终止子(Beck,E.和Zink,B.,Gene 1-3(1981)35-58), 
-来自大肠杆菌的lacI抑制子基因(Farabaugh,P.J.,Nature 274(1978)765-769)。 
通过使用单侧的(singular flanking)EcoRI和CelII限制性内切酶切割位点从载体4980切除核心链霉亲和素并将侧面连接有编码所述前体多肽的核酸的EcoRII/CelII限制性位点插入3142bp长的EcoRI/CelII-4980载体片段中制备用于表达四连蛋白-载脂蛋白A-I前体多肽的最终表达质粒。 
实施例2
四连蛋白-载脂蛋白A-I的表达 
为了表达所述融合蛋白,使用了通过补充大肠杆菌营养缺陷型(PyrF)能够进行无抗生素质粒选择的大肠杆菌宿主/载体系统(参见EP 0972838和US 6,291,245)。 
用表达质粒p(IFN-His6-IgA-四连蛋白-载脂蛋白A-I)通过电穿孔转化大肠杆菌K12株CSPZ-2(leuB,proC,trpE,th-1,ΔpyrF)。将转化的大肠杆菌细胞首先在琼脂平板上于37℃生长。 
发酵方案1:
为了预发酵,使用补充以约1g/l L-亮氨酸,约1g/l L-脯氨酸和约1mg/l硫胺-HCl的根据Sambrook,J.,等人(Molecular Cloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(1989))的M9培养基。 
为了预发酵,用得自初级种子库安瓿的2ml接种具有隔板的1000ml锥形烧瓶中的300ml的M9-培养基。在旋转摇床上在37℃进行培养13个小时,直到获得1-3的光密度(578nm)。 
为了发酵,使用根据Riesenberg,等人的分批(batch)培养基(Riesenberg,D.,等人,J.Biotechnol.20(1991)17-27):27.6g/l葡萄糖*H2O,13.3g/l KH2PO4,4.0g/l(NH4)2HPO4,1.7g/l柠檬酸盐,1.2g/l MgSO4*7H2O,60mg/l柠檬酸铁(III),2.5mg/l CoCl2*6H2O,15mg/l MnCl2*4H2O,1.5mg/l CuCl2*2H2O,3mg/l H3BO3,2.5mg/l Na2MoO4*2H2O,8mg/lZn(CH3COO)2*2H2O,8.4mg/l Titriplex III,1.3ml/l Synperonic 10%消泡剂。将所述分批培养基分别补充以5.4mg/l硫胺-HCl和1.2g/l L-亮氨酸和L-脯氨酸。补料(feed)1溶液包含补充以19.7g/l MgSO4*7H2O的700g/l葡萄糖。用于pH调节的碱性溶液为分别补充以50g/l L-亮氨酸和50g/l L-脯氨酸的12.5%(w/v)NH3水溶液。将所有组分溶解于去离子水中。 
在10l Biostat C DCU3发酵罐(Sartorius,Melsungen,德国)中进行发酵。以6.4l无菌发酵分批培养基加上300ml来自预发酵的接种物起始,在37℃,pH 6.9±0.2,500mbar和10l/min的通气速率进行分批发酵。在初始补充的葡萄糖用尽后,将温度改变至28℃并且进入发酵补料分批(fed-batch)模式。这里,通过加入补料1与不断增加的搅拌速度(在10小 时内从550rpm至1000rpm和16小时内从1000rpm至1400rpm)和通气速率(10小时内从10l/min至16l/min和在5小时内从16l/min至20l/minin)联合将溶解的氧(pO2)的相对值保持在50%(DO-stat,参见例如Shay,L.K.,等人,J.Indus.Microbiol.Biotechnol.2(1987)79-85)。当在约8小时的培养后pH达到更低的调节极限(6.70)时,由加入碱性溶液引起补充以另外的氨基酸。通过在光密度70时加入1mM IPTG诱导重组治疗性蛋白的表达。 
在发酵的最后,以加热步骤(在收获之前将发酵罐中的全部培养液加热至50℃达1或2小时)将细胞质的和可溶表达的四连蛋白-载脂蛋白A-I转换至不溶的蛋白质聚集体(所谓的包涵体)(参见例如EP-B 1486571)。之后,以无逆流离心机(flow-through centrifuge)离心发酵罐的内含物(13,000rpm,13l/h)并且将收获的生物质储存在-20℃,直到进一步处理。仅在不溶的细胞碎片部分发现不溶的蛋白质聚集体(所谓的包涵体(IBs))形式的合成的四连蛋白-载脂蛋白A-I前体蛋白质。 
以SDS-聚丙烯酰胺凝胶电泳分析取自发酵罐的样品(一个为诱导前的并且其它的为诱导蛋白表达后的特定时间点的)。从每个样品,将相同量的细胞(OD=5)重悬在5mLPBS缓冲液中,并于冰上通过超声破碎。随后离心100μL的各个悬液(15,000rpm,5分钟)并且回收各个上清并转移至分开的小瓶。这是为了对可溶的和不溶的表达的靶蛋白质间进行区分。对于各个上清(=可溶的)部分,加入300μL SDS上样缓冲液并且对于各个沉淀(=不溶的)部分,加入400μL SDS上样缓冲液(Laemmli,U.K.,Nature 227(1970)680-685)。在震荡条件下于95℃加热样品15分钟以溶解和还原样品中的所有蛋白质。在冷却至室温之后,将5μL各个样品转移至4-20%TGX Criterion Stain Free聚丙烯酰胺凝胶(Bio-Rad)。此外,将5μl分子量标准(Precision Plus蛋白质标准,Bio-Rad)和3个量(0.3μl,0.6μl和0.9μl)的具有已知产物蛋白质浓度(0.1μg/μl)的定量标准置于胶上。 
在200V运行电泳60分钟并且之后将凝胶转移至GelDOC EZ成像仪(Bio-Rad)并且用UV辐射处理5分钟。使用Image Lab分析软件(Bio-Rad)分析凝胶图像。以三个标准,用>0.99的相关系数计算线性回归 曲线并且由此计算原样品中靶蛋白的浓度。 
发酵方案2:
为了预发酵,使用补充以约1g/l L-亮氨酸,约1g/l L-脯氨酸和约1mg/l硫胺-HCl的根据Sambrook,J.,等人(Molecular Cloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(1989))的M9培养基。 
为了预发酵,从琼脂平板或用得自初级种子库安瓿的1-2ml接种具有隔板的1000ml锥形烧瓶中的300ml改良的M9-培养基。在旋转摇床上在37℃进行培养13个小时,直到获得1-3的光密度(578nm)。 
为了发酵和高产率表达四连蛋白-载脂蛋白A-I,使用以下分批培养基和补料: 
8.85g/l葡萄糖,63.5g/l酵母提取物,2.2g/l NH4Cl,1.94g/l L-亮氨酸,2.91g/l L-脯氨酸,0.74g/l L-甲硫氨酸,17.3g/l KH2PO4*H2O,2.02g/lMgSO4*7H2O,25.8mg/l硫胺-HCl,1.0ml/l Synperonic 10%消泡剂。补料1溶液包含333g/l酵母提取物和333g/l 85%-甘油,各补充以1.67g/l L-甲硫氨酸和5g/l L-亮氨酸和L-脯氨酸。补料2为600g/l L-脯氨酸溶液。用于pH调节的碱性溶液为10%(w/v)KOH溶液并且使用75%葡萄糖溶液作为酸。将所有组分溶解于去离子水。 
