一种配套CO变换装置使用的冷凝液汽提方法.pdf

上传人:b*** 文档编号:4216404 上传时间:2018-09-07 格式:PDF 页数:11 大小:444.06KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110286533.7

申请日:

2011.09.23

公开号:

CN102502901A

公开日:

2012.06.20

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||著录事项变更IPC(主分类):C02F 1/04变更事项:申请人变更前:中国石油化工股份有限公司变更后:中国石油化工股份有限公司变更事项:地址变更前:100728 北京市朝阳区朝阳门北大街22号变更后:100728 北京市朝阳区朝阳门北大街22号变更事项:申请人变更前:中国石化集团宁波工程有限公司 中国石化集团宁波技术研究院变更后:中石化宁波工程有限公司 中石化宁波技术研究院有限公司|||实质审查的生效IPC(主分类):C02F 1/04申请日:20110923|||公开

IPC分类号:

C02F1/04; C02F1/20

主分类号:

C02F1/04

申请人:

中国石油化工股份有限公司; 中国石化集团宁波工程有限公司; 中国石化集团宁波技术研究院

发明人:

许仁春; 施程亮; 邹杰; 陈莉; 卢新军; 徐洁; 唐永超

地址:

100728 北京市朝阳区朝阳门北大街22号

优先权:

专利代理机构:

宁波诚源专利事务所有限公司 33102

代理人:

刘凤钦

PDF下载: PDF下载
内容摘要

本发明涉及到一种配套CO变换装置使用的冷凝液汽提方法,其特征在于采用独创结构的汽提塔配合汽提工艺流程,将来自上游的变换气经过三次冷凝和三次分液,变换工艺冷凝液根据温度的不同,分成多股物流,分别从不同的部位进入汽提塔,科学合理的利用不同变换工艺冷凝液的温位和能量梯度,起到降低汽提塔能耗的作用;同时利用164℃的变换气作为汽提塔再沸器的热源,显著降低了汽提系统能耗;与现有技术相比,本发明汽提塔顶汽提出的不凝酸性气温度为45℃,取消了塔顶不凝酸性气冷却器,不再消耗循环冷却水,节省了设备投资,同时能耗进一步降低。采用单塔汽提、冷热进料、侧线抽氨新技术,控制更为简单、操作更加稳定、能耗更低。

权利要求书

1: 一种配套 CO 变换装置使用的冷凝液汽提方法, 其特征在于该方法中所使用的汽提 塔的塔体包括相互连通且塔径依次减小的下段、 中段和上段 ; 其中, 所述上段的塔体内填 充有填料 ; 所述汽提塔通过设置在塔底的再沸器提供热量, 对进入塔内的变换工艺冷凝液 进行汽提分离 ; 所述汽提塔的塔顶设有供 CO2 气体排出的第一汽提气出口, 汽提塔的塔底 设有净化工艺冷凝液出口, 所述下段侧壁的上部分别设有供氨蒸汽排出的第二汽提气出口 和第一冷凝液入口, 所述中段侧壁的上部以及所述上段侧壁的上部分别设有第二冷凝液入 口和第三冷凝液入口 ; 所述汽提塔的塔底至所述的第二汽提气出口、 所述第二汽提气出口 至所述的第二冷凝液入口、 所述第二冷凝液入口至塔顶三部分的塔径之比为 1 ∶ 0.6 ~ 0.85 ∶ 0.15 ~ 0.35 ; 使用上述汽提塔的冷凝液汽提方法如下 : 从上游来的 160℃~ 180℃变换气首先进入汽提塔再沸器 1, 为汽提塔 7 提供汽提用热 量; 出汽提塔再沸器 1 的变换气温度降到 155℃~ 175℃, 进入第一气液分离器 2 进行气液 分离, 分液后的变换气进入脱盐水加热器 3 加热脱盐水 ; 得到的变换气温度降低到 85℃~ 95℃进入第二气液分离器 4, 从第二气液分离器 4 顶部出来的变换气进入循环水冷却器 5 进 一步降温到 35℃~ 40℃, 然后进入第三气液分离器对变换气进行分液和洗涤 ; 中压锅炉水 从第三气液分离器 6 上部喷入, 洗去变换气中的微量杂质 ; 洗涤后的变换气送去下游工序 ; 从第一气液分离器分离出的工艺冷凝液与上游来的工艺循环水混合后温度为 155℃~ 175℃, 从所述的第一冷凝液入口进入汽提塔 7 ; 从第二气液分离器 4 分离出的工艺冷凝液换热至 110℃~ 130℃后, 与来自汽提塔中间 冷凝器 8 的少量 130℃冷凝液混合后, 从所述的第二冷凝液入口进入汽提塔 7 ; 从第三气液分离器 6 底部排出的温度为 35℃~ 40℃的锅炉水和工艺冷凝液从所述的 第三冷凝器入口进入汽提塔 7 ; 所述的汽提塔操作条件为 : 塔顶压力 0.2 ~ 0.5Mpa, 温度 30℃~ 50℃; 塔底压力 0.2 ~ 0.5Mpa, 温度 145℃~ 180℃。 在所述的汽提塔内, 从第三冷凝液入口进入的温度为 35℃~ 40℃的锅炉水和工艺冷 凝液混合后, 对汽提塔 7 下段和中段汽提出的进入上段的二氧化碳不凝酸性气进行冷却降 温和洗涤, 洗去不凝酸性气中的少量氨, 防止后系统铵盐结晶物产生 ; 二氧化碳不凝酸性气 从汽提塔的第一汽提气出口排出 ; 从第二冷凝液入口进入汽提塔 7 的温度为 110℃~ 130℃的工艺冷凝液和来自汽提塔 中间冷凝器 8 底部的冷凝液混合后, 对汽提塔 7 中下段和下段汽提出的汽提蒸汽进行冷却 降温和洗涤, 汽提蒸汽中未被从第二汽提气出口抽走的氨大部分被洗涤下来, 以减少进入 汽提塔 7 上段汽提气中的氨含量 ; 从第一冷凝液入口进入汽提塔 7 的温度为 155℃~ 175℃的工艺冷凝液和工艺循环水、 从第二冷凝液入口进入的冷凝液、 从第三冷凝液入口进入的冷凝液三股流体全部混合后向 下流动, 通过塔底部的再沸器提供热量, 混合流体在下塔塔盘上逐渐被蒸汽汽提, 汽提出的 140℃~ 160℃的氨蒸汽大部分从第二汽提气出口被抽出 ; 在汽提塔 7 的底部得到 145℃~ 165℃的净化工艺冷凝液从工艺冷凝液出口排出, 经过 滤器 11 除去杂质后分为两股, 一股进入工艺冷凝液预热器 10 加热第二气液分离器分离出 2 的工艺冷凝液, 温度变为 120℃~ 130℃后送去上游, 另外一股直接送去上游, 两股净化工 艺冷凝液的比例为 5 ∶ 1 ~ 3 ∶ 1 ; 从第二汽提气出口抽出的氨蒸汽进入中间冷却器 8 用脱盐水冷却到 130℃, 分离出的 冷凝液与从工艺冷凝液预热器 10 处来的冷凝液混合后从第二冷凝液入口返回到汽提塔, 130℃的氨蒸汽接下来进入到汽提塔后冷器 9 中继续冷却, 温度降到 40℃~ 55℃, 分离出不 凝气后送去火炬系统, 分离出的污水送污水处理系统。
2: 根据权利要求 1 所述的配套 CO 变换装置使用的冷凝液汽提方法, 其特征在于所述塔 体的上段填料高度为 1.5 ~ 2.5 米 ; 所述塔体的中段和下段为塔盘结构, 并且理论塔板数为 7 ~ 15 块。
3: 根据权利要求 1 或 2 所述的冷凝液汽提塔, 其特征在于所述汽提塔的操作条件为 : 塔顶压力 0.2 ~ 0.5Mpa, 温度 30℃~ 50℃; 第三冷凝液入口压力 0.3 ~ 0.8Mpa, 温度 30℃~ 50℃ ; 第二冷凝液入口压力 0.3 ~ 0.8Mpa, 温度 80℃~ 130℃ ; 第一冷凝液入口压力 0.3 ~ 0.8Mpa, 温度 150℃~ 180℃ ; 第二汽提气出口压力 0.2 ~ 0.5Mpa, 温度 140℃~ 160℃ ; 塔 底压力 0.2 ~ 0.5Mpa, 温度 145℃~ 180℃。

