《医学图像坏点自动检测方法及系统.pdf》由会员分享,可在线阅读,更多相关《医学图像坏点自动检测方法及系统.pdf(7页珍藏版)》请在专利查询网上搜索。
1、(10)申请公布号 CN 102957878 A (43)申请公布日 2013.03.06 C N 1 0 2 9 5 7 8 7 8 A *CN102957878A* (21)申请号 201110249742.4 (22)申请日 2011.08.29 H04N 5/367(2011.01) (71)申请人深圳市蓝韵实业有限公司 地址 518000 广东省深圳市福田区景田北路 81号碧景园E栋601 (72)发明人康雨 李训青 (74)专利代理机构深圳冠华专利事务所(普通 合伙) 44267 代理人诸兰芬 (54) 发明名称 医学图像坏点自动检测方法及系统 (57) 摘要 本发明公开一种医学图。
2、像坏点自动检测方 法及系统。其中,所述方法包括步骤:将待检测 医学图像坏点凸显处理为图像D(x,y);求取图像 D(x,y)中各个像素点像素值的均值M,以阈值系 数a乘以均值M作为检测阈值,从图像D(x,y)中 分离出坏点区域;选择阈值系数a的值,确保分离 出的坏点区域小于或等于图像区域K;分别从每 个坏点区域中提取灰度值为最大值的像素点为坏 点位置,输出坏点的位置信息。本发明将自动检测 和人工视觉检测相结合,通过自动计算检测阈值 和快捷的人工辅助修正检测阈值来提高自动坏点 检测准确性和检测效率,具有坏点检测效率高的 优点。 (51)Int.Cl. 权利要求书1页 说明书4页 附图1页 (19。
3、)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 1 页 说明书 4 页 附图 1 页 1/1页 2 1. 一种医学图像坏点自动检测方法,其特征在于,所述方法包括步骤: 将待检测医学图像坏点凸显处理为图像D(x,y),其中, ,为像素点(x,y)的灰度值, 和分别为求取像素点(x,y)的灰度值的平方与平方根,为以 像素点(x,y)为中心的图像区域K中各个像素点对应灰度值的平均值; 求取图像D(x,y)中各个像素点像素值的均值M,以阈值系数a乘以均值M作为检测阈 值,从图像D(x,y)中分离出坏点区域; 选择阈值系数a的值,确保分离出的坏点区域小于或等于图像区域K; 分别从每个坏。
4、点区域中提取灰度值为最大值的像素点为坏点位置,输出坏点的位置信 息。 2.根据权利要求1所述医学图像坏点自动检测方法,其特征在于,所述方法还包括步 骤: 采集多帧连续的医学图像; 对采集的多帧医学图像进行叠加并平均处理,得到待检测医学图像。 3.根据权利要求2所述医学图像坏点自动检测方法,其特征在于,待检测医学图像中 每个像素点的像素值分别为每个像素点对应在各帧医学图像中像素值的均值。 4.根据权利要求1所述医学图像坏点自动检测方法,其特征在于,图像区域K为待检测 医学图像中k x k个像素点的区域。 5.根据权利要求1所述医学图像坏点自动检测方法,其特征在于,求取均值M的步骤包 括: 剔除图。
5、像D(x,y)中像素值最大和像素值最小的两个极值像素点; 对图像D(x,y)中其余像素点的像素值进行均值计算,求取图像D(x,y)的均值M。 6.根据权利要求1所述医学图像坏点自动检测方法,其特征在于,阈值系数a的初始值 为1。 7.一种医学图像坏点自动检测系统,其特征在于,所述系统包括: 坏点凸显处理模块,用于将待检测医学图像坏点凸显处理为图像D(x,y),其中, ,为像素点(x,y)的灰度值, 和分别为求取像素点(x,y)的灰度值的平方与平方根,为以 像素点(x,y)为中心的图像区域K中各个像素点对应灰度值的平均值; 检测阈值确定模块,用于求取图像D(x,y)中各个像素点像素值的均值M,以。