在10l Biostat C DCU3发酵罐(Sartorius,Melsungen,Germany)中进行发酵。以5.15l无菌发酵分批培养基加上300ml来自预发酵的接种物起始,在25℃,pH 6.7±0.2,300mbar和10l/min的通气速率进行补料分批发酵。在初始补充的葡萄糖耗尽之前,培养物达到光密度15(578nm)并且当以70g/h开始补料1时,发酵进入补料分批模式。监控培养物中的葡萄糖浓度,在避免葡萄糖积聚和保持pH接近6.9的调节上限的同时增加补料1至150g/h的最大值。在50的光密度(578nm),以10ml/h的连续补料速率起始补料2。通过平行增加搅拌速度(500rpm至1500rpm),通气速率(从10l/min至20l/min)和压力(从300mbar至500mbar)将溶解的氧(pO2)的相对值保持大于50%。通过在90的光密度加入1mM IPTG诱导重组治疗性蛋白的表达。 
用SDS-聚丙烯酰胺凝胶电泳分析取自发酵罐的七个样品(一个是诱导 前的并且其它的是在诱导蛋白质表达后的特定时间点的)。从每个样品将相同量的细胞(OD=5)重悬在5mL PBS缓冲液中并于冰上通过超声破碎。随后将100μL的各个悬液离心(15,000rpm,5分钟)并回收各个上清并转移至分开的小瓶。这是为了将可溶的和不溶的表达的靶蛋白间相区别。对于各个上清(=可溶的)部分,加入300μLSDS上样缓冲液并且对于各个沉淀(=不溶的)部分,加入200μLSDS上样缓冲液(Laemmli,U.K.,Nature 227(1970)680-685)。在震荡条件下于95℃加热样品15分钟以溶解和还原样品中的所有蛋白质。在冷却至室温之后,将5μL各个样品转移至10%Bis-Tris聚丙烯酰胺凝胶(Novagen)。此外,将5μl分子量标准(Precision Plus蛋白质标准,Bio-Rad)和3个量(0.3μl,0.6μl和0.9μl)的具有已知产物蛋白质浓度(0.1μg/μl)的定量标准置于胶上。 
在200V运行电泳35分钟并随后将凝胶用考马斯亮蓝R染料染色,用加热的水脱色并转移至光密度计以数字化(GS710,Bio-Rad)。使用Quantity One 1-D分析软件(Bio-Rad)分析凝胶图像。以三个标准,用>0.98的相关系数计算线性回归曲线并且由此计算原样品中靶蛋白的浓度。 
在发酵的最后,以加热步骤(在收获之前将发酵罐中的全部培养液加热至50℃达1或2小时)将细胞质的和可溶表达的四连蛋白-载脂蛋白A-I转换至不溶的蛋白质聚集体(所谓的包涵体)(参见例如EP-B 1486571)。加热步骤后,仅在不溶的细胞碎片部分发现IBs形式的合成的四连蛋白-载脂蛋白A-I前体蛋白质。 
将发酵罐的内含物冷却至4-8℃,以无逆流离心机(flow-through centrifuge)离心发酵罐的内含物(13,000rpm,13l/h)并且将收获的生物质储存在-20℃,直到进一步处理。收获的生物质总产量依赖于表达的构建体范围在39g/l和90g/l干燥物质之间。 
实施例3
四连蛋白-载脂蛋白A-I的制备 
通过将收获的细菌细胞重悬于磷酸钾缓冲溶液(0.1M,补充以1mMMgSO4,pH 6.5)进行包涵体制备。加入DNAse后,通过在900bar的压力匀浆破碎细胞。将包含1.5MNaCl的缓冲溶液加入匀浆的细胞悬液。在以25%(w/v)HCl将pH值调节至5.0后,在进一步离心步骤后获得最终的 包涵体浆。于-20℃将浆储存在一次性,无菌塑料袋中,直到进一步处理。 
将7g包涵体过夜溶解在140ml溶解缓冲液(8M盐酸胍,50mMTris,10mM甲硫氨酸,pH 8)中。在离心以移除不溶物质后,通过使用SGHydrosart 10kDa膜(Sartorius Stedim)相对7.2M盐酸胍,50mM Tris,10mM甲硫氨酸,pH 8.0的渗滤改变缓冲液。通过加入50mM Tris,pH 8.0将溶液稀释至2M盐酸胍。离心后,将溶解的蛋白质上样于在2M盐酸胍,50mM Tris,10mM甲硫氨酸,pH 8.0中平衡的IMAC(负载有Zn2+的 EMD Chelat,Merck Chemicals)上。在到达基线之后,用20%乙二醇,50mM Tris,10mM甲硫氨酸洗涤柱,然后用1M Tris,10mM甲硫氨酸,pH 8.0再平衡。 
用IgA蛋白酶在1M Tris,pH 8.0(IgA蛋白酶∶蛋白质=1∶100w/w)中过夜进行柱上IgA蛋白酶切割。以1M Tris,10mM甲硫氨酸,pH 8将切下的四连蛋白-载脂蛋白A-I融合多肽从柱上洗下。通过超滤实现将缓冲液改变为7.5M脲,20mM Tris,10mM甲硫氨酸,pH 8.0。将四连蛋白-载脂蛋白A-I融合多肽上样于在相同缓冲液中平衡的Q-SepharoseTM Fast Flow(GE Healthcare)。用7.5M脲,20mM Tris,pH 8.0洗涤柱,然后用平衡缓冲液中直至75mM NaCl的盐梯度洗涤柱。融合多肽一开始洗脱,就将盐浓度保持恒定10个柱体积。之后,继续盐梯度,用在相同缓冲液中的250mM和500mM NaCl进行进一步洗脱步骤。将收集的级分针对7.2M盐酸胍,50mM Tris,10mM甲硫氨酸,pH 8.0透析并保持在4℃。 
实施例4
四连蛋白-载脂蛋白A-I融合多肽的分析 
将来自IMAC(负载有Zn2+EMD Chelat)和Q-SepharoseTM纯化柱的汇集物或级分脱盐并通过电喷雾电离质谱(ESI-MS)分析。 
通过使用以交联葡聚糖(Sephadex)G25超细填料(Amershan Bioscience 17-0851-01)内部填充的HR5/20柱(0.7x22cm,Amersham Bioscience)的尺寸排阻层析和以流速为1ml/min的40%乙腈,2%甲酸的等度洗脱进行脱机脱盐。在280nm波长监控信号,并手动收集四连蛋白-载脂蛋白融合多肽洗脱峰。 
在装有Triversa NanoMate源系统(Advion,Ithaka,USA)的Q-Star Elite QTOF质谱仪(Applied Biosystems(ABI),Darmstadt,德国)上,使用分离电位(declustering potential)50和聚焦电位(focusing potential)200进行监控片段的存在的ESI-MS。以范围为700至2000的m/z每5秒记录15次扫描。 
使用两个软件包,Analyst(Applied Biosystems(ABI),Darmstadt,德国)和MassAnalyzer(内部开发的软件平台)分析ESI-MS数据。手动核对质谱中带有由各自的编码QKK三肽的寡核苷酸处的移码导致的蛋白质片段的分子量的信号的存在(与全长融合多肽的预期分子量相比较的-14369Da的Δ)。 

