说明书


一种配套 CO 变换装置使用的冷凝液汽提方法

    【技术领域】
     本发明涉及到一种 CO 变换的低位余热回收和冷凝液汽提方法。背景技术 CO 变换反应是指水蒸气和 CO 反应生成二氧化碳和氢气的过程, 且是等摩尔强放 热反应。对于采用绝热变换炉的 CO 变换工艺流程, 变换反应产生的高温变换气出变换炉后 可通过废热锅炉生产中压蒸汽, 或者直接对高温变换气进行喷水激冷, 达到增加变换气湿 度及降温目的, 增湿降温后的变换气重新进入下一段绝热变换炉继续进行变换反应。
     可以看出, 对 CO 变换反应产生的高温余热在变换炉之间回收比较容易, 但对于变 换反应已完成, 经过高位余热回收变换气温度低于 170℃, 此时, 对低温余热的回收就比较 困难, 因为下游工序通常要求变换气温度不超过 40℃。所以温度在 40℃~ 170℃的低温变 换气余热如何合理有效的回收, 是各种变换工艺流程都必须妥善解决的重点和难点问题。
     同时变换单元冷凝下来的凝液不能直接返回到前系统使用, 因为变换工艺冷凝液 中溶解有少量氨和二氧化碳等腐蚀性有害气体。因此, 只有将这些腐蚀性气体通过一定的 措施移除后, 才能将净化后的变换净化工艺冷凝液循环补入到变换系统, 以减少变换单元 废水排污量, 同时提高水的利用效率。 现有技术通常使用 155℃以上的低压蒸汽来完成对变 换工艺冷凝液的汽提。
     现有的变换技术对低温余热回收和变换工艺冷凝液汽提存在如下缺陷 :
     1) 变换单元低温余热经过整个工艺系统平衡后仍然无法全部合理有效利用, 工程 设计中迫不得已采用空冷器来冷却, 变换气的温度是降下来了, 但空冷器需要持续消耗电 能, 变换装置能耗高 ; 另外空冷器本身的投资也不菲 ;
     2) 采用 155℃以上的低压蒸汽来汽提变换工艺冷凝液, 其后果是将低位热量重新 引入到了变换系统, 汽提出的有害气体需要冷凝降温到 50℃后, 才能排入火炬系统, 这时 又需要消耗冷却水!也就是说, 引入系统的低压蒸汽最终需要消耗部分冷却水使之再次冷 凝;
     3) 目前对变换工艺冷凝液的汽提多为单塔混合进料汽提流程, 变换工艺冷凝液中 汽提出的二氧化碳和氨从塔顶混合排出, 在后续的冷凝过程中, 二氧化碳和氨极易生成铵 盐结晶物, 造成管道和冷凝器堵塞, 严重影响变换单元的稳定运行 ;
     4) 汽提塔采用混合进料, 将几股温度不同的冷凝液混合后, 从汽提塔上部一次加 入, 没有充分利用不同温度的变换工艺冷凝液的温度梯度, 也就是说对几股物流的温位和 能量利用不够科学合理, 其结果是出汽提塔的汽提气温度较高, 增加了后系统对汽提气进 行冷凝的冷却水用量, 同时也增加了用于汽提的低压蒸汽用量。
     如专利号为 ZL 200910098944.6 的中国发明专利所公开的 《一种 CO 变换中工艺冷 凝液的汽提方法》 , 为了解决变换工艺冷凝液汽提系统发生铵盐结晶堵塞问题, 其采用两个 汽提塔分别对二氧化碳和氨进行汽提, 避免了二氧化碳和氨在冷凝系统中同时存在的可能 性, 延长了变换装置稳定运行的周期。但仍然存在如下问题 :
     1) 出二氧化碳汽提塔的汽提气温度较高, 后序工序必须对汽提气进行冷凝, 冷凝 需要消耗冷却水, 能耗高 ;
     2) 汽提塔操作系统控制复杂且欠稳定, 原因是两个汽提塔通过管道连接, 需要分 别控制上塔和下塔的操作压力来控制汽提蒸汽的二次分配量和抽氨量, 任何一个汽提塔在 运行时发生压力波动, 均会波及另外一个塔的压力稳定, 进而影响汽提蒸汽的二次分配量 和抽氨量, 因此, 二次分配量和抽氨量参数控制比较困难且运行稳定性欠理想。 发明内容
     本发明所要解决的技术问题是针对现有技术的现状提供一种冷凝液汽提方法, 其 通过有效利用不同物流的温差来充分回收变换低温余热, 参数控制简单, 运行稳定且能将 汽提气中氨和二氧化碳分别回收, 避免了铵盐结晶堵塞问题。
     本发明解决上述技术问题所采用的技术方案为 : 该配套 CO 变换装置使用的冷凝 液汽提方法, 其特征在于该方法中所使用的汽提塔的塔体包括相互连通且塔径依次减小的 下段、 中段和上段 ; 其中, 所述上段的塔体内填充有填料 ; 所述汽提塔通过设置在塔底的再 沸器提供热量, 对进入塔内的变换工艺冷凝液进行汽提分离 ; 所述汽提塔的塔顶设有供 CO2 气体排出的第一汽提气出口, 汽提塔的塔底设有净化工艺冷凝液出口, 所述下段侧壁的上 部分别设有供氨蒸汽排出的第二汽提气出口和第一冷凝液入口, 所述中段侧壁的上部以及 所述上段侧壁的上部分别设有第二冷凝液入口和第三冷凝液入口 ; 所述汽提塔的塔底至所 述的第二汽提气出口、 所述第二汽提气出口至所述的第二冷凝液入口、 所述第二冷凝液入 口至塔顶三部分的塔径之比为 1 ∶ 0.6 ~ 0.85 ∶ 0.15 ~ 0.35 ;
     使用上述汽提塔的冷凝液汽提方法如下 :
     从上游来的 160℃~ 180℃变换气首先进入汽提塔再沸器 1, 为汽提塔 7 提供汽提 用热量 ;
     出汽提塔再沸器 1 的变换气温度降到 155℃~ 175℃, 进入第一气液分离器 2 进 行气液分离, 分液后的变换气进入脱盐水加热器 3 加热脱盐水 ; 得到的变换气温度降低到 85℃~ 95℃进入第二气液分离器 4, 从第二气液分离器 4 顶部出来的变换气进入循环水冷 却器 5 进一步降温到 35℃~ 40℃, 然后进入第三气液分离器对变换气进行分液和洗涤 ; 中 压锅炉水从第三气液分离器 6 上部喷入, 洗去变换气中的微量杂质 ; 洗涤后的变换气送去 下游工序 ;
