移动控制装置、可移动机器人和移动到最佳交互点的方法.pdf

上传人:b*** 文档编号:4207214 上传时间:2018-09-06 格式:PDF 页数:19 大小:1.15MB
返回 下载 相关 举报
摘要
申请专利号:

CN201611049992.2

申请日:

2016.11.24

公开号:

CN106548231A

公开日:

2017.03.29

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):G06N 3/00申请日:20161124|||公开

IPC分类号:

G06N3/00; G05D1/02(2006.01)N

主分类号:

G06N3/00

申请人:

北京地平线机器人技术研发有限公司

发明人:

刘一鸣; 林鹏宏

地址:

100085 北京市海淀区上地信息路1号(北京实创高科技发展总公司1-1号,1-2号)1-1幢2层A栋02-114号

优先权:

专利代理机构:

北京市正见永申律师事务所 11497

代理人:

黄小临;冯玉清

PDF下载: PDF下载
内容摘要

本发明涉及移动控制装置、可移动机器人和移动到最佳交互点的方法。在一实施例中,一种使可移动机器人移动到最佳交互点的方法可包括:接收用户指令;基于该指令锁定用户;规划与该用户交互的最佳交互点;以及移动到该最佳交互点以与该用户进行交互。本发明的可移动机器人能够主动移动到与用户交互的最佳交互点以迎合用户的交互需求,从而改善用户的人机交互体验。

权利要求书

1.一种使可移动机器人移动到最佳交互点的方法,包括:
接收用户指令;
基于该指令锁定用户;
规划与该用户交互的最佳交互点;以及
移动到该最佳交互点以与该用户进行交互。
2.如权利要求1所述的方法,其中,接收用户指令包括接收用户的手势指令,锁定用户
包括利用图像识别来锁定该用户。
3.如权利要求1所述的方法,其中,接收用户指令包括接收用户的语音指令,锁定用户
包括利用声源定位来确定用户的方向,以及利用图像识别来锁定该用户。
4.如权利要求3所述的方法,其中,当确定用户的方向后,如果图像识别未能在该方向
上识别到用户,则该方法还包括使该可移动机器人朝向该方向移动预定距离以识别被障碍
物遮挡的用户。
5.如权利要求1所述的方法,在锁定用户之后,还包括:
判断可移动机器人是否处于与该用户进行交互的最佳交互点;
如果可移动机器人不处于最佳交互点,则执行规划与该用户交互的最佳交互点的步
骤。
6.如权利要求5所述的方法,其中,判断可移动机器人是否处于最佳交互点的步骤包
括:
对所锁定的用户执行多项检测,每项检测的结果对应一得分;
计算各项检测的总得分是否超过预定阈值,如果超过,则确定该可移动机器人处于最
佳交互点,如果未超过,则确定该可移动机器人不处于最佳交互点。
7.如权利要求6所述的方法,其中,计算各项检测的总得分包括将每项检测的得分乘以
其对应的权重,然后计算各个乘积的总和。
8.如权利要求1所述的方法,其中,规划与该用户交互的最佳交互点包括:
建立关于环境的实时地图;
确定用户在环境中的位置以建立关于用户的感知地图;
融合实时地图和感知地图以确定用户在环境中的位置,并且确定在该环境中与该用户
交互的最佳交互点;以及
规划从该可移动机器人的当前位置到该最佳交互点的移动路径。
9.如权利要求8所述的方法,其中,建立关于环境的实时地图包括:
载入静态环境地图;以及
通过利用传感器实时扫描环境来建立动态地图。
10.如权利要求8所述的方法,其中,建立关于用户的感知地图还包括:
跟踪用户的位置以预测用户的移动。
11.一种用于可移动机器人的移动控制装置,包括:
识别模块,用于基于用户的指令识别并且锁定用户;
最佳交互点规划模块,用于规划与该用户进行交互的最佳交互点;以及
移动控制模块,用于控制该可移动机器人移动到该最佳交互点。
12.如权利要求11所述的移动控制装置,其中,所述识别模块包括图像识别模块和语音
识别模块。
13.如权利要求11所述的移动控制装置,还包括:
判断模块,用于判断该可移动机器人是否处于与该用户进行交互的最佳交互点。
14.一种可移动机器人,包括:
一个或多个传感器,用于接收来自外界的输入;
驱动装置,用于驱动所述可移动机器人进行移动;以及
处理器,用于运行存储在机器可读介质上的计算机程序指令以执行权利要求1至10中
的任一项所述的方法。
15.一种计算机程序产品,包括计算机程序指令,所述计算机程序指令在被处理器运行
时使所述处理器执行权利要求1至10中的任一项所述的方法。

