《三电机驱动系统神经网络广义逆自适应控制器的构造方法.pdf》由会员分享,可在线阅读,更多相关《三电机驱动系统神经网络广义逆自适应控制器的构造方法.pdf(13页珍藏版)》请在专利查询网上搜索。
1、(10)申请公布号 CN 102629843 A (43)申请公布日 2012.08.08 C N 1 0 2 6 2 9 8 4 3 A *CN102629843A* (21)申请号 201210097876.3 (22)申请日 2012.04.06 H02P 5/74(2006.01) G06N 3/02(2006.01) (71)申请人江苏大学 地址 212013 江苏省镇江市京口区学府路 301号 (72)发明人刘国海 于堃 赵文祥 胡德水 (74)专利代理机构南京经纬专利商标代理有限 公司 32200 代理人楼高潮 (54) 发明名称 三电机驱动系统神经网络广义逆自适应控制 器的构造。
2、方法 (57) 摘要 本发明公开一种三电机驱动系统神经网络广 义逆自适应控制器的构造方法,由三台变频器分 别驱动三台感应电机以带动负载构成三电机驱动 系统,通过S7-300PLC设定三台变频器的转速给 定值,通过静态神经网络加2个积分器和3个传函 来构造三电机驱动系统的神经网络广义逆,将神 经网络广义逆连接于三电机驱动系统之前组成伪 线性复合系统;分别对一个速度子系统和两个张 力子系统设计相应的模糊自适应控制器构成模糊 自适应闭环控制器,将模糊自适应闭环控制器和 神经网络广义逆相串接形成神经网络广义逆自适 应控制器,能够根据系统误差在线调整控制参数, 大幅度减少系统的启动时间和超调量,显著提高。
3、 系统的跟踪精度和跟踪速度。 (51)Int.Cl. 权利要求书1页 说明书6页 附图5页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 1 页 说明书 6 页 附图 5 页 1/1页 2 1.一种三电机驱动系统神经网络广义逆自适应控制器的构造方法,其特征是包括如下 步骤: 1)由三台变频器分别驱动三台感应电机以带动负载构成三电机驱动系统,将三台 感应电机和三台变频器分别连接S7-300 PLC,通过S7-300 PLC设定三台变频器的转速给定 值,以转速给定值作为三电机驱动系统的输入,以三台感应电机中的主动感应电机的转速 r1 和皮带张力F 12 、F 23 作为三。
4、电机驱动系统的输出; 2)通过静态神经网络加2个积分器和3个传函来构造三电机驱动系统的神经网络广义 逆,所述静态神经网络有8个输入节点和3个输出节点,所述神经网络广义逆具有3个输入 节点和3个输出节点,静态神经网络的第二、第五、第八个输入为神经网络广义逆的输入, 第二个输入经第一个传函为静态神经网络的第一个输入,第五个输入经第二个传函为静态 神经网络的第四个输入,第四个输入经第一个积分器为静态神经网络的第三个输入,第八 个输入经第三个传函为静态神经网络的第七个输入,第七个输入经第二个积分器为静态神 经网络的第六个输入,静态神经网络的输出即为神经网络广义逆的输出; 3)将神经网络广义逆连接于三电。
5、机驱动系统之前共同组成由一个速度子系统和两个 张力子系统构成的伪线性复合系统; 4)分别对一个速度子系统和两个张力子系统设计相应的一个速度模糊自适应控制器 和两个张力模糊自适应控制器,每个所述模糊自适应控制器均由模糊推理系统和PID控制 器组成,由一个速度模糊自适应控制器和两个张力模糊自适应控制器构成模糊自适应闭环 控制器; 5)将模糊自适应闭环控制器和神经网络广义逆相串接形成神经网络广义逆自适应控 制器。 2.根据权利要求1所述的三电机驱动系统神经网络广义逆自适应控制器的构造方法, 其特征是:设计模糊自适应控制器时,以三电机驱动系统误差e和e的变化率ec为输入量, 输出量为PID控制器的比例。
6、系数K p 、积分系数K i 、微分系数K d 的变化量K p 、K i 、K d 。 3.根据权利要求1所述的三电机驱动系统神经网络广义逆自适应控制器的构造方法, 其特征是:通过调整静态神经网络的权值和域值使神经网络广义逆实现三电机驱动系统的 逆系统;静态神经网络的权值和域值的确定方法为:施加 r1 、F 12 、F 23 随机方波信号到三电 机驱动系统的输入端以激励系统,采样信号包括速度模糊自适应控制器输出u 1 、两个张力 模糊自适应控制器输出u 2 和u 3 以及 r1 、F 12 、F 23 ;对 r1 离线求其一阶导数 r1 (1) ,对F 12 、 F 23 离线求其一、二阶导数。