     从第一气液分离器分离出的工艺冷凝液与上游来的工艺循环水混合后温度为 155℃~ 175℃, 从所述的第一冷凝液入口进入汽提塔 7 ;
     从第二气液分离器 4 分离出的工艺冷凝液换热至 110℃~ 130℃后, 与来自汽提塔 中间冷凝器 8 的少量 130℃冷凝液混合后, 从所述的第二冷凝液入口进入汽提塔 7 ;
     从第三气液分离器 6 底部排出的温度为 35℃~ 40℃的锅炉水和工艺冷凝液从所 述的第三冷凝器入口进入汽提塔 7 ;
     所述的汽提塔操作条件为 : 塔顶压力 0.2 ~ 0.5Mpa, 温度 30℃~ 50℃ ; 塔底压力 0.2 ~ 0.5Mpa, 温度 145℃~ 180℃。
     在所述的汽提塔内, 从第三冷凝液入口进入的温度为 35℃~ 40℃的锅炉水和工 艺冷凝液混合后, 对汽提塔 7 下段和中段汽提出的进入上段的二氧化碳不凝酸性气进行冷却降温和洗涤, 洗去不凝酸性气中的少量氨, 防止后系统铵盐结晶物产生 ; 二氧化碳不凝酸 性气从汽提塔的第一汽提气出口排出 ;
     从第二冷凝液入口进入汽提塔 7 的温度为 110℃~ 130℃的工艺冷凝液和来自汽 提塔中间冷凝器 8 底部的冷凝液混合后, 对汽提塔 7 中下段和下段汽提出的汽提蒸汽进行 冷却降温和洗涤, 汽提蒸汽中未被从第二汽提气出口抽走的氨大部分被洗涤下来, 以减少 进入汽提塔 7 上段汽提气中的氨含量 ;
     从第一冷凝液入口进入汽提塔 7 的温度为 155℃~ 175℃的工艺冷凝液和工艺循 环水、 从第二冷凝液入口进入的冷凝液、 从第三冷凝液入口进入的冷凝液三股流体全部混 合后向下流动, 通过塔底部的再沸器提供热量, 混合流体在下塔塔盘上逐渐被蒸汽汽提, 汽 提出的 140℃~ 160℃的氨蒸汽大部分从第二汽提气出口被抽出 ;
     在汽提塔 7 的底部得到 145℃~ 165℃的净化工艺冷凝液从工艺冷凝液出口排出, 经过滤器 11 除去杂质后分为两股, 一股进入工艺冷凝液预热器 10 加热第二气液分离器分 离出的工艺冷凝液, 温度变为 120℃~ 130℃后送去上游, 另外一股直接送去上游, 两股净 化工艺冷凝液的比例为 5 ∶ 1 ~ 3 ∶ 1 ;
     从第二汽提气出口抽出的氨蒸汽进入中间冷却器 8 用脱盐水冷却到 130℃, 分离 出的冷凝液与从工艺冷凝液预热器 10 处来的冷凝液混合后从第二冷凝液入口返回到汽提 塔, 130℃的氨蒸汽接下来进入到汽提塔后冷器 9 中继续冷却, 温度降到 40℃~ 55℃, 分离 出的不凝气送去火炬系统, 分离出的污水送污水处理系统。
     较好的, 所述塔体的上段填料高度为 1.5 ~ 2.5 米 ; 所述塔体的中段和下段为塔 盘结构, 并且理论塔板数为 7 ~ 15 块。上塔直径较小, 所以采用高效填料可降低塔压, 分离 效率高, 内部结构简单, 填料安装以及更换方便, 经多次模拟计算, 3 块理论板就可以完成汽 提要求。 中塔和下塔直径较大, 操作温度较高, 被汽提的物料较脏, 容易结垢, 所以采用板式 塔, 塔盘清洗方便, 经化学工程模拟计算, 7 ~ 15 块理论板就可以完成汽提要求。
     与现有技术相比较, 本发明有如下优点 :
     1、 利用 164℃的变换气作为汽提塔再沸器的热源, 没有使用常规流程中的低压蒸 汽来汽提变换工艺冷凝液, 显著降低了汽提系统能耗。
     2、 采用独创结构的汽提塔配合工艺流程, 将来自上游的变换工艺冷凝液根据温度 的不同, 分成多股物流, 分别从不同的部位进入汽提塔, 科学合理的利用不同变换工艺冷凝 液的温位和能量梯度, 同样起到降低汽提塔能耗的作用。
     3、 本发明汽提塔顶汽提出的不凝酸性气温度为 45℃, 与现有技术相比, 取消了塔 顶不凝酸性气冷却器, 不再消耗循环冷却水, 节省了设备投资, 同时能耗进一步降低。
     4、 本发明根据二氧化碳和氨在变换工艺冷凝液中被汽提出的难易程度, 将变换工 艺冷凝液中的二氧化碳在塔的顶部汽提出, 氨在塔的中部汽提抽出, 避免二氧化碳和氨在 冷凝系统中同时存在的可能性, 有效解决铵盐结晶堵塞问题 ;
     5、 采用单塔汽提、 冷热进料、 侧线抽氨新技术, 相比上下双塔汽提技术, 控制更为 简单、 操作更加稳定、 能耗更低。 附图说明
     图 1 为本发明实施例的工艺流程图 ;图 2 为本发明实施例中汽提塔的结构示意图。具体实施方式
     以下结合附图实施例对本发明作进一步详细描述。
     实施例
     如图 1 和图 2 所示, 实施例所使用汽提塔 7 的结构如下 :
     汽提塔的塔体包括相互连通且塔径依次减小的下段 73、 中段 72 和上段 71 ; 其中, 上段 71 为填料塔, 上段塔体内填充有填料, 填料的高度为 2.0 米 ; 中段和下段为塔盘结构, 各自的理论塔板数为 4 块和 5 块。
     汽提塔的塔底设有再沸器冷凝液出口 11, 汽提塔的塔釜设有再沸器返回口 12, 汽 提塔再沸器 1 给汽提塔 7 提供热量, 对进入塔内的工艺冷凝液进行汽提分离 ; 汽提塔的塔顶 设有供 CO2 气体排出的第一汽提气出口 74, 汽提塔的塔底设有净化工艺冷凝液出口 75, 塔 体下段侧壁的上部分别设有供氨蒸汽排出的第二汽提气出口 76 和第一冷凝液入口 77, 塔 体中段侧壁的上部以及塔体上段侧壁的上部分别设有第二冷凝液入口 78 和第三冷凝液入 口 79。 汽提塔的塔底至所述的第二汽提气出口 76、 所述第二汽提气出口 76 至所述的第 二冷凝液入口 78、 所述第二冷凝液入口 78 至塔顶三部分的塔径之比为 1 ∶ 0.7 ∶ 0.25。