说明书

移动控制装置、可移动机器人和移动到最佳交互点的方法

技术领域

本发明总体上涉及人机交互领域,更特别地,涉及一种可移动机器人,其能够自主
移动到最佳交互点,从而改善用户的人机交互体验。

背景技术

可移动性对于机器人而言是一个重要特性,其能够大大提高机器人的功能性和实
用性,尤其是自主移动技术的发展,改善了可移动机器人的智能水平,使得可移动机器人已
经在诸多应用领域得到实用。

人机交互是用户操作和控制机器人的惯用手段,常见的人机交互方式包括语音交
互、视觉交互等。相比于固定式机器人,可移动机器人对于人机交互有更高的要求。例如,可
能会出现因为移动而导致交互位置过远或过近的情况,使用户感到不适;或者可能出现被
其他物体遮挡的情况,这会导致交互指令不能被正确地识别,从而影响交互效率。

然而,目前尚没有针对上述问题的良好解决方案,很多可移动机器人要求用户进
入到合适的区域或位置以进行交互,这会让用户感到不便。例如市场上存在的一种机器狗,
它能够与人进行正常的语音和视觉交互,但是需要人主动接近它才能进入视觉交互状态,
因此用户必须迎合机器狗以进行交互,交互舒适性不高。

因此,期望提供一种可移动机器人,其能够拟人化地迎合用户以进行交互,从而改
善用户的人机交互体验。

发明内容

本发明的一个方面在于提供一种移动控制装置,其能够用于控制可移动机器人移
动到最佳交互点以与用户交互,从而能够大大提高机器人的交互配合度,改善用户的交互
体验。

本发明的另一方面还提供这样的可移动机器人、以及使可移动机器人移动到最佳
交互点的方法。

根据一示例性实施例,一种使可移动机器人移动到最佳交互点的方法可包括:接
收用户指令;基于该指令锁定用户;规划与该用户交互的最佳交互点;以及移动到该最佳交
互点以与该用户进行交互。

在一示例中,接收用户指令包括接收用户的手势指令,锁定用户包括利用图像识
别来锁定该用户。

在一示例中,接收用户指令包括接收用户的语音指令,锁定用户包括利用声源定
位来确定用户的方向,以及利用图像识别来锁定该用户。

在一示例中,当确定用户的方向后,如果图像识别未能在该方向上识别到用户,则
该方法还包括使该可移动机器人朝向该方向移动预定距离以识别被障碍物遮挡的用户。

在一示例中,所述方法在锁定用户之后还包括:判断可移动机器人是否处于与该
用户进行交互的最佳交互点;如果可移动机器人不处于最佳交互点,则执行规划与该用户
交互的最佳交互点的步骤。

在一示例中,判断可移动机器人是否处于最佳交互点的步骤包括:对所锁定的用
户执行多项检测,每项检测的结果对应一得分;计算各项检测的总得分是否超过预定阈值,
如果超过,则确定该可移动机器人处于最佳交互点,如果未超过,则确定该可移动机器人不
处于最佳交互点。

在一示例中,计算各项检测的总得分包括将每项检测的得分乘以其对应的权重,
然后计算各个乘积的总和。

在一示例中,规划与该用户交互的最佳交互点包括:建立关于环境的实时地图;确
定用户在环境中的位置以建立关于用户的感知地图;融合实时地图和感知地图以确定用户
在环境中的位置和移动方向,并且确定在该环境中与该用户交互的最佳交互点;以及规划
从该可移动机器人的当前位置到该最佳交互点的移动路径。