7、F 12 (1) 、F 23 (1) 、F 12 (2) 、F 23 (2) ,用构成的训练样本集 r1 ,( r1 + r1 (1) ), F 12 ,F 12 (1) ,(F 12 (2) +1.414 F 12 (1) + F 12 ),F 23 ,F 23 (1) ,(F 23 (2) +1.414 F 23 (1) + F 23 ),u 1 ,u 2 ,u 3 对静态神 经网络进行训练以确定权值和域值。 权 利 要 求 书CN 102629843 A 1/6页 3 三电机驱动系统神经网络广义逆自适应控制器的构造方法 技术领域 0001 本发明涉及一种三电机驱动系统神经网络广义逆自适应。
8、控制器的构造方法,适用 于三台变频器驱动三台感应电机以带动负载的高性能同步协调解耦控制,属于电力传动控 制设备的技术领域。 背景技术 0002 近年来,由多台变频器驱动多台感应电机并带动负载构成的多电机驱动系统在电 动汽车驱动、城市轨道交通、印刷业等工业领域得到了广泛应用。关于多电机驱动系统控制 技术的研究获得了飞速的发展,高精度、持久而高效的多电机同步协调控制性能成为研究 的焦点。对于三电机驱动系统而言,它具有多输入、多输出、非线性、强耦合的特性,加之容 易受到负载变化和干扰因素的影响,它的结构特性并不稳定,所以很难获得其精确的数学 模型;另一方面,工业生产又要求各台电机能够在同速协调运行的。
9、同时,保持传送带张力的 相对稳定,这显然需要实现电机转速和皮带张力的解耦,增加了控制难度。因此,如何去实 现三电机驱动系统高性能的协调运行,特别是实现转速和张力的解耦控制,是一个亟待解 决的问题,也是当今电力传动控制的重要研究方向。目前,主要的解耦控制方法包括:交叉 耦合控制、前馈控制、最优控制、滑模控制等,这些方法在一定程度上改善了解耦效果,但是 大多只适用于单电机或者两电机,并且依赖于驱动系统精确的数学模型,很难保证系统在 整个工作过程中最优运行并获得满意的控制效果。 0003 对于单电机和两电机组成的变频调速系统,由于其电机数量较少、硬件设备相对 简单,神经网络逆或者神经网络广义逆算法已。
10、经应用于单电机和两电机组成的变频调速系 统中,利用神经网络来逼近原系统的逆系统,从而构建伪线性系统,不需要被控系统精确的 数学模型。但是工业应用中大量使用的却是由三台甚至更多台电机组成的驱动系统,涉及 的参数、耦合变量较多且设备复杂,因此,已有的控制策略有着明显的局限性,而且其闭环 控制器大多选用普通线性PID控制器,这种控制器结构简单、成本低、易于实现,能满足一 般的调速要求,但由于它的控制参数保持恒定,所以系统的动态性能不佳,特别是启动速度 比较慢、超调量比较大,当遇到负载突增或者给定转速突变时,系统响应往往需要较长时间 才能恢复至稳态。 发明内容 0004 本发明的目的是为克服现有技术的。
11、不足,提供一种三电机驱动系统神经网络广义 逆自适应控制器的构造方法,将神经网络广义逆理论应用到三电机驱动系统,并且引入了 模糊自适应控制器作为闭环控制器,既能实现电机转速和皮带张力的解耦控制,又显著减 少系统启动时间和超调量,显著改善系统的跟踪性能,增强系统的鲁棒性,实现三电机驱动 系统的高性能协调运行。 0005 本发明采用的技术方案是包括如下步骤:1)三台变频器分别驱动三台感应电机 以带动负载构成三电机驱动系统,将三台感应电机和三台变频器分别连接S7-300 PLC,通 说 明 书CN 102629843 A 2/6页 4 过S7-300 PLC设定三台变频器的转速给定值,以转速给定值作为。