     本实施例的汽提工艺如下 :
     从上游来的 164℃变换气首先进入汽提塔再沸器 1, 为汽提塔 7 汽提变换工艺冷凝 液提供热量, 出汽提塔再沸器 1 的变换气温度降到 159℃, 进入第一气液分离器 2 分液, 分 离出的变换工艺冷凝液和上游来的工艺循环水混合后从第一冷凝液入口进入汽提塔 7 ; 分 液后的变换气进入脱盐水加热器 3 加热脱盐水, 变换气温度降低到 90℃, 然后进入第二气 液分离器 4, 分离出的 90℃工艺冷凝液进入工艺冷凝液预热器 10 提温到 120℃, 再与来自 汽提塔中间冷凝器 8 底部的冷凝液混合后从第二冷凝液入口进入汽提塔 7 ; 从第二气液分 离器 4 顶部出来的变换气进入循环水冷却器 5 进一步降温到 40℃, 然后进入第三气液分离 器 6 对变换气进行分液和洗涤。从界区来的 120℃中压锅炉水经锅炉水冷却器 13 冷却到 40℃, 然后从第三气液分离器 6 上部侧壁喷出, 洗去变换气中的微量杂质 ; 洗涤后的变换气 去下游工序, 第三气液分离器 6 底部的锅炉水和变换工艺冷凝液混合后统称变换工艺冷凝 液, 温度为 40℃, 从第三冷凝液入口进入汽提塔 7。
     控制汽提塔塔顶压力 0.2 ~ 0.5Mpa, 温度 35 ~ 45℃; 第三冷凝液入口压力 0.3 ~ 0.8Mpa, 温度 35 ~ 45 ℃ ; 第二冷凝液入口压力 0.3 ~ 0.8Mpa, 温度 110 ~ 130 ℃ ; 第一冷 凝液入口压力 0.3 ~ 0.8Mpa, 温度 150 ~ 160℃ ; 第二汽提气出口压力 0.2 ~ 0.5Mpa, 温度 140 ~ 155℃ ; 塔底压力 0.25 ~ 0.55Mpa, 温度 145 ~ 160℃。
     在汽提塔 7 内, 从第三气液分离器 6 来的 40 ℃变换工艺冷凝液在汽提塔 7 的上 段上部喷出, 对中段汽提出的汽提蒸汽进行冷却降温, 同时对即将从汽提塔 7 顶部排出的 45℃二氧化碳不凝酸性气进行洗涤, 洗去不凝酸性气中的氨, 防止铵盐结晶物产生。
     从工艺冷凝液预热器 10 来的 120 ℃冷凝液与来自汽提塔中间冷凝器 8 底部的 130℃冷凝液混合后温度变为 121℃, 从汽提塔 7 的中段上部喷出, 对汽提塔 7 中段下部和下 段汽提出的汽提蒸汽进行冷却降温和洗涤, 减少进入汽提塔 7 上段汽提气中的氨含量。从
     第一气液分离器 2 来的 157℃变换工艺冷凝液以及上游来的 157℃工艺循环水混合后从汽 提塔 7 的下段上部喷出。
     在汽提塔再沸器 1 的加热下, 汽提出的 147℃氨蒸汽从第二汽提气出口抽出, 进入 汽提塔中间冷却器 8 用脱盐水冷却到 130℃, 分离出的冷凝液与来自工艺冷凝液预热器 10 的冷凝液混合后从第二冷凝液入口返回汽提塔 ; 130℃的氨蒸汽接下来进入到汽提塔后冷 器 9 用循环冷却水继续冷却, 温度降到 50℃, 分离出的不凝酸性气去火炬系统, 分离出的污 水送污水处理。
     在汽提塔 7 底部得到的 147℃净化工艺冷凝液通过泵 12 加压, 经过滤器 11 除去杂 质后分为两股。一股进入工艺冷凝液预热器 10 加热从第二气液分离器分离出的冷凝液, 变 为 130℃的低温工艺冷凝液后送去上游 ; 另外一股不经过换热的 147℃中温工艺冷凝液液 也去上游。
     对比例
     采用背景技术中的汽提塔, 变换工艺冷凝液的处理量为 60 吨 / 小时。上游来的 40℃和 90℃两股变换工艺冷凝液混合后一起从汽提塔的上部送入, 通过喷头均匀喷出, 低 压蒸汽从塔的下部引入, 向下流动的变换工艺冷凝液和向上流动的低压蒸汽在填料层逆流 接触。 出汽提塔的汽提气温度在 140℃左右, 汽提气中同时含有氨、 二氧化碳和水蒸气, 不能 直接排入火炬系统, 必须经过后序的冷凝装置换热降温分液后才能送火炬系统焚烧, 汽提 后的变换汽提冷凝液从塔底流出, 重新循环补入到变换系统。 冷却水用量大, 并且汽提气中 氨和二氧化碳同时存在易发生铵盐结晶堵塞管道, 装置稳定运行周期短。 表 1 列出了相同处理量的情况下, 实施例、 对比例和 ZL 200910098944.6 物耗等具 体工艺情况。
     表1
     对比例中由于从汽提塔顶汽提出的汽提气中同时含有二氧化碳和氨, 在后续的冷 凝过程中, 二氧化碳和氨生成铵盐结晶物不可避免, 因此管道和冷凝器堵塞情况严重。 其最 长运行周期为 4 个月。
     对比例和 ZL 200910098944.6 是将不同温度的变换工艺冷凝液一起从冷凝液汽 提塔侧壁的上部一次性加入, 没有充分利用不同物流的温度梯度, 也就是说对几股物流的 温位和能量利用不够科学合理, 其结果是出二氧化碳汽提塔的汽提气温度较高, 因此后序 程序中汽提气的冷凝用水量多, 同时用于汽提的低压蒸汽用量也高。由表 1 可以看出, 实施 例中出汽提塔的二氧化碳汽提气的温度为 45℃, 因此不需要冷凝即可送入火炬系统焚烧, 省去了汽提塔顶冷凝器, 可降低设备投资约 20 万元, 至少节省冷却水用量 50 吨 / 小时 ; 不 再消耗低压蒸汽。
    