在一示例中,建立关于环境的实时地图包括:载入静态地图;以及通过利用传感器
实时扫描周围环境来建立动态地图。

在一示例中,建立关于用户的感知地图还包括:跟踪用户的位置以预测用户的移
动。

根据另一示例性实施例,一种用于可移动机器人的移动控制装置可包括:识别模
块,用于基于用户的指令识别并且锁定用户;最佳交互点规划模块,用于规划与该用户进行
交互的最佳交互点;以及移动控制模块,用于控制该可移动机器人移动到该最佳交互点。

在一示例中,所述识别模块包括图像识别模块和语音识别模块。

在一示例中,所述移动控制装置还包括:判断模块,用于判断该可移动机器人是否
处于与该用户进行交互的最佳交互点。

根据本发明另一示例性实施例,一种可移动机器人可包括:一个或多个传感器,用
于接收来自外界的输入;驱动装置,用于驱动所述可移动机器人进行移动;以及处理器,用
于运行存储在机器可读介质上的计算机程序指令以执行上述方法。

根据本发明另一示例性实施例,一种计算机程序产品可包括计算机程序指令,所
述计算机程序指令在被处理器运行时使所述处理器执行上述方法。

附图说明

通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、
特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明
书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,
相同的参考标号通常代表相同部件或步骤。

图1是示出根据本发明一示例性实施例的使可移动机器人移动到最佳交互点的方
法的流程图。

图2是示出根据本发明一示例性实施例的判断可移动机器人是否处于最佳交互点
的方法的流程图。

图3示出根据本发明一示例性实施例的规划最佳交互点的方法的流程图。

图4A示出根据本发明一示例性实施例的静态地图的示例。

图4B示出根据本发明一示例性实施例的感知地图的示例。

图4C示出根据本发明一示例性实施例的动态地图的示例。

图4D示出根据本发明一示例性实施例的融合地图的示例。

图5是示出根据本发明另一示例性实施例的使可移动机器人移动到最佳交互点的
方法的流程图。

图6示出根据本发明一示例性实施例的移动控制装置的功能框图。

图7示出根据本发明一示例性实施例的可移动机器人的结构框图。

具体实施方式

下面,将参考附图详细地描述根据本发明的示例性实施例。显然,所描述的实施例
仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,这些示例性实施例仅
用于说明本发明的原理,本发明不受这里描述的示例性实施例的限制。

图1是示出根据本发明一示例性实施例的使可移动机器人移动到最佳交互点的方
法100的流程图。首先应理解的是,本文描述的可移动机器人可以是具有任何外观、功能、用
途的能够移动并且能够与用户交互的机器人,例如巡逻机器人、导游机器人、扫地机器人、
咨询服务机器人等。

如图1所示,方法100可始于步骤S101,可移动机器人处于监视模式,也可称为待命
模式。在该模式中,可移动机器人可以利用其上安装的各种传感器监视周围环境,以识别用
户输入的各种指令。可以理解,可移动机器人上可安装有各种传感器,典型的包括图像传感
器和语音传感器。图像传感器可以包括一个或多个单目、双目或更多目摄像头等,语音传感
器可包括麦克风或麦克风阵列,麦克风阵列包括按预定图案排列的多个麦克风,其配合处
理电路或软件能实现更多的功能,诸如降噪、声源定位等。当然,可移动机器人也可包括其
他类型的传感器,这里不再一一描述。利用这些传感器,可移动机器人可接收各种形式的用
户指令,包括视觉指令和语音指令等。