减少13读框移位的方法.pdf_第1页
第1页 / 共38页
减少13读框移位的方法.pdf_第2页
第2页 / 共38页
减少13读框移位的方法.pdf_第3页
第3页 / 共38页
点击查看更多>>
资源描述

《减少13读框移位的方法.pdf》由会员分享,可在线阅读,更多相关《减少13读框移位的方法.pdf(38页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104136460A43申请公布日20141105CN104136460A21申请号201380011165222申请日2013022612157513820120229EP12162814320120402EPC07K14/775200601C12N15/6720060171申请人霍夫曼拉罗奇有限公司地址瑞士巴塞尔72发明人阿德尔伯特格罗斯曼F黑塞埃哈德科佩茨基维尔马劳克里斯蒂安尚茨74专利代理机构中科专利商标代理有限责任公司11021代理人张莹王旭54发明名称减少13读框移位的方法57摘要本文报道了一种重组生产包含三肽QKK的多肽的方法,其特征在于所述方法包括从包含编码所。

2、述多肽的核酸的细胞或包含编码所述多肽的核酸的细胞的培养物的培养基回收多肽从而生产所述多肽的步骤,其中包含在所述多肽中的三肽QKK由寡核苷酸CAGAAAAAA或寡核苷酸CAAAAGAAA编码。30优先权数据85PCT国际申请进入国家阶段日2014082786PCT国际申请的申请数据PCT/EP2013/0537532013022687PCT国际申请的公布数据WO2013/127752EN2013090651INTCL权利要求书1页说明书17页序列表18页附图1页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书17页序列表18页附图1页10申请公布号CN104136460ACN。

3、104136460A1/1页21一种在大肠杆菌细胞中重组生产包含三肽QKK的全长多肽的方法,其特征在于所述方法包括以下步骤从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的大肠杆菌细胞的培养物的培养基回收所述多肽,从而生产所述多肽,其中包含在所述多肽中的三肽QKK由寡核苷酸CAGAAAAAA,或寡核苷酸CAAAAGAAA编码。2一种在大肠杆菌中重组生产包含三肽QKK的全长多肽的过程中减少副产物形成的方法,其包括以下步骤在编码多肽的核酸中,取代编码三肽QKK的寡核苷酸CAAAAAAAGSEQIDNO01,或寡核苷酸CAAAAGAAGSEQIDNO02,或寡核苷酸CAGAAGAAGSEQID。

4、NO03中的一到三个核苷酸以获得寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05,从而产生取代的编码多肽的核酸,和从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽,从而在重组生产包含所述三肽QKK的多肽的过程中减少副产物形成。3根据权利要求1或2任一项所述的方法,其特征在于所述方法包括以下另外步骤中的一个或更多个提供包含三肽QKK的多肽的氨基酸序列或编码核酸,和/或用编码所述多肽的取代的核酸转染细胞,和/或培养转染有所述取代的核酸的细胞在适于表达所述多肽的条件下,和/或从细胞或培养基回收所述多肽,和。