一种配套CO变换装置使用的冷凝液汽提方法.pdf_第1页
第1页 / 共11页
一种配套CO变换装置使用的冷凝液汽提方法.pdf_第2页
第2页 / 共11页
一种配套CO变换装置使用的冷凝液汽提方法.pdf_第3页
第3页 / 共11页
点击查看更多>>
资源描述

《一种配套CO变换装置使用的冷凝液汽提方法.pdf》由会员分享,可在线阅读,更多相关《一种配套CO变换装置使用的冷凝液汽提方法.pdf(11页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102502901 A (43)申请公布日 2012.06.20 C N 1 0 2 5 0 2 9 0 1 A *CN102502901A* (21)申请号 201110286533.7 (22)申请日 2011.09.23 C02F 1/04(2006.01) C02F 1/20(2006.01) (71)申请人中国石油化工股份有限公司 地址 100728 北京市朝阳区朝阳门北大街 22号 申请人中国石化集团宁波工程有限公司 中国石化集团宁波技术研究院 (72)发明人许仁春 施程亮 邹杰 陈莉 卢新军 徐洁 唐永超 (74)专利代理机构宁波诚源专利事务所有限公 司。

2、 33102 代理人刘凤钦 (54) 发明名称 一种配套CO变换装置使用的冷凝液汽提方 法 (57) 摘要 本发明涉及到一种配套CO变换装置使用的 冷凝液汽提方法,其特征在于采用独创结构的汽 提塔配合汽提工艺流程,将来自上游的变换气经 过三次冷凝和三次分液,变换工艺冷凝液根据温 度的不同,分成多股物流,分别从不同的部位进 入汽提塔,科学合理的利用不同变换工艺冷凝液 的温位和能量梯度,起到降低汽提塔能耗的作用; 同时利用164的变换气作为汽提塔再沸器的 热源,显著降低了汽提系统能耗;与现有技术相 比,本发明汽提塔顶汽提出的不凝酸性气温度为 45,取消了塔顶不凝酸性气冷却器,不再消耗循 环冷却水,。

3、节省了设备投资,同时能耗进一步降 低。采用单塔汽提、冷热进料、侧线抽氨新技术,控 制更为简单、操作更加稳定、能耗更低。 (51)Int.Cl. 权利要求书2页 说明书6页 附图2页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 2 页 说明书 6 页 附图 2 页 1/2页 2 1.一种配套CO变换装置使用的冷凝液汽提方法,其特征在于该方法中所使用的汽提 塔的塔体包括相互连通且塔径依次减小的下段、中段和上段;其中,所述上段的塔体内填 充有填料;所述汽提塔通过设置在塔底的再沸器提供热量,对进入塔内的变换工艺冷凝液 进行汽提分离;所述汽提塔的塔顶设有供CO 2 气体排出的。

4、第一汽提气出口,汽提塔的塔底 设有净化工艺冷凝液出口,所述下段侧壁的上部分别设有供氨蒸汽排出的第二汽提气出口 和第一冷凝液入口,所述中段侧壁的上部以及所述上段侧壁的上部分别设有第二冷凝液入 口和第三冷凝液入口;所述汽提塔的塔底至所述的第二汽提气出口、所述第二汽提气出口 至所述的第二冷凝液入口、所述第二冷凝液入口至塔顶三部分的塔径之比为10.6 0.850.150.35; 使用上述汽提塔的冷凝液汽提方法如下: 从上游来的160180变换气首先进入汽提塔再沸器1,为汽提塔7提供汽提用热 量; 出汽提塔再沸器1的变换气温度降到155175,进入第一气液分离器2进行气液 分离,分液后的变换气进入脱盐水。

5、加热器3加热脱盐水;得到的变换气温度降低到85 95进入第二气液分离器4,从第二气液分离器4顶部出来的变换气进入循环水冷却器5进 一步降温到3540,然后进入第三气液分离器对变换气进行分液和洗涤;中压锅炉水 从第三气液分离器6上部喷入,洗去变换气中的微量杂质;洗涤后的变换气送去下游工序; 从第一气液分离器分离出的工艺冷凝液与上游来的工艺循环水混合后温度为155 175,从所述的第一冷凝液入口进入汽提塔7; 从第二气液分离器4分离出的工艺冷凝液换热至110130后,与来自汽提塔中间 冷凝器8的少量130冷凝液混合后,从所述的第二冷凝液入口进入汽提塔7; 从第三气液分离器6底部排出的温度为3540。

6、的锅炉水和工艺冷凝液从所述的 第三冷凝器入口进入汽提塔7; 所述的汽提塔操作条件为:塔顶压力0.20.5Mpa,温度3050;塔底压力0.2 0.5Mpa,温度145180。 在所述的汽提塔内,从第三冷凝液入口进入的温度为3540的锅炉水和工艺冷 凝液混合后,对汽提塔7下段和中段汽提出的进入上段的二氧化碳不凝酸性气进行冷却降 温和洗涤,洗去不凝酸性气中的少量氨,防止后系统铵盐结晶物产生;二氧化碳不凝酸性气 从汽提塔的第一汽提气出口排出; 从第二冷凝液入口进入汽提塔7的温度为110130的工艺冷凝液和来自汽提塔 中间冷凝器8底部的冷凝液混合后,对汽提塔7中下段和下段汽提出的汽提蒸汽进行冷却 降温。