在步骤S102中,判断可移动机器人是否在预定时间内接收到用户指令。该预定时
间可以是任意时间段,例如三分钟、五分钟、十分钟等,可以根据具体的应用场景来设定。如
果可移动机器人在预定时间内未收到任何用户指令,则其可以进入休眠模式。与监视模式
不同,在休眠模式中可移动机器人的大多数功能模块可以停止工作,从而可以降低能耗。休
眠模式的可移动机器人仅监视特定的用户指令,即唤醒指令。唤醒指令可以是例如语音指
令,例如特定的关键词,或者是视觉指令,例如特定的手势或手势动作,也可以是其他指令。
应理解,唤醒指令不限于一个,而是可以使用多个唤醒指令,每个都可以用来唤醒可移动机
器人。在一些实施例中,也可以使用人脸识别来执行唤醒操作,这样只有特定的人才能够唤
醒可移动机器人。当在步骤S104中可移动机器人被唤醒指令唤醒时,其进入步骤S101的监
视模式,否则其保持在休眠模式。

当在步骤S102中接收到用户指令时,则方法100可以进行到步骤S105,在该步骤中
可移动机器人可以基于所接收到的用户指令来检测相应的用户。检测用户的方法可根据用
户指令而有所不同。例如,当用户指令是视觉指令,例如手势动作时,可以直接将在用户检
测为请求交互的用户;当用户指令是语音指令时,则可移动机器人可以旋转一圈以寻找用
户,如果周围只有一个用户,在将该用户确定为交互用户,如果周围有多个用户,则还可以
利用声源定位来确定语音指令的来源方向,从而将在该方向上的用户确定为交互用户。在
另一些实施例中,可移动机器人也可以先利用声源定位确定语音指令的来源方向,然后利
用图像识别直接检测该方向上的用户。

然而,可移动机器人的使用场景非常多样,因此其所面对的环境是复杂的。在一种
特殊场景下,有可能可移动机器人在通过声源定位确定的方向上不能检测到任何用户,例
如声源方向上的通道有拐弯,导致用户被遮挡。此时,在一实施例中,可移动机器人可以朝
向声源方向移动一定距离,再检测用户,从而可以检测到被障碍物遮挡的用户,大大提高可
移动机器人的智能水平。此外,在可移动机器人向声源方向行进以搜寻用户时,还可能接收
到用户的进一步语音指令提示,从而有助于检测到用户。

当可移动机器人在步骤S105中检测到与所接收的指令对应的交互用户时,就锁定
该用户。在步骤S106中可判断是否锁定了用户。如果仍未锁定用户,则可以返回到步骤
S102,判断是否接收到用户的进一步指令。

当在步骤S106中确定锁定了用户时,则方法100可以进行到步骤S107,判断可移动
机器人是否处于与当前用户进行交互的最佳交互点。判断是否处于最佳交互点的步骤S107
将在下面进一步详细地描述。如果在步骤S107中确定处于最佳交互点,则可移动机器人不
需要移动位置,可以保持在该位置以执行人机交互步骤S110。如果在步骤S107中确定可移
动机器人当前不处于最佳交互点,则方法100进行至步骤S108,在该步骤中规划最佳交互
点,然后在步骤S109中可以使可移动机器人移动到所规划的交互点,并且返回到步骤S107。
同样,规划最佳交互点的步骤S108也将在下面进一步详细描述。

应理解,即使在人机交互时,锁定用户也可能处于移动之中,从而最佳交互点可能
会发生变化。为了使可移动机器人保持处于最佳交互点,需要针对锁定用户重复执行步骤
S107,从而当用户移动而导致可移动机器人不再处于最佳交互点时,可以通过步骤S108来
重新规划最佳交互点,由此使得可移动机器人能够一直保持在最佳交互位置,直到交互结
束或因其他原因而使可移动机器人停止对该用户的锁定为止。此外应理解的是,最佳交互
点不限于一个位置点,而是包括能与用户进行方便、顺畅、舒适的人机交互的区域中的任意
位置点,这也将在下面进行进一步的描述。

上面描述了使可移动机器人移动到最佳交互点的大体方法过程100。图2示出根据
本发明一示例性实施例的判断可移动机器人是否处于最佳交互点的方法200的流程图。可
以理解,方法200可用于在图1的方法100中的步骤S107中执行。