6、阈值系数a 乘以均值M作为检测阈值,从图像D(x,y)中分离出坏点区域; 检测阈值调节模块,用于选择阈值系数a的值,确保分离出的坏点区域小于或等于图 像区域K; 坏点分离模块,用于分别从每个坏点区域中提取灰度值为最大值的像素点为坏点位 置,输出坏点的位置信息。 8.根据权利要求7所述医学图像坏点自动检测系统,其特征在于,所述系统还包括: 图像采集与叠加处理模块,采集多帧连续的医学图像,对采集的多帧医学图像进行叠 加并平均处理,得到待检测医学图像。 权 利 要 求 书CN 102957878 A 1/4页 3 医学图像坏点自动检测方法及系统 技术领域 0001 本发明涉及一种图像处理技术,尤其是。
7、涉及一种医学图像坏点自动检测方法及系 统。 背景技术 0002 数字化X光机的所配置的CCD或者平板探测器在拍摄图像的时候,通常会出现位 置固定的异常“亮”或“暗”的像素点,这些像素点被称为坏点。坏点是指灰度值表现异常 的像素点,通常表现为相对于背景的“亮点”或者“暗点”。“亮点”是指图像灰度明显大于临 域平均灰度的像素,“暗点”是指图像灰度明显小于临域平均灰度的像素。 0003 坏点的存在会在一定程度上影响医生的阅片和诊断。目前检测坏点的方法分为人 工视觉检测、自动检测和上两种结合三类。其中完全依靠人工视觉检测效率较低,对于后两 种检测方法,目前的技术在检测效率上和准确性上仍有可提升的空间。。
8、 0004 目前视觉检测是坏点检测一种比较准确的方法,但对于1024*1024的图像,每次 针对一行数据进行显示,共计需要进行1024次视觉检测,过多的人工检测次数,不利于提 高工作效率。而门限检测坏点的方法,虽然可以自动进行,但是存在检测门限设定的问题, 而检测门限是坏点检测的关键所在。 0005 在美国专利号5 657400的专利“Automatic identification and correction of bad pixels in a large area solid state x-ray detector”,以及美国专利号5854655的 专利 “Defective pix。
9、el detection circuit of a solid state image pick-up device capable of detecting defective pixels with low power consumption and high precision,and image pick-up device having such detection circuit”之中,虽然分 别提出了利用检测门限进行坏点检测,但是都没有涉及如何设定检测门限。 0006 中国专利申请号200410020792.5公开一种“医学影像坏点自动检测门限确 定方法”,提出了具体的坏点检测及。
10、阈值设定方法,该发明中引用了安捷伦(Agilent Technologies)的坏点定义以及U.S.Pat.No.5,854,655中的坏点检测公式,将图像划分为 多个区域,进行初步检测,然后针对每个区域根据其所提出的“迹迹相关”的方法来进行人 工视觉检测,从而反复调整阈值来达到最佳的检测效果。该技术方案虽然结合了自动和人 工检测两方面的优点,但具有如下缺陷: 1、自动检测坏点阈值的选择工作量较大,需要通过多张图像联合反复检测确认坏点位 置,不能较好的突出医学图像中的坏点,导致自动检测坏点的检测准确率非常有限; 2、所提出的人工检测方法需要针对多帧图像反复进行,人工工作量仍然较大,且人工 检测。
11、效率较低。 发明内容 0007 本发明提出一种医学图像坏点自动检测方法及系统,将自动检测和人工视觉检测 相结合,通过自动计算检测阈值和快捷的人工辅助修正检测阈值来提高自动坏点检测准确 说 明 书CN 102957878 A 2/4页 4 性和检测效率。 0008 本发明采用如下技术方案实现:一种医学图像坏点自动检测方法,其包括步骤: 将待检测医学图像坏点凸显处理为图像D(x,y),其中, ,为像素点(x,y)的灰度值, 和分别为求取像素点(x,y)的灰度值的平方与平方根,为以 像素点(x,y)为中心的图像区域K中各个像素点对应灰度值的平均值; 求取图像D(x,y)中各个像素点像素值的均值M,以。