12、三电机驱动系统的输入, 以三台感应电机中的主动感应电机的转速 r1 和皮带张力F 12 、F 23 作为三电机驱动系统输 出;2)通过静态神经网络加2个积分器和3个传函来构造三电机驱动系统的神经网络广义 逆,所述静态神经网络有8个输入节点和3个输出节点,所述神经网络广义逆具有3个输入 节点和3个输出节点,静态神经网络的第二、第五、第八个输入为神经网络广义逆的输入, 第二个输入经第一个传函为静态神经网络的第一个输入,第五个输入经第二个传函为静态 神经网络的第四个输入,第四个输入经第一个积分器为静态神经网络的第三个输入,第八 个输入经第三个传函为静态神经网络的第七个输入,第七个输入经第二个积分器为。
13、静态神 经网络的第六个输入,静态神经网络的输出即为神经网络广义逆的输出;3)将神经网络广 义逆连接于三电机驱动系统之前,共同组成由一个速度子系统和两个张力子系统构成的伪 线性复合系统;4)分别对一个速度子系统和两个张力子系统设计相应的一个速度模糊自适 应控制器和两个张力模糊自适应控制器,每个所述模糊自适应控制器均由模糊推理系统和 PID控制器组成,由一个速度模糊自适应控制器和两个张力模糊自适应控制器构成模糊自 适应闭环控制器;5)将模糊自适应闭环控制器和神经网络广义逆相串接形成神经网络广义 逆自适应控制器。 0006 本发明通过构造神经网络广义逆,将原三电机驱动系统这一复杂非线性强耦合系 统的。
14、控制问题转化为三个简单的伪线性子系统的控制问题,从而可以合理地设计出模糊自 适应闭环控制器,真正实现了电机转速和皮带张力这对被控量的解耦控制,解决了三电机 驱动系统的协调控制问题。在获得优良的转速和张力协调控制性能的同时,显著提高了系 统启动速度、跟踪性能和鲁棒性。本发明的优点在于: 1、三电机驱动系统比简单的单电机或者两电机组成的变频调速系统在轧钢、印染等工 业中的应用更为广泛,因此,针对三电机驱动系统构造的解耦控制器也更为合理和实用,有 较高的应用价值,特别是其解耦对象涉及三个变量,更符合实际工况,方便在更大范围内推 广。 0007 2、采用静态神经网络加积分器和传函来实现三电机驱动系统的。
15、广义逆系统,然后 再构造神经网络广义逆自适应控制器,这种控制方法完全摆脱了传统控制对于被控对象精 确数学模型的依赖,解决了复杂非线性强耦合系统的解耦控制问题,大大提高了对系统参 数变化、负载扰动和网络时延的鲁棒性。 0008 3、通过分别设计三个模糊自适应闭环控制器来实现被控系统高精度同步协调运 行,控制器可以根据系统误差情况在线实时调整控制参数,在实现三电机驱动系统转速和 张力解耦的同时,对系统响应的干预更为及时、灵敏、准确,可以大幅度减少系统的启动时 间和超调量,同时显著提高系统的跟踪精度和跟踪速度,以获得理想的启动和跟踪效果,减 少系统振荡,提高系统鲁棒性。 0009 4、神经网络广义逆。
16、与三电机驱动系统共同组成的伪线性复合系统可以等效为三 个已解耦的积分线性子系统,包括一个速度子系统和两个张力子系统,它们之间是相对独 立的,因此,如果实际生产对于电机转速或者皮带张力有特殊需要,可以为每个子系统设计 一个不同类型的控制器以实现闭环控制。 0010 5、经过推导,得出张力本质上是由相邻两台电机之间的速度差所决定的,因此在 做三电机驱动系统激励时,特别设计了3个PID控制器,并且以1号感应电机(主动电机)的 说 明 书CN 102629843 A 3/6页 5 速度给定与2号PID张力控制器的输出之差来调节2号感应电机(从动电机)的速度,以2 号感应电机(从动电机)的速度输入与3号。
17、PID张力控制器的输出之差来调节3号感应电机 (从动电机)的速度,以使系统闭环稳定,保证采集到更为有效的训练数据,使训练出的静态 神经网络逼近效果更佳。 0011 6、由于训练样本数据较多且复杂,为提高神经网络的精度和学习速度,训练函数 特意选取弹性梯度下降法函数“trainrp”;对采样得到的数据进行掐头去尾,等间隔选取, 再进行归一化处理,最后再将归一化后的数据分成训练数据集和检验数据集两组,前者训 练数据集用于离线训练神经网络,直至训练误差达到要求,后者检验数据集用于检验训练 好的神经网络是否具有较好的泛化能力。 0012 7、神经网络在逼近系统广义逆时存在一定的误差,以往的闭环控制器只。