5、/或任选地以一个或更多个层析步骤纯化生产的多肽。4根据权利要求2至3任一项所述的方法,其特征在于以一至五个层析步骤纯化生产的多肽。5根据在前权利要求中任一项所述的方法,其特征在于所述多肽是载脂蛋白AI,或具有载脂蛋白AI功能的其变体,或其融合多肽。6根据权利要求5所述的方法,其特征在于所述多肽具有选自包含SEQIDNO09至SEQIDNO14的组的氨基酸序列。7根据权利要求5至6任一项所述的方法,其特征在于所述多肽具有SEQIDNO11的氨基酸序列。权利要求书CN104136460A1/17页3减少13读框移位的方法0001本发明属于重组多肽生产领域。本文报道了一种重组生产具有减少的副产物含量。

6、的多肽的方法,其中通过修饰在翻译或转录过程中减少移码FRAMESHIFT的编码核酸实现副产物含量的减少。0002发明背景0003蛋白质在现今的医用组合中发挥重要作用。对于人的应用,每种药用物质必须满足不同的标准。为了保证生物药剂对人的安全性,尤其必须将会引起严重危害的核酸,病毒,和宿主细胞蛋白质移除。为了满足质量管理规格标准REGULATORYSPECICATION,一个或更多个纯化步骤必须按照制造工艺。0004可以例如通过原核细胞比如大肠杆菌生产重组多肽。重组生产的多肽占原核细胞的多肽含量的大多数并且经常在原核细胞内沉积为不溶的聚集体,即为所谓的包涵体。为了分离重组多肽,必须将细胞破碎并且必。

7、须在从细胞碎片分离包涵体之后将包含在包涵体中的重组多肽溶解。对于增溶离液剂,使用比如脲或盐酸胍。为了切开二硫键,尤其在碱性条件下加入还原剂,比如二硫赤藓醇,二硫苏糖醇,或巯基乙醇。溶解聚集的多肽之后,必须将重组多肽的对于生物活性至关重要的球状结构重建。在该所谓的复性过程中,例如通过针对合适的缓冲液透析缓慢降低还原剂的浓度,其允许变性的多肽重折叠为其生物活性结构。复性后,纯化重组多肽到对于预期用途可接受的纯度。例如,对于作为治疗性蛋白质的使用,必须建立大于90的纯度。0005重组生产的多肽通常伴有来自生产细胞的核酸,内毒素,和/或多肽。除了宿主细胞来源的副产物,在粗制多肽制备物中还存在多肽来源的。

8、副产物。除了别的以外,可以存在研究的多肽的截短的变体。0006WO95/25786中报道了在细菌表达系统中生产人载脂蛋白AI。KARATHANASIS,SK,等人,报道了人载脂蛋白A1基因的分离和表征PROCNATLACADSCIUSA80198361476151。由GURVICH,OL,等人在EMBOJOURNAL22200359415950中报道了在大肠杆菌的编码区中引导显著的移码水平的序列是常见的。GRAVERSEN,JH,等人,报道了载脂蛋白A1的三聚化阻滞血浆清除并保持抗动脉粥样硬化的性质JCARDIOVASCULARPHARMACOLOGY512008170177。0007发明概述。

9、0008已经发现,编码三肽QKK的寡核苷酸可以是在编码包含三肽QKK的多肽的核酸的转录或翻译过程中13移码的点。由于移码的出现,产生具有不编码的氨基酸序列的无义多肽。0009因此,作为一个方面,本文报道了重组生产包含三肽QKKSEQIDNO06的多肽的方法,其特征在于所述方法包括以下步骤0010从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的细胞的培养物的培养基回收所述多肽从而生产所述多肽。0011其中包含在所述多肽中的三肽QKK由寡核苷酸CAGAAGAAGSEQIDNO03,或寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05编码。说明书CN。

10、104136460A2/17页40012在一个实施方案中,包含在所述多肽中的三肽QKK由寡核苷酸CAAAAGAAASEQIDNO04或寡核苷酸CAGAAAAAASEQIDNO05编码。0013如本文报道的一个方面是编码在其氨基酸序列中包含三肽QKK的多肽的核酸,其中所述三肽QKK由寡核苷酸CAGAAGAAGSEQIDNO03,或寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05编码。0014如本文报道的一个方面是编码在其氨基酸序列中包含三肽QKK的多肽的核酸,其中所述三肽QKK由寡核苷酸CAAAAGAAASEQIDNO04或寡核苷酸CAGAAAAAAS。

11、EQIDNO05编码。0015如本文报道的一个方面是包含如本文报道的核酸的细胞。0016如本文报道的一个方面是用于编码包含于将在大肠杆菌中表达的多肽中的三肽QKK的寡核苷酸CAGAAGAAGSEQIDNO03,或寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05的用途。0017如本文报道的一个方面是用于编码包含于将在大肠杆菌中表达的多肽中的三肽QKK的寡核苷酸CAAAAGAAASEQIDNO04或寡核苷酸CAGAAAAAASEQIDNO05的用途。0018以下具体说明如本文报道的所有方面的实施方案。0019在一个实施方案中,所述三肽QKK由寡核苷酸CA。

12、AAAGAAASEQIDNO04编码。0020在一个实施方案中,所述三肽QKK由寡核苷酸EAGAAAAAASEQIDNO05编码。0021在一个实施方案中,所述全长多肽包含约50个氨基酸残基至约500个氨基酸残基。在一个实施方案中,所述全长多肽包含约100个氨基酸残基至约400个氨基酸残基。在一个实施方案中,所述全长多肽包含约250个氨基酸残基至约350个氨基酸残基。0022在一个实施方案中,所述细胞是原核细胞。在一个实施方案中,所述原核细胞是大肠杆菌ECOLI细胞,或芽胞杆菌BACILLUS细胞。0023在一个实施方案中,所述细胞是真核细胞。在一个实施方案中,所述细胞是CHO细胞,或HEK细。