12、阈值系数a乘以均值M作为检测阈 值,从图像D(x,y)中分离出坏点区域; 选择阈值系数a的值,确保分离出的坏点区域小于或等于图像区域K; 分别从每个坏点区域中提取灰度值为最大值的像素点为坏点位置,输出坏点的位置信 息。 0009 在一个优选实施例中,所述医学图像坏点自动检测方法还包括步骤: 采集多帧连续的医学图像; 对采集的多帧医学图像进行叠加并平均处理,得到待检测医学图像。 0010 其中,待检测医学图像中每个像素点的像素值分别为每个像素点对应在各帧医学 图像中像素值的均值。 0011 其中,图像区域K为待检测医学图像中k x k个像素点的区域。 0012 其中,求取均值M的步骤包括: 剔除。
13、图像D(x,y)中像素值最大和像素值最小的两个极值像素点; 对图像D(x,y)中其余像素点的像素值进行均值计算,求取图像D(x,y)的均值M。 0013 其中,阈值系数a的初始值为1。 0014 另外,本发明还公开一种医学图像坏点自动检测系统,其包括: 坏点凸显处理模块,用于将待检测医学图像坏点凸显处理为图像D(x,y),其中, ,为像素点(x,y)的灰度值, 和分别为求取像素点(x,y)的灰度值的平方与平方根,为以 像素点(x,y)为中心的图像区域K中各个像素点对应灰度值的平均值; 检测阈值确定模块,用于求取图像D(x,y)中各个像素点像素值的均值M,以阈值系数a 乘以均值M作为检测阈值,从。
14、图像D(x,y)中分离出坏点区域; 检测阈值调节模块,用于选择阈值系数a的值,确保分离出的坏点区域小于或等于图 像区域K; 坏点分离模块,用于分别从每个坏点区域中提取灰度值为最大值的像素点为坏点位 置,输出坏点的位置信息。 0015 在一个优选实施例中,所述医学图像坏点自动检测系统还包括: 图像采集与叠加处理模块,采集多帧连续的医学图像,对采集的多帧医学图像进行叠 加并平均处理,得到待检测医学图像。 0016 与现有技术相比,本发明具有如下有益效果: 1、本发明通过能够更好的突出医学图像中坏点区域的坏点自动检测,使得后续的检测 阈值选择容错性更高,并提高了坏点的检出率。 说 明 书CN 102。
15、957878 A 3/4页 5 0017 2、本发明给出了简便的视觉修正检测阈值手段,无需通过拍摄多张图像进行联合 检测,只需要人工直觉判断,在保证所有被分离出来的坏点区域小于或等于K调节阈值系 数a即可实现快速的检测阈值修正,从而大大提高坏点的检测效率。 附图说明 0018 图1是本发明的流程示意图; 图2是本发明的系统结构示意图。 具体实施方式 0019 本发明将自动检测和人工视觉检测相结合,采用更高的自动检测准确率和更快捷 的人工辅助修正阈值来提高自动坏点检测准确性和检测效率。 0020 如图1所示,在一个具体实施例中,本发明包括如下实现步骤: 步骤S1、对数字化X光机的所配置的CCD或。
16、平板探测器所输出的医学影像,在医学影像 中采集多帧连续的医学图像;然后,对采集的多帧医学图像进行叠加并平均处理,得到待检 测医学图像,即:对采集的每帧医学图像,逐点计算每个像素点对应在各帧医学图像中像素 值的均值,以各个像素点的均值作为待检测医学图像。 0021 比如,像素点(x,y)在连续的3幅医学图像1、医学图像2和医学图像3中的像素 值分别为A1、A2和A3,则像素点(x,y)的平均值是:(A1+A2+A3)/3。 0022 步骤S2、识别待检测医学图像中的坏点,并对坏点进行“坏点凸显”处理。 0023 利用以下公式对待检测医学图像进行坏点凸显处理,获得图像D(x,y): ; 其中,为像。