18、能部分补 偿由其所导致的系统稳态误差,而通过合理设计模糊自适应闭环控制器,则可以完全消除 这种逼近误差引起的系统稳态误差。 0013 8、在编写下位机软件STEP7程序时,特别采用了自顶而下的编程方式构造软件系 统,整个程序较之以往简单的单电机或者两电机更加模块化、功能化,同时封装性更好,以 增强该控制算法的灵活性和可移植性。 0014 9、三电机驱动系统高性能协调传动控制涉及到电机模型的不确定性、负载的不确 定性和所跟踪给定信号的不确定性,而神经网络广义逆模糊自适应控制理论就是针对这些 不确定性而提出的,本发明采用的模糊自适应控制器作为闭环控制器,这种控制器是基于 模糊语言变量、模糊集理论和。
19、模糊推理的智能控制器,能够根据误差和误差的变化率在线 实时调整控制参数,对系统响应的干预更为及时、灵敏、准确。因此,较之以往的控制方法, 这种新型控制策略可以在实现线性化解耦控制的同时,大幅度减少系统的启动时间和超调 量,显著提高系统的跟踪精度和跟踪速度,以获得理想的启动和跟踪效果,减少系统振荡, 实现高性能鲁棒控制。由于模糊自适应控制器在解决非线性的不确定性和抗干扰方面的优 势,可以把它推广到更多类型的多电机协调传动控制中。 附图说明 0015 图1是三台变频器驱动三台感应电机带动负载组成的三电机驱动系统4的原理结 构图, 图2是三电机驱动系统4的数学模型示意图及其等效图; 图3是三电机驱动。
20、系统4激励及数据采样原理图; 图4是神经网络广义逆5与三电机驱动系统4共同构成的伪线性复合系统6的示意图 及其等效图; 图5是由模糊自适应闭环控制器7与伪线性复合系统6组成的闭环控制系统的结构 图。图6是单个模糊自适应控制器的原理结构图; 图7是采用神经网络广义逆自适应控制器8对三电机驱动系统4进行控制的完整原理 框图; 图8是采用PLC作为神经网络广义逆自适应控制器8的本发明装置组成示意图; 图9是采用PLC作为神经网络广义逆自适应控制器8的主程序运行框图; 图中:1.三台变频器;2.三台感应电机3.负载;4.三电机驱动系统;5.神经网络 说 明 书CN 102629843 A 4/6页 6。
21、 广义逆;6.伪线性复合系统;7.模糊自适应闭环控制器;8.神经网络广义逆自适应控制 器;9.工控机;10.光电编码器;11.张力传感器;51.静态神经网络;61.速度子系统;62、 63.张力子系统;71.速度模糊自适应控制器;72、73.张力模糊自适应控制器。 具体实施方式 0016 如图1所示,组成三电机驱动系统4。三电机驱动系统4包括三台交流异步感应电 机2和三台变频器1,1、2、3号变频器分别对应地连接1、2、3号感应电机,1、2、3号感应电 机又分别经减速机减速后分别驱动相应的三个驱动辊运转,三个驱动辊由一条皮带相连, 皮带上设有浮动辊,由于浮动辊的张紧作用,皮带会产生张力F 12。
22、 、F 23 ,从而使系统可以带负 载3运行。三台变频器1分别驱动三台交流异步感应电机2以带动负载3,就构成了三电机 驱动系统4。考虑到三电机驱动系统4中各感应电机2的转速和皮带的张力是相互联系和 影响的,本发明采用了主从控制的方式,设1号感应电机为主动电机,其转速 r1 和皮带张 力F 12 、F 23 作为系统的输出转速和张力,其余电机为从动电机,从动电机以张力为跟踪依据 与主动电机保持同步,2号感应电机转速 r2 ,3号感应电机转速 r3 。为尽可能模拟实际工 况下负载的多样性和不均衡性,使每台感应电机2所加负载3都独立可调,本发明特别地在 三个驱动辊上分别安装了磁粉制动器,通过施加励磁。
23、电流来传递负载转矩。 0017 将三电机驱动系统4连接S7-300 PLC,将三台感应电机2和三台变频器1均分别 连接S7-300 PLC,通过S7-300 PLC设定1、2、3号变频器的转速给定值 1 * 、 2 * 、 3 * ,通过 转速给定值 1 * 、 2 * 、 3 * 来分别控制1、2、3号感应电机的运转。各台感应电机经减速机 以15:1减速后驱动三个驱动辊运转。三台变频器1的转速给定值 1 * 、 2 * 、 3 * 作为系统 的输入。转速和张力实际值通过测量仪器反馈至S7-300 PLC。 0018 在组成了三电机驱动系统4和通过S7-300 PLC给定三台变频器转速给定值之。