13、胞,或BHK细胞,或NSO细胞,或SP2/0细胞,或酵母细胞。0024在一个实施方案中,所述多肽是异源多聚多肽。在一个实施方案中,所述多肽是抗体或抗体片段。0025在一个实施方案中,所述多肽是同源多聚多肽。在一个实施方案中,所述多肽是同源二聚体或同源三聚体。0026在一个实施方案中,所述多肽是人载脂蛋白AI或其变体或包含其的融合多肽,其中所述变体或所述融合多肽显示人载脂蛋白AI的体外和体内功能。在一个实施方案中,所述载脂蛋白AI变体具有选自SEQIDNO09至SEQIDNO14的组的氨基酸序列。0027发明详述0028定义0029术语氨基酸指羧基氨基酸类,其可以直接或以前体的形式由核酸编码。个。

14、体氨基酸被由三个核苷酸组成的核酸所谓密码子或碱基三联体编码。每个氨基酸由至少一个密码子编码。由不同密码子编码相同氨基酸被称为“遗传密码的简并”。术语”氨基酸”指天然存在的羧基氨基酸并且包括丙氨酸三字母代码ALA,单字母代码A,说明书CN104136460A3/17页5精氨酸ARG,R,天冬酰胺ASN,N,天冬氨酸ASP,D,半胱氨酸CYS,C,谷氨酰胺GLN,Q,谷氨酸GLU,E,甘氨酸GLY,G,组氨酸HIS,H,异亮氨酸ILE,I,亮氨酸LEU,L,赖氨酸LYS,K,甲硫氨酸MET,M,苯丙氨酸PHE,F,脯氨酸PRO,P,丝氨酸SER,S,苏氨酸THR,T,色氨酸TRP,W,酪氨酸TYR。

15、,Y,和缬氨酸VAL,V。0030术语载脂蛋白AI指具有蛋白质脂和蛋白质蛋白质相互作用性质的,两亲的,螺旋多肽。载脂蛋白AI由肝和小肠合成为267个氨基酸残基的前载脂蛋白原PREPROAPOLIPOPROTEIN,其以载脂蛋白原PROAPOLIPOPROTEIN分泌,所述载脂蛋白原被切割为具有243个氨基酸残基的成熟多肽。载脂蛋白AI由6至8个不同氨基酸重复每个由被接头部分常常是脯氨酸分开的22个氨基酸残基组成组成,并且在一些情况下由通过一些残基构成的区段组成。在GENPEPT数据库入口DATABASEENTRYNM000039或数据库入口X00566;GENBANKNP0000301GI45。

16、57321中报道了代表性的人载脂蛋白AI氨基酸序列。存在人载脂蛋白AISEQIDNO07的天然存在的变体,比如P27H,P27R,P28R,R34L,G50R,L84R,D113E,AA119D,D127N,K131的缺失,K131M,W132R,E133K,R151C氨基酸残基151从ARG改变为CYS,载脂蛋白AIPARIS,E160K,E163G,P167R,L168R,E171V,P189R,R197C氨基酸残基173从ARG改变为CYS,载脂蛋白AIMILANO和E222K。还包括的是具有保守氨基酸修饰的变体。0031术语“密码子”指由编码限定的氨基酸的三个核苷酸组成的寡核苷酸。由于。

17、遗传密码的简并性,一些氨基酸由多于一种密码子编码。这些编码相同氨基酸的不同密码子在个体宿主细胞中具有不同的相对使用频率。因此,特定氨基酸可以由一组不同的密码子编码。同样地,多肽的氨基酸序列可以由不同核酸编码。因此,特定氨基酸可以由一组不同的密码子编码,其中这些密码子中的每个具有给定的宿主细胞中的使用频率。0032表大肠杆菌密码子使用密码子|编码的氨基酸|使用频率0033说明书CN104136460A4/17页60034以下表中代表性的取代标题下提供代表性的改变。保守取代显示在以下表中优选的取代标题下并且如下文中关于氨基酸侧链类型进一步描述。0035表00360037说明书CN104136460。

18、A5/17页70038非保守取代需要将这些类型中的一种的成员交换为另一种类型。0039术语保守氨基酸修饰指不影响或改变多肽的特性的氨基酸序列的修饰。可以通过本领域已知的标准技术,比如位点定向的诱变和PCR介导的诱变引入修饰。保守氨基酸修饰包括其中氨基酸残基被具有类似侧链的氨基酸残基替代的修饰。本领域中已经限定了具有类似侧链的氨基酸残基家族。这些家族包括具有碱性侧链例如赖氨酸,精氨酸,组氨酸,酸性侧链例如天冬氨酸,谷氨酸,不带电极性侧链例如甘氨酸,天冬酰胺,谷氨酰胺,丝氨酸,苏氨酸,酪氨酸,半胱氨酸,色氨酸,非极性侧链例如丙氨酸,缬氨酸,亮氨酸,异亮氨酸,脯氨酸,苯丙氨酸,甲硫氨酸,分枝侧链例如。

19、苏氨酸,缬氨酸,异亮氨酸,和芳香侧链例如酪氨酸,苯丙氨酸,色氨酸,组氨酸的氨基酸。0040术语“多肽的变体”指氨基酸序列以多达十个,在一个实施方案中从约两个至约五个,添加,缺失,和/或取代不同于“母体”多肽的氨基酸序列的多肽。可以通过基于如由RIECHMANN,L,等人,NATURE3321988323327,和QUEEN,C,等人,PROCNATLACADSCIUSA8619891002910033描述的分子模型的诱变进行氨基酸序列修饰。0041可以使用公知的算法,比如BLOSUM30,BLOSUM40,BLOSUM45,BLOSUM50,BLOSUM55,BLOSUM60,BLOSUM62。

20、,BLOSUM65,BLOSUM70,BLOSUM75,BLOSUM80,BLOSUM85,或BLOSUM90计算不同氨基酸序列的同源性和同一性。在一个实施方案中,所述算法是BLOSUM30。说明书CN104136460A6/17页80042交替使用术语宿主细胞,宿主细胞系,和宿主细胞培养物并且指已引入外源核酸的细胞,包括此种细胞的子代。宿主细胞包括转化体和转化的细胞,其包括原代转化的细胞和从中来源的不考虑传代数量的子代。子代核酸含量可以不与亲代细胞完全相同,但可以包含突变。具有与在最初转化的细胞中筛选或选择的相同功能或生物活性突变的子代包括在本文中。0043术语“核酸”和“核酸序列”指由个体。