7、和洗涤,汽提蒸汽中未被从第二汽提气出口抽走的氨大部分被洗涤下来,以减少进入 汽提塔7上段汽提气中的氨含量; 从第一冷凝液入口进入汽提塔7的温度为155175的工艺冷凝液和工艺循环水、 从第二冷凝液入口进入的冷凝液、从第三冷凝液入口进入的冷凝液三股流体全部混合后向 下流动,通过塔底部的再沸器提供热量,混合流体在下塔塔盘上逐渐被蒸汽汽提,汽提出的 140160的氨蒸汽大部分从第二汽提气出口被抽出; 在汽提塔7的底部得到145165的净化工艺冷凝液从工艺冷凝液出口排出,经过 滤器11除去杂质后分为两股,一股进入工艺冷凝液预热器10加热第二气液分离器分离出 权 利 要 求 书CN 102502901 。

8、A 2/2页 3 的工艺冷凝液,温度变为120130后送去上游,另外一股直接送去上游,两股净化工 艺冷凝液的比例为5131; 从第二汽提气出口抽出的氨蒸汽进入中间冷却器8用脱盐水冷却到130,分离出的 冷凝液与从工艺冷凝液预热器10处来的冷凝液混合后从第二冷凝液入口返回到汽提塔, 130的氨蒸汽接下来进入到汽提塔后冷器9中继续冷却,温度降到4055,分离出不 凝气后送去火炬系统,分离出的污水送污水处理系统。 2.根据权利要求1所述的配套CO变换装置使用的冷凝液汽提方法,其特征在于所述塔 体的上段填料高度为1.52.5米;所述塔体的中段和下段为塔盘结构,并且理论塔板数为 715块。 3.根据权利。

9、要求1或2所述的冷凝液汽提塔,其特征在于所述汽提塔的操作条件为: 塔顶压力0.20.5Mpa,温度3050;第三冷凝液入口压力0.30.8Mpa,温度30 50;第二冷凝液入口压力0.30.8Mpa,温度80130;第一冷凝液入口压力0.3 0.8Mpa,温度150180;第二汽提气出口压力0.20.5Mpa,温度140160;塔 底压力0.20.5Mpa,温度145180。 权 利 要 求 书CN 102502901 A 1/6页 4 一种配套 CO 变换装置使用的冷凝液汽提方法 技术领域 0001 本发明涉及到一种CO变换的低位余热回收和冷凝液汽提方法。 背景技术 0002 CO变换反应是。

10、指水蒸气和CO反应生成二氧化碳和氢气的过程,且是等摩尔强放 热反应。对于采用绝热变换炉的CO变换工艺流程,变换反应产生的高温变换气出变换炉后 可通过废热锅炉生产中压蒸汽,或者直接对高温变换气进行喷水激冷,达到增加变换气湿 度及降温目的,增湿降温后的变换气重新进入下一段绝热变换炉继续进行变换反应。 0003 可以看出,对CO变换反应产生的高温余热在变换炉之间回收比较容易,但对于变 换反应已完成,经过高位余热回收变换气温度低于170,此时,对低温余热的回收就比较 困难,因为下游工序通常要求变换气温度不超过40。所以温度在40170的低温变 换气余热如何合理有效的回收,是各种变换工艺流程都必须妥善解。

11、决的重点和难点问题。 0004 同时变换单元冷凝下来的凝液不能直接返回到前系统使用,因为变换工艺冷凝液 中溶解有少量氨和二氧化碳等腐蚀性有害气体。因此,只有将这些腐蚀性气体通过一定的 措施移除后,才能将净化后的变换净化工艺冷凝液循环补入到变换系统,以减少变换单元 废水排污量,同时提高水的利用效率。现有技术通常使用155以上的低压蒸汽来完成对变 换工艺冷凝液的汽提。 0005 现有的变换技术对低温余热回收和变换工艺冷凝液汽提存在如下缺陷: 0006 1)变换单元低温余热经过整个工艺系统平衡后仍然无法全部合理有效利用,工程 设计中迫不得已采用空冷器来冷却,变换气的温度是降下来了,但空冷器需要持续消。

12、耗电 能,变换装置能耗高;另外空冷器本身的投资也不菲; 0007 2)采用155以上的低压蒸汽来汽提变换工艺冷凝液,其后果是将低位热量重新 引入到了变换系统,汽提出的有害气体需要冷凝降温到50后,才能排入火炬系统,这时 又需要消耗冷却水!也就是说,引入系统的低压蒸汽最终需要消耗部分冷却水使之再次冷 凝; 0008 3)目前对变换工艺冷凝液的汽提多为单塔混合进料汽提流程,变换工艺冷凝液中 汽提出的二氧化碳和氨从塔顶混合排出,在后续的冷凝过程中,二氧化碳和氨极易生成铵 盐结晶物,造成管道和冷凝器堵塞,严重影响变换单元的稳定运行; 0009 4)汽提塔采用混合进料,将几股温度不同的冷凝液混合后,从汽。

13、提塔上部一次加 入,没有充分利用不同温度的变换工艺冷凝液的温度梯度,也就是说对几股物流的温位和 能量利用不够科学合理,其结果是出汽提塔的汽提气温度较高,增加了后系统对汽提气进 行冷凝的冷却水用量,同时也增加了用于汽提的低压蒸汽用量。 0010 如专利号为ZL 200910098944.6的中国发明专利所公开的一种CO变换中工艺冷 凝液的汽提方法,为了解决变换工艺冷凝液汽提系统发生铵盐结晶堵塞问题,其采用两个 汽提塔分别对二氧化碳和氨进行汽提,避免了二氧化碳和氨在冷凝系统中同时存在的可能 性,延长了变换装置稳定运行的周期。但仍然存在如下问题: 说 明 书CN 102502901 A 2/6页 5。

14、 0011 1)出二氧化碳汽提塔的汽提气温度较高,后序工序必须对汽提气进行冷凝,冷凝 需要消耗冷却水,能耗高; 0012 2)汽提塔操作系统控制复杂且欠稳定,原因是两个汽提塔通过管道连接,需要分 别控制上塔和下塔的操作压力来控制汽提蒸汽的二次分配量和抽氨量,任何一个汽提塔在 运行时发生压力波动,均会波及另外一个塔的压力稳定,进而影响汽提蒸汽的二次分配量 和抽氨量,因此,二次分配量和抽氨量参数控制比较困难且运行稳定性欠理想。 发明内容 0013 本发明所要解决的技术问题是针对现有技术的现状提供一种冷凝液汽提方法,其 通过有效利用不同物流的温差来充分回收变换低温余热,参数控制简单,运行稳定且能将 。