24、后, 做整个三电机驱动系统4的等效,并且通过常规方法的分析、等效与推导,证明三电机驱动 系统4的广义逆存在,从而为神经网络广义逆5的构造、学习与训练提供理论依据。首先确 定三电机驱动系统4的数学模型,数学模型的输入变量为三台变频器1的转速给定值 1 * 、 2 * 、 3 * ,输出变量为1号感应电机转速 r1 和皮带张力F 12 、F 23 ;然后对三电机驱动系统4 进行等效,如图2所示;最后通过分析和推导可得到整个三电机驱动系统4的数学模型表达 式为静止两相坐标系下的三阶微分方程,包括一个相对阶数为一阶的速度输出和两个相对 阶数为二阶的张力输出,速度相对阶数为一阶,两个张力的相对阶数均为二。
25、阶,可证明被控 系统即三电机驱动系统4的广义逆存在,并可确定其广义逆的三个输入为速度 r1 的一阶 导数 r1 (1) 和张力F 12 、F 23 的二阶导数F 12 (2) 、F 23 (2) ,三个输出为三电机驱动系统4的三个输 入,转速给定值 1 * 、 2 * 、 3 * ,从而建立其广义逆数学表达式。需要指出的是,这一步只是 为下面的神经网络广义逆5的构造、学习与训练提供理论上的根据,在本发明的具体实施 中,这一步的分析、等效以及广义逆存在的理论证明等,均可跳过。 0019 确定静态神经网络51的各个权值、域值。如图3所示,由于张力本质上是由相邻两 台电机之间的速度差所决定的,所以本。
26、发明设计了3个PID控制器使三电机驱动系统4稳 定,并且以1号感应电机2的速度给定与2号PID张力控制器的输出之差来调节2号感应电 机2的速度,以2号感应电机2的速度输入与3号PID张力控制器的输出之差来调节3号 感应电机2的速度,以使系统闭环稳定,然后施加三个合理的 r1 、F 12 、F 23 随机方波信号到 说 明 书CN 102629843 A 5/6页 7 三电机驱动系统4的输入端以激励系统,得到的采样信号经过处理后构成训练样本集。采 样信号包括转速PID输出u 1 、张力PID输出u 2 和u 3 、实际转速 r1 、实际张力F 12 和F 23 ;对 实际转速信号离线求其一阶导数。
27、 r1 (1) ,对实际张力信号离线求其一、二阶导数F 12 (1) 、F 23 (1) 、 F 12 (2) 、F 23 (2) ,输入节点包括 r1 、( r1 + r1 (1) )、F 12 、F 12 (1) 、(F 12 (2) +1.414 F 12 (1) + F 12 )、F 23 、F 23 (1) 、 (F 23 (2) +1.414 F 23 (1) + F 23 ),输出节点包括u 1 、u 2 、u 3 。对采样得到的数据进行掐头去尾,等间隔 选取,然后进行归一化处理,最后再将归一化后的数据分成训练样本集和检验样本集两组, 训练样本集 r1 ,( r1 + r1 (1。
28、) ),F 12 ,F 12 (1) ,(F 12 (2) +1.414 F 12 (1) + F 12 ),F 23 ,F 23 (1) ,(F 23 (2) +1.414 F 23 (1) + F 23 ),u 1 ,u 2 ,u 3 用于训练静态神经网络51,检验样本集用于检验训练好的神经网络是 否具有较好的泛化能力。其中:静态神经网络51采用3层BP网络,输入层节点数为8,隐含 层节点数为11,输出层节点数为3,隐含层传函采用“logsig”,输出层传函采用“purelin”, 训练函数选取弹性梯度下降法函数“trainrp”,经过4000次训练,神经网络输出均方误差 小于0.001,。
29、满足要求,从而可以确定静态神经网络 51的各个权值、域值。 0020 构造神经网络广义逆5。如图4左图中的虚线框内所示,采用具有8个输入节点、 3个输出节点的静态神经网络51加2个积分器和3个传函构成具有3个输入节点、3个输 出节点的神经网络广义逆5。其中:静态神经网络51的第二、第五、第八个输入为神经网络 广义逆5的输入,第二个输入经第一个传函为静态神经网络51的第一个输入,第五个输入 经第二个传函为静态神经网络51的第四个输入,第四个输入经第一个积分器为静态神经 网络的第三个输入,第八个输入经第三个传函为静态神经网络51的第七个输入,第七个输 入经第二个积分器为静态神经网络的第六个输入,静。