21、核苷酸还称为碱基A,C,G,和T或RNA中的U组成的聚合分子,即DNA,RNA,或其修饰。该多核苷酸分子可以是天然存在的多核苷酸分子或合成的多核苷酸分子或一种或更多种天然存在的多核苷酸分子与一种或更多种合成的多核苷酸分子的组合。该定义还包括的是其中一个或更多个核苷酸被改变例如通过诱变,缺失,或添加的天然存在的多核苷酸分子。核酸可以是分离的,或整合入另一条核酸,例如整合入表达盒,质粒,或宿主细胞的染色体。核酸以其由个体核苷酸组成的核酸序列为特征。术语“寡核苷酸”指由至多10个个体核苷酸也成为碱基A,C,G,和T或RNA中的U组成的聚合分子。0044对于本领域技术人员来说,将例如多肽的氨基酸序列转。

22、变为编码该氨基酸序列的相应的核酸序列的工艺和方法是公知的。因此,核酸以其由个体核苷酸组成的核酸序列为特征并且类似地以由此编码的多肽的氨基酸序列表征。0045有关参考多肽序列的“百分数氨基酸序列同一性定义为经比对序列和引入缺口如果需要以获得最大百分数序列同一性,和不考虑任何保守取代作为序列同一性的部分之后,候选序列中与参考多肽序列中氨基酸残基的相同的氨基酸残基的百分数。可以以不同方式实现为了百分数氨基酸序列同一性的目的的比对,所述方式在本领域技术内,例如,使用公众可获得的计算机软件,比如BLAST,BLAST2,ALIGN或MEGALIGNDNASTAR软件。本领域熟练技术人员可以确定用于比对序。

23、列的合适参数,包括获得跨被比较序列的全长的最大比对所需的任何算法。然而,为了本文的目的,使用序列比较计算机程序ALIGN2产生氨基酸序列同一性值。ALIGN2序列比较计算机程序由GENENTECH,INC创作,并且已将原代码与用户文献资料提交美国版权局,WASHINGTONDC,20559,其中其在美国版权登记号TXU510087下登记。ALIGN2程序可从GENENTECH,INC,SOUTHSANFRANCISCO,CALIFORNIA由公众获得,或可以从源代码编辑。应该将ALIGN2程序编辑用于在UNIX操作系统包括数字的UNIXV40D上使用。所有序列比较参数由ALIGN2程序设定并且。

24、不改变。0046在将ALIGN2用于氨基酸序列比较的情况下,如下计算给定氨基酸序列A相对TO、与WITH、或针对AGAINST给定氨基酸序列B其可以备选地叙述为相对TO、与WITH、或针对AGAINST给定氨基酸序列B具有或包含某一氨基酸序列同一性的给定氨基酸序列A的氨基酸序列同一性0047100乘以分数X/Y0048其中X是通过序列比对程序ALIGN2中的A和B的程序比对得分为相同匹配的氨基酸残基的数量,并且其中Y是B中氨基酸残基的总数量。将理解其中氨基酸序列A的长度与氨基酸序列B的长度不相等,A相对B的氨基酸序列同一性将不等于B相对A的氨基酸序列同一性。除非另有特别说明,否则如在紧接的上一。

25、段中使用ALIGN2计算机程序获得本文使用所有氨基酸序列同一性值。说明书CN104136460A7/17页90049术语重组多肽和“重组生产的多肽”指通过重组方法制备,表达或产生的多肽,比如分离自宿主细胞,比如大肠杆菌,NSO,BHK,或CHO细胞的多肽。0050术语取代指改变母体核酸中一个特定核苷酸以获得取代的/改变的核酸。0051如本文报道的方法0052例如在AUSUBEL,FM,等人编辑,CURRENTPROTOCOLSINMOLECULARBIOLOGY,卷I至III,JOHNWILEYANDSONS,INC,NEWYORK1997;SAMBROOK,J,等人,MOLECULARCLO。

26、NINGALABORATORYMANUAL,第二版,COLDSPRINGHARBORLABORATORYPRESS,COLDSPRINGHARBOR,NY1989,MORRISON,SL,等人,PROCNATLACADSCIUSA81198468516855;US5,202,238和US5,204,244中描述了对于本领域技术人员已知的用于进行本发明的方法和技术。0053对于每种生物,给出了用于编码限定的氨基酸的密码子的特征的独特使用。例如氨基酸谷氨酰胺单字母代码为Q可以由两种不同密码子编码由于遗传密码的简并性,即CAG和CAA。人中,所述两种谷氨酰胺密码子分别具有74和26的使用频率。在大肠。

27、杆菌中,所述使用频率是类似的,即分别为82和18。氨基酸赖氨酸K也可以由两种不同密码子编码,即AAG和AAA。人中,所述两种不同的编码赖氨酸的密码子分别具有59和41使用频率,然而大肠杆菌中,所述两种不同的编码赖氨酸的密码子具有非平均的NONEVEN的使用频率,分别是20和80。已发现,包含在编码包含所述三肽QKK的多肽的核酸中的编码三肽QKK的寡核苷酸,在编码包含三肽QKK的多肽的核酸的转录或翻译的过程中可以是13移码突变的点。由于移码的出现,产生具有不编码的氨基酸序列,最可能是无义或截短的氨基酸序列的多肽。0054更详细地,已发现,依赖于编码三肽QKK并包含在更大的即至少50个氨基酸残基编。