15、汽提气中氨和二氧化碳分别回收,避免了铵盐结晶堵塞问题。 0014 本发明解决上述技术问题所采用的技术方案为:该配套CO变换装置使用的冷凝 液汽提方法,其特征在于该方法中所使用的汽提塔的塔体包括相互连通且塔径依次减小的 下段、中段和上段;其中,所述上段的塔体内填充有填料;所述汽提塔通过设置在塔底的再 沸器提供热量,对进入塔内的变换工艺冷凝液进行汽提分离;所述汽提塔的塔顶设有供CO 2 气体排出的第一汽提气出口,汽提塔的塔底设有净化工艺冷凝液出口,所述下段侧壁的上 部分别设有供氨蒸汽排出的第二汽提气出口和第一冷凝液入口,所述中段侧壁的上部以及 所述上段侧壁的上部分别设有第二冷凝液入口和第三冷凝液入。

16、口;所述汽提塔的塔底至所 述的第二汽提气出口、所述第二汽提气出口至所述的第二冷凝液入口、所述第二冷凝液入 口至塔顶三部分的塔径之比为10.60.850.150.35; 0015 使用上述汽提塔的冷凝液汽提方法如下: 0016 从上游来的160180变换气首先进入汽提塔再沸器1,为汽提塔7提供汽提 用热量; 0017 出汽提塔再沸器1的变换气温度降到155175,进入第一气液分离器2进 行气液分离,分液后的变换气进入脱盐水加热器3加热脱盐水;得到的变换气温度降低到 8595进入第二气液分离器4,从第二气液分离器4顶部出来的变换气进入循环水冷 却器5进一步降温到3540,然后进入第三气液分离器对变。

17、换气进行分液和洗涤;中 压锅炉水从第三气液分离器6上部喷入,洗去变换气中的微量杂质;洗涤后的变换气送去 下游工序; 0018 从第一气液分离器分离出的工艺冷凝液与上游来的工艺循环水混合后温度为 155175,从所述的第一冷凝液入口进入汽提塔7; 0019 从第二气液分离器4分离出的工艺冷凝液换热至110130后,与来自汽提塔 中间冷凝器8的少量130冷凝液混合后,从所述的第二冷凝液入口进入汽提塔7; 0020 从第三气液分离器6底部排出的温度为3540的锅炉水和工艺冷凝液从所 述的第三冷凝器入口进入汽提塔7; 0021 所述的汽提塔操作条件为:塔顶压力0.20.5Mpa,温度3050;塔底压力。

18、 0.20.5Mpa,温度145180。 0022 在所述的汽提塔内,从第三冷凝液入口进入的温度为3540的锅炉水和工 艺冷凝液混合后,对汽提塔7下段和中段汽提出的进入上段的二氧化碳不凝酸性气进行冷 说 明 书CN 102502901 A 3/6页 6 却降温和洗涤,洗去不凝酸性气中的少量氨,防止后系统铵盐结晶物产生;二氧化碳不凝酸 性气从汽提塔的第一汽提气出口排出; 0023 从第二冷凝液入口进入汽提塔7的温度为110130的工艺冷凝液和来自汽 提塔中间冷凝器8底部的冷凝液混合后,对汽提塔7中下段和下段汽提出的汽提蒸汽进行 冷却降温和洗涤,汽提蒸汽中未被从第二汽提气出口抽走的氨大部分被洗涤下。

19、来,以减少 进入汽提塔7上段汽提气中的氨含量; 0024 从第一冷凝液入口进入汽提塔7的温度为155175的工艺冷凝液和工艺循 环水、从第二冷凝液入口进入的冷凝液、从第三冷凝液入口进入的冷凝液三股流体全部混 合后向下流动,通过塔底部的再沸器提供热量,混合流体在下塔塔盘上逐渐被蒸汽汽提,汽 提出的140160的氨蒸汽大部分从第二汽提气出口被抽出; 0025 在汽提塔7的底部得到145165的净化工艺冷凝液从工艺冷凝液出口排出, 经过滤器11除去杂质后分为两股,一股进入工艺冷凝液预热器10加热第二气液分离器分 离出的工艺冷凝液,温度变为120130后送去上游,另外一股直接送去上游,两股净 化工艺冷。

20、凝液的比例为5131; 0026 从第二汽提气出口抽出的氨蒸汽进入中间冷却器8用脱盐水冷却到130,分离 出的冷凝液与从工艺冷凝液预热器10处来的冷凝液混合后从第二冷凝液入口返回到汽提 塔,130的氨蒸汽接下来进入到汽提塔后冷器9中继续冷却,温度降到4055,分离 出的不凝气送去火炬系统,分离出的污水送污水处理系统。 0027 较好的,所述塔体的上段填料高度为1.52.5米;所述塔体的中段和下段为塔 盘结构,并且理论塔板数为715块。上塔直径较小,所以采用高效填料可降低塔压,分离 效率高,内部结构简单,填料安装以及更换方便,经多次模拟计算,3块理论板就可以完成汽 提要求。中塔和下塔直径较大,操。

21、作温度较高,被汽提的物料较脏,容易结垢,所以采用板式 塔,塔盘清洗方便,经化学工程模拟计算,715块理论板就可以完成汽提要求。 0028 与现有技术相比较,本发明有如下优点: 0029 1、利用164的变换气作为汽提塔再沸器的热源,没有使用常规流程中的低压蒸 汽来汽提变换工艺冷凝液,显著降低了汽提系统能耗。 0030 2、采用独创结构的汽提塔配合工艺流程,将来自上游的变换工艺冷凝液根据温度 的不同,分成多股物流,分别从不同的部位进入汽提塔,科学合理的利用不同变换工艺冷凝 液的温位和能量梯度,同样起到降低汽提塔能耗的作用。 0031 3、本发明汽提塔顶汽提出的不凝酸性气温度为45,与现有技术相比。

22、,取消了塔 顶不凝酸性气冷却器,不再消耗循环冷却水,节省了设备投资,同时能耗进一步降低。 0032 4、本发明根据二氧化碳和氨在变换工艺冷凝液中被汽提出的难易程度,将变换工 艺冷凝液中的二氧化碳在塔的顶部汽提出,氨在塔的中部汽提抽出,避免二氧化碳和氨在 冷凝系统中同时存在的可能性,有效解决铵盐结晶堵塞问题; 0033 5、采用单塔汽提、冷热进料、侧线抽氨新技术,相比上下双塔汽提技术,控制更为 简单、操作更加稳定、能耗更低。 附图说明 0034 图1为本发明实施例的工艺流程图; 说 明 书CN 102502901 A 4/6页 7 0035 图2为本发明实施例中汽提塔的结构示意图。 具体实施方式。