30、态神经网络51的输出即为神经网络 广义逆5的输出。 0021 构造伪线性复合系统6,从而形成速度子系统61和张力子系统62、63。如图4左图 中的虚线框内所示,将确定了各个权值、域值的静态神经网络51和2个积分器、3个传函共 同组成神经网络广义逆5,其中积分器为1/S,传函分别为1/(a 10 s+a 11 )、S/(a 20 s 2 +a 21 s+a 22 )、 S/(a 30 s 2 +a 31 s+a 32 )。如图4右图所示,神经网络广义逆5连接于三电机驱动系统4之前,共 同组成等效的伪线性复合系统6,该伪线性复合系统6由一个一阶稳定的速度子系统和两 个二阶稳定的张力子系统共同构成,。
31、从而实现了转速与张力之间的解耦,这样就把被控量 (一个速度和两个张力)相互耦合的三输入(三台变频器的输入)、三输出(一个速度和两个张 力)、非线性、强耦合的复杂系统转化为三个简单的单变量线性子系统来进行控制。 0022 设计模糊自适应闭环控制器7。如图5所示,依据模糊控制理论分别对得到的一个 速度子系统61和两个张力子系统62、63设计相对应的速度模糊自适应控制器71和张力模 糊自适应控制器72、73。如图6所示,每个模糊自适应控制器均由模糊推理系统和PID控制 器组成,使用模糊控制规则在线调整控制参数,采用两输入三输出的结构,以系统误差e和 e的变化率ec作为输入量,输出量为PID控制器的比。
32、例系数K p 、积分系数K i 、微分系数K d 的 变化量K p 、K i 、K d ,输入量和输出量的模糊子集为NB,NM,NS,ZO,PS,PM,PB,其中:元 素NB的隶属度函数选用“zmf”,元素PB的隶属度函数选用“smf”,其余元素的隶属度函数 选用“trimf”。整个系统如图7所示,其中G 11 =1/(a 10 s+a 11 )、G 22 S=S/(a 20 s 2 +a 21 s+a 22 )、G 33 S=S/ (a 30 s 2 +a 31 s+a 32 )。 0023 如图7,最后,将模糊自适应闭环控制器7与神经网络广义逆5相串接,由模糊自适 应闭环控制器7和神经网络。
33、广义逆5共同组成神经网络广义逆自适应控制器8,可根据不同 说 明 书CN 102629843 A 6/6页 8 的控制要求采用不同的硬件或软件来实现。 0024 图8是本发明的具体实施例的示意图,包括整个系统的电气结构及其通讯组成。 其中神经网络广义逆自适应控制器8由可编程控制器即PLC通过工控机9的软件来实现。 系统主程序框图如图9所示。PLC通过Profibus-DP方式控制三台变频器1,WinCC通过MPI 方式监控PLC并通过OPC技术把PLC中实时数据采样到Excel中,Matlab直接调用Excel 中的数据训练静态神经网络51,再通过OPC技术将训练完成后的权值、域值写到PLC中。
34、。其 中:OPC采用的是服务器/客户机结构,首先使用OPC DA Sever服务器,然后在Excel中建 立OPC Client客户机,与WinCC服务器连接,读取系统实时数据发送至Excel。 0025 在变频器1上添加了CB15通讯模块实现PLC与变频器1之间的Profibus-DP通 讯;在工控机9中插接了CP5611通讯卡,实现与PLC的MPI通讯;PLC选用西门子S7-300 型,主要包括CPU模块(S7-315-2DP)、模拟量输入输出模块(SM335)、高速计数器模块 (FM350-1);三台变频器1采用西门子Micromaster Vector型号;被控的三台感应电机2的 型号。
35、为Y100L1-4,额定功率为2.2kW,额定电流为5A,额定转速为1420r/min;光电编码器 10的型号为YGM-615;张力传感器11的型号为SL100。 说 明 书CN 102629843 A 1/5页 9 图1 图2 图3 说 明 书 附 图CN 102629843 A 2/5页 10 图4 图5 说 明 书 附 图CN 102629843 A 10 3/5页 11 图6 图7 说 明 书 附 图CN 102629843 A 11 4/5页 12 图8 说 明 书 附 图CN 102629843 A 12 5/5页 13 图9 说 明 书 附 图CN 102629843 A 13 。