28、码多肽的核酸中的寡核苷酸,13移码在寡核苷酸的转录或翻译过程中发生。移码的频率依赖于个体密码子的组合参见下表。0055表。0056编码QKK三肽的寡核苷酸13移码发生CAAAAAAAGSEQIDNO0110CAAAAGAAGSEQIDNO0230CAGAAGAAGSEQIDNO03低于检测极限CAAAAGAAASEQIDNO04低于检测极限CAGAAAAAASEQIDNO05低于检测极限0057可以看出,在大肠杆菌中,如果三肽QKK由核酸CAAAAAAAG和CAAAAGAAG编码,则13移码发生。目前惊奇地发现可以通过使用核酸序列CAGAAGAAGSEQIDNO03,或CAAAAGAAASEQ。

29、IDNO04,或CAGAAAAAASEQIDNO05阻止该移码。这样,可以通过使用SEQIDNO03,或SEQIDNO04,或SEQIDNO05的核酸编码多肽中的三肽QKK改善全长多肽的表达产量同样地,非全长多肽副产物的形成可以被减少。0058因此,如本文报道的一个方面是一种在大肠杆菌中重组生产包含三肽QKKSEQIDNO06的全长多肽的方法,其特征在于所述方法包括以下步骤0059从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的细胞的培养物的培养基回收所述多肽从而生产所述多肽,0060其中包含在所述多肽中的三肽QKK由寡核苷酸CAGAAGAAGSEQIDNO03,或说明书CN10413。

30、6460A8/17页10寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05编码。0061因此,如本文报道的一个方面是在大肠杆菌中重组生产包含三肽QKKSEQIDNO06的全长多肽的方法,其特征在于所述方法包括以下步骤0062从包含编码所述多肽的核酸的细胞或包含编码所述多肽的核酸的细胞的培养物的培养基回收所述多肽,从而生产所述多肽,0063其中包含在所述多肽中的三肽QKK由寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05编码。0064在一个实施方案中,所述方法包括以下步骤0065提供包含编码所述多肽的核酸的细胞。

31、,0066培养所述细胞在适于表达所述多肽的条件下,0067从细胞或培养基回收所述多肽。0068任选地以一个或更多个层析步骤纯化生产的多肽。0069在一个实施方案中,通过取代编码三肽QKK的寡核苷酸CAAAAAAAGSEQIDNO01,或寡核苷酸CAAAAGAAGSEQIDNO02中的一至三个核苷酸以获得寡核苷酸CAGAAGAAGSEQIDNO03,或寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05获得包含编码三肽QKK的寡核苷酸CAGAAGAAGSEQIDNO03,或寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQID。

32、NO05的编码多肽的核酸。0070在一个实施方案中,以一至五个层析步骤纯化生产的多肽。在一个实施方案中,以二至四个层析步骤纯化生产的多肽。在一个实施方案中,以三个层析步骤纯化生产的多肽。0071一般的层析方法和其用途对于本领域技术人员来说是已知的。参见例如,HEFTMANN,E编辑,CHROMATOGRAPHY,第5版,PARTAFUNDAMENTALSANDTECHNIQUES,ELSEVIERSCIENCEPUBLISHINGCOMPANY,纽约1992;DEYL,Z编辑,ADVANCEDCHROMATOGRAPHICANDELECTROMIGRATIONMETHODSINBIOSCIEN。

33、CES,ELSEVIERSCIENCEBV,AMSTERDAM,荷兰1998;POOLE,CF,和POOLE,SK,CHROMATOGRAPHYTODAY,ELSEVIERSCIENCEPUBLISHINGCOMPANY,纽约1991;SCOPES,RK,PROTEINPURICATIONPRINCIPLESANDPRACTICE1982;SAMBROOK,J,等人编辑,MOLECULARCLONINGALABORATORYMANUAL,第二版,COLDSPRINGHARBORLABORATORYPRESS,COLDSPRINGHARBOR,NY1989;或AUSUBEL,FM,等人编辑,CU。

34、RRENTPROTOCOLSINMOLECULARBIOLOGY,卷I至III,JOHNWILEYSONS,INC,纽约1997。0072如本文报道的一个方面是编码在其氨基酸序列中包含三肽QKK的多肽的核酸,其中所述三肽QKK由寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05编码。0073如本文报道的一个方面是包含如本文报道的核酸的细胞。0074如本文报道的一个方面是用于编码包含在所述多肽中的三肽QKK的寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05的用途。0075如本文报道的一个方面是在大肠杆菌中重组生。

35、产包含三肽QKK的全长多肽过程中减少副产物形成的方法,所述方法包括以下步骤0076在编码所述多肽的核酸中,取代编码三肽QKK的寡核苷酸CAAAAAAAGSEQID说明书CN104136460A109/17页11NO01,或寡核苷酸CAAAAGAAGSEQIDNO02中的一至三个核苷酸以获得寡核苷酸CAGAAGAAGSEQIDNO03,或寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05,从而生产取代的编码多肽的核酸,和0077从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽从而减少在重组生产包含三肽Q。

36、KK的多肽的过程中的副产物形成。0078如本文报道的一个方面是在大肠杆菌中重组生产包含三肽QKK的全长多肽的过程中减少副产物形成的方法,所述方法包括以下步骤0079在编码多肽的核酸中,取代编码三肽QKK的寡核苷酸CAAAAAAAGSEQIDNO01,或寡核苷酸CAAAAGAAGSEQIDNO02中的一至三个核苷酸以获得寡核苷酸CAAAAGAAASEQIDNO04或寡核苷酸CAGAAAAAASEQIDNO05,从而生产取代的编码多肽的核酸,和0080从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽从而在重组生产包含三肽QKK的多肽的过程中减少副。

37、产物形成。0081如本文报道的一个方面是增加在大肠杆菌中重组生产的包含三肽QKK的全长多肽的表达的方法,所述方法包括以下步骤0082在编码所述多肽的核酸中,取代编码三肽QKK的寡核苷酸CAAAAAAAGSEQIDNO01,或寡核苷酸CAAAAGAAGSEQIDNO02中的一至三个核苷酸以获得寡核苷酸CAGAAGAAGSEQIDNO03,或寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05,从而生产取代的编码多肽的核酸,和0083从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽从而增加多肽的表达。008。