23、 0036 以下结合附图实施例对本发明作进一步详细描述。 0037 实施例 0038 如图1和图2所示,实施例所使用汽提塔7的结构如下: 0039 汽提塔的塔体包括相互连通且塔径依次减小的下段73、中段72和上段71;其中, 上段71为填料塔,上段塔体内填充有填料,填料的高度为2.0米;中段和下段为塔盘结构, 各自的理论塔板数为4块和5块。 0040 汽提塔的塔底设有再沸器冷凝液出口11,汽提塔的塔釜设有再沸器返回口12,汽 提塔再沸器1给汽提塔7提供热量,对进入塔内的工艺冷凝液进行汽提分离;汽提塔的塔顶 设有供CO 2 气体排出的第一汽提气出口74,汽提塔的塔底设有净化工艺冷凝液出口75,塔。

24、 体下段侧壁的上部分别设有供氨蒸汽排出的第二汽提气出口76和第一冷凝液入口77,塔 体中段侧壁的上部以及塔体上段侧壁的上部分别设有第二冷凝液入口78和第三冷凝液入 口79。 0041 汽提塔的塔底至所述的第二汽提气出口76、所述第二汽提气出口76至所述的第 二冷凝液入口78、所述第二冷凝液入口78至塔顶三部分的塔径之比为10.70.25。 0042 本实施例的汽提工艺如下: 0043 从上游来的164变换气首先进入汽提塔再沸器1,为汽提塔7汽提变换工艺冷凝 液提供热量,出汽提塔再沸器1的变换气温度降到159,进入第一气液分离器2分液,分 离出的变换工艺冷凝液和上游来的工艺循环水混合后从第一冷凝。

25、液入口进入汽提塔7;分 液后的变换气进入脱盐水加热器3加热脱盐水,变换气温度降低到90,然后进入第二气 液分离器4,分离出的90工艺冷凝液进入工艺冷凝液预热器10提温到120,再与来自 汽提塔中间冷凝器8底部的冷凝液混合后从第二冷凝液入口进入汽提塔7;从第二气液分 离器4顶部出来的变换气进入循环水冷却器5进一步降温到40,然后进入第三气液分离 器6对变换气进行分液和洗涤。从界区来的120中压锅炉水经锅炉水冷却器13冷却到 40,然后从第三气液分离器6上部侧壁喷出,洗去变换气中的微量杂质;洗涤后的变换气 去下游工序,第三气液分离器6底部的锅炉水和变换工艺冷凝液混合后统称变换工艺冷凝 液,温度为4。

26、0,从第三冷凝液入口进入汽提塔7。 0044 控制汽提塔塔顶压力0.20.5Mpa,温度3545;第三冷凝液入口压力0.3 0.8Mpa,温度3545;第二冷凝液入口压力0.30.8Mpa,温度110130;第一冷 凝液入口压力0.30.8Mpa,温度150160;第二汽提气出口压力0.20.5Mpa,温度 140155;塔底压力0.250.55Mpa,温度145160。 0045 在汽提塔7内,从第三气液分离器6来的40变换工艺冷凝液在汽提塔7的上 段上部喷出,对中段汽提出的汽提蒸汽进行冷却降温,同时对即将从汽提塔7顶部排出的 45二氧化碳不凝酸性气进行洗涤,洗去不凝酸性气中的氨,防止铵盐结。

27、晶物产生。 0046 从工艺冷凝液预热器10来的120冷凝液与来自汽提塔中间冷凝器8底部的 130冷凝液混合后温度变为121,从汽提塔7的中段上部喷出,对汽提塔7中段下部和下 段汽提出的汽提蒸汽进行冷却降温和洗涤,减少进入汽提塔7上段汽提气中的氨含量。从 说 明 书CN 102502901 A 5/6页 8 第一气液分离器2来的157变换工艺冷凝液以及上游来的157工艺循环水混合后从汽 提塔7的下段上部喷出。 0047 在汽提塔再沸器1的加热下,汽提出的147氨蒸汽从第二汽提气出口抽出,进入 汽提塔中间冷却器8用脱盐水冷却到130,分离出的冷凝液与来自工艺冷凝液预热器10 的冷凝液混合后从第二。

28、冷凝液入口返回汽提塔;130的氨蒸汽接下来进入到汽提塔后冷 器9用循环冷却水继续冷却,温度降到50,分离出的不凝酸性气去火炬系统,分离出的污 水送污水处理。 0048 在汽提塔7底部得到的147净化工艺冷凝液通过泵12加压,经过滤器11除去杂 质后分为两股。一股进入工艺冷凝液预热器10加热从第二气液分离器分离出的冷凝液,变 为130的低温工艺冷凝液后送去上游;另外一股不经过换热的147中温工艺冷凝液液 也去上游。 0049 对比例 0050 采用背景技术中的汽提塔,变换工艺冷凝液的处理量为60吨/小时。上游来的 40和90两股变换工艺冷凝液混合后一起从汽提塔的上部送入,通过喷头均匀喷出,低 压。

29、蒸汽从塔的下部引入,向下流动的变换工艺冷凝液和向上流动的低压蒸汽在填料层逆流 接触。出汽提塔的汽提气温度在140左右,汽提气中同时含有氨、二氧化碳和水蒸气,不能 直接排入火炬系统,必须经过后序的冷凝装置换热降温分液后才能送火炬系统焚烧,汽提 后的变换汽提冷凝液从塔底流出,重新循环补入到变换系统。冷却水用量大,并且汽提气中 氨和二氧化碳同时存在易发生铵盐结晶堵塞管道,装置稳定运行周期短。 0051 表1列出了相同处理量的情况下,实施例、对比例和ZL 200910098944.6物耗等具 体工艺情况。 0052 表1 0053 说 明 书CN 102502901 A 6/6页 9 0054 对比例。

30、中由于从汽提塔顶汽提出的汽提气中同时含有二氧化碳和氨,在后续的冷 凝过程中,二氧化碳和氨生成铵盐结晶物不可避免,因此管道和冷凝器堵塞情况严重。其最 长运行周期为4个月。 0055 对比例和ZL 200910098944.6是将不同温度的变换工艺冷凝液一起从冷凝液汽 提塔侧壁的上部一次性加入,没有充分利用不同物流的温度梯度,也就是说对几股物流的 温位和能量利用不够科学合理,其结果是出二氧化碳汽提塔的汽提气温度较高,因此后序 程序中汽提气的冷凝用水量多,同时用于汽提的低压蒸汽用量也高。由表1可以看出,实施 例中出汽提塔的二氧化碳汽提气的温度为45,因此不需要冷凝即可送入火炬系统焚烧, 省去了汽提塔顶冷凝器,可降低设备投资约20万元,至少节省冷却水用量50吨/小时;不 再消耗低压蒸汽。 说 明 书CN 102502901 A 1/2页 10 图1 说 明 书 附 图CN 102502901 A 10 2/2页 11 图2 说 明 书 附 图CN 102502901 A 11 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 水、废水、污水或污泥的处理


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1