17、素点(x,y)的灰度值;和分别为求取像素点 (x,y)的灰度值的平方与平方根;为以像素点(x,y)为中心的图像区域K中各个 像素点对应灰度值的平均值,计算公式为: ; 其中,K为以像素点(x,y)为中心的图像区域;为像素点(i,j)的灰度值;图 像区域K为k x k(其中k2的整数)个像素点的区域,而N为图像区域K中像素点的总 数,即N=k*k。 0024 在一个优选实施例中,k=3,表示图像区域K为3x3个像素点的区域,则N=9。 0025 步骤S3、求取图像D(x,y)中各个像素点像素值的均值M,以a*M作为检测阈值,分 离出坏点区域,其中,a为阈值系数。 0026 在一个优选实施例中,剔。
18、除图像D(x,y)中像素值最大和像素值最小的两个极值 像素点,再对图像D(x,y)中其余像素点的像素值进行均值计算,求取图像D(x,y)的均值M。 0027 其中,阈值系数a的初始值为1,后续根据人工视觉判断选择合适的检测阈值。 0028 步骤S4、根据人工视觉进行判断,选择阈值系数a恰当的值,以保证所有被分离出 来的坏点区域小于或等于K。 0029 步骤S5、对每个被分离出的坏点区域,提取该坏点区域中灰度值为最大值的像素 说 明 书CN 102957878 A 4/4页 6 点为坏点位置,输出坏点的位置信息(或坐标信息)。 0030 例如,一副医学图像某区域灰度如下分布: 200 200 2。
19、00 200 200 200 200 200 200 200 200 200 198 200 200 200 200 200 200 200 200 200 200 200 200 经过中国专利申请CN200410020792.5技术方案所公开的公式变换后为: 000 000 000 000 000 000 0.005 0.005 0.005 000 000 0.005 0.005 0.005 000 000 0.005 0.005 0.005 000 000 000 000 000 000 此时无论如何选取阈值,都无法分离出原始图像中有问题的像素点,随之后续的“迹迹 相关”法也无法实施。 0。
20、031 而经过本发明所述的检测方法,将图像变换为: 000 000 000 000 000 000 0.6 0.6 0.6 000 000 0.6 001 0.6 000 000 0.6 0.6 0.6 000 000 000 000 000 000 均值M=0.232,且将中心区域的3x3区域划分出来,然后提取中心最大值1,可以正确的 得到有问题的像素点位置。因此,本发明提高了坏点的检出率。 0032 结合图2所示,本发明提出的医学图像坏点自动检测包括:用于执行步骤S1的图 像采集与叠加处理模块;用于执行步骤S2的坏点凸显处理模块;用于执行步骤S3的检测 阈值确定模块,其连接用于执行步骤S4。
21、的检测阈值调节模块;以及用于执行步骤S5的坏点 分离模块。 0033 综上,与现有技术相比,本发明具有如下有益技术效果: 1、本发明通过能够更好的突出医学图像中坏点区域的坏点自动检测,使得后续的检测 阈值选择容错性更高,并提高了坏点的检出率; 2、本发明给出了简便的视觉修正检测阈值手段,无需通过拍摄多张图像进行联合检 测,只需要人工直觉判断,在保证所有被分离出来的坏点区域小于或等于K调节阈值系数a 即可实现快速的检测阈值修正,从而大大提高坏点的检测效率。 0034 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精 神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 说 明 书CN 102957878 A 1/1页 7 图1 图2 说 明 书 附 图CN 102957878 A 。