38、4如本文报道的一个方面是增加在大肠杆菌中重组生产的包含三肽QKK的全长多肽的表达的方法,所述方法包括以下步骤0085在编码多肽的核酸中,取代编码三肽QKK的寡核苷酸CAAAAAAAGSEQIDNO01,或寡核苷酸CAAAAGAAGSEQIDNO02,或寡核苷酸CAGAAGAAGSEQIDNO03中的一至三个核苷酸以获得寡核苷酸CAAAAGAAASEQIDNO04,或寡核苷酸CAGAAAAAASEQIDNO05,从而生产取代的编码多肽的核酸,和0086从包含编码所述多肽的取代的核酸的细胞或包含编码所述多肽的取代的核酸的细胞的培养物的培养基回收所述多肽从而增加多肽的表达。0087在各个之前的方面的。

39、一个实施方案中,所述方法包括以下进一步步骤的一个或更多个0088提供包含三肽QKK的多肽的氨基酸序列或编码核酸,和/或0089用编码所述多肽的取代的核酸转染细胞,和/或0090培养转染有取代的核酸的细胞在适于表达所述多肽的条件下,和/或0091从细胞或培养基回收所述多肽,和/或0092任选地以一个或更多个层析步骤纯化生产的多肽。0093在一个实施方案中以一至五个层析步骤纯化生产的多肽。在一个实施方案中,以说明书CN104136460A1110/17页12二至四个层析步骤纯化生产的多肽。在一个实施方案中,以三个层析步骤纯化生产的多肽。0094以下以在原核细胞中生产的重组多肽,即在大肠杆菌中生产的。

40、四连蛋白载脂蛋白AI融合多肽举例证明如本文报道的方法。0095四连蛋白载脂蛋白AI融合多肽包含在N末端至C末端方向人四连蛋白三聚化结构元件和野生型人载脂蛋白AI。人四连蛋白三聚化结构元件的氨基酸序列可以截短前9个氨基酸,这样,以位置10的异亮氨酸残基天然存在的截短位点起始。作为该截短的结果,位置4的苏氨酸残基的O糖基化位点被删除。四连蛋白三聚化结构元件和人载脂蛋白AI间的五个氨基酸残基SLKGSSEQIDNO08被移除。0096为了改善的表达和纯化,可以构建包含N末端纯化标签,例如六组氨酸标签,和用于移除纯化标签的蛋白酶切割位点的构建体。在一个实施方案中,所述蛋白酶是IGA蛋白酶,并且所述蛋白。

41、酶切割位点是IGA蛋白酶切割位点。作为蛋白酶的特异切割的结果,蛋白酶切割位点的一些氨基酸残基保留在多肽的N末端,即在IGA蛋白酶切割位点的情况下,两个氨基酸残基如第一丙氨酸或甘氨酸或丝氨酸或苏氨酸和如第二脯氨酸被保留在多肽,例如四连蛋白载脂蛋白AI融合多肽的N末端。0097四连蛋白三聚化结构元件提供允许形成四连蛋白载脂蛋白AI同源三聚体的结构域,所述同源三聚体通过每个个体四连蛋白载脂蛋白AI单体之间的非共价相互作用构成。0098在一个实施方案中,所述载脂蛋白AI融合多肽是包含保守氨基酸取代的变体。0099在一个实施方案中,所述四连蛋白载脂蛋白AI融合多肽包含表达和纯化标签,并具有以下氨基酸序列。

42、0100CDLPQTHSLGSHHHHHHGSVVAPPAPIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFL。

43、SALEEYTKKLNTQSEQIDNO090101在一个实施方案中,所述四连蛋白载脂蛋白AI融合多肽IVN具有以下氨基酸序列0102IVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYH。

44、AKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQSEQIDNO100103因此,在一个优选的实施方案中,所述四连蛋白载脂蛋白AI融合多肽PIVN具有以下氨基酸序列0104PIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQFFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEM。

45、RDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQSEQIDNO110105在一个实施方案中,所述四连蛋白载脂蛋白AI融合多肽XPIVN具有以下氨基酸序列说明书CN104136460A1211/17页130106G,S,TPIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKE。

46、TEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQSEQIDNO120107因此,在一个实施方案中,所述四连蛋白载脂蛋白AI融合多肽APIVN具有以下氨基酸序列0108APIVNAKKDVVNTKMFEELKSRLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFE。

47、GSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQSEQIDNO13,0109在一个实施方案中,所述包含六组氨酸标签的四连蛋白载脂蛋白AI融合多肽XIVN具有以下氨基酸序列0110HHHHHHXIVNAKKDVVNTKMFEELKS。

48、RLDTLAQEVALLKEQQALQTVDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQSEQIDNO14,0111其中X可以是以下氨基酸序列中的任一个A,G,。

49、S,P,AP,GP,SP,PP,GSAPSEQIDNO15,GSGPSEQIDNO16,GSSPSEQIDNO17,GSPPSEQIDNO18,GGGSSEQIDNO19,GGGGSSEQIDNO20,GGGSGGGSSEQIDNO21,GGGGSGGGGSSEQIDNO22,GGGSGGGSGGGSSEQIDNO23,GGGGSGGGGSGGGGSSEQIDNO24,GGGSAPSEQIDNO25,GGGSGPSEQIDNO26,GGGSSPSEQIDNO27,GGGSPPSEQIDNO28,GGGGSAPSEQIDNO29,GGGGSGPSEQIDNO30,GGGGSSPSEQIDNO31,GGGGSPPSEQIDNO32,GGGSGGGSAPSEQIDNO33,GGGSGGGSGPSEQIDNO34,GGGSGGGSSPSEQIDNO35,GGGSGGGSPPSEQIDNO36,GGGSGGGSGGGSAPSEQIDNO37,GGGSGGGSGGGSGPSEQIDNO38,GGGSGGGSGGGSSPSEQIDNO39,GGGSGGGSGGGSPPSEQIDNO40,GGGGSAPPSEQIDNO41,GGGGSGPSEQIDN。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 有机化学〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1