由于可移动机器人的应用场景和环境很多,使得最佳交互点的确定可能因不同场
景而不同。在本发明的一实施例中,采用了综合检测、整体判断的方法来确定是否处于最佳
交互点。简言之,对锁定用户进行多项检测,每项检测的结果可以对应于一得分,通过计算
各项检测的总得分,来判断可移动机器人当前是否处于最佳交互点。

如图2所示,首先对锁定用户执行多项检测,例如,可以执行检测S201至S207中的
一种或多种,下面将逐一描述这些检测内容。

S201人脸检测,即检测可移动机器人是否能看到用户的人脸,根据看到的人脸的
大小,来给出相应的检测得分。如果能够看到完整的人脸正面,则得分高;如果只能看到人
脸侧面,或者只能看到部分人脸,则得分低。应理解,本发明不限于此,在一些应用场景中,
例如在恶作剧机器人的应用中,也可以在能检测到人脸正面时得分低。

S202头肩检测,即检测用户的头部和肩部轮廓。如果能够看到完整的头肩轮廓,则
得分高;如果只能看到头肩侧面,或者只能看到部分头肩轮廓,则得分低。同样,本发明不限
于此,在一些应用场景中,也可以在能检测到完整的头肩轮廓时得分低。

S203人体检测,即检测整个人体轮廓,该检测还能够得到从可移动机器人到人体
头部的大致视角。如果能检测到整个轮廓,并且从可移动机器人到人体头部的视角在舒适
的角度范围内,则得分高;反之,则得分低。

S204人手检测,即检测用户的人手。如果能检测到两个人手以及胳膊,表明可以方
便地检测用户的手势命令,则得分高;反之,如果只能检测到一只手,或者只能检测到部分
胳膊,则得分低。

S205距离检测,即检测可移动机器人与用户之间的水平距离,这可以利用专门的
距离传感器来检测,也可以利用双目甚至单目摄像头来检测。如果人机距离在合适的范围
内,则得分高,如果过远或过近,则得分低。

S206障碍检测,即检测可移动机器人与用户之间是否存在障碍遮挡。如果没有障
碍,则得分高;反之,则得分低。

S207位置检测,即检测用户在环境地图中的位置。可移动机器人中可存储有静态
环境地图,根据用户相对于可移动机器人的位置,即可确定用户在静态地图中的位置。根据
用户在环境地图中的位置,也可以确定可移动机器人的当前位置的得分高低。

虽然上面给出了针对示例检测的一些得分策略,但是应理解,本发明不限于这些
得分策略。而是,根据不同的应用场景,也可以采用不同的得分策略。例如,在某些应用场景
中能检测到一特征则得分高,而在另一些场景中能检测到该特征则得分低。这些变化都未
偏离本发明的原理,而是落在本发明的范围内。

还应理解的是,上面的这些检测可以不是彼此独立的,而是可以相互关联地来考
虑。例如,如果用户在环境中站在窗户前(位置检测S207)并且面向窗户外(头肩检测S202和
人脸检测S201),则用户身后的位置得分较高(位置检测S207)。此外,各项检测的得分可以
具有相应的权重。例如,人脸检测S201和人手检测S204可以具有较高的权重,人体检测S203
可以具有较低的权重,等等。还应理解的是,也可以对用户执行这里未列出的其他检测。

然后在步骤S208,计算各项检测的总得分,或者是带权重的总得分。在步骤S209中
将总得分与预定阈值相比较。如果超过预定阈值,则在步骤S211中确定可移动机器人当前
处于最佳交互点;否则,则在步骤S210中确定可移动机器人当前不处于最佳交互点。

应理解,对于不同的应用环境,上述各项检测的得分和权重、以及预定阈值可以有
所不同。在本发明一示例性实施例中,可以事先通过机器学习来为各种应用场景建立模型,
从而能够针对具体的应用场景准确地判断是否处于最佳交互点。

当可移动机器人当前不处于最佳交互点时,如图1所示,需要规划最佳交互点。图3
示出根据本发明一示例性实施例的规划最佳交互点的方法300的流程图。如图3所示,方法
300可以始于开始步骤S301,然后在步骤S302中载入静态地图,并且在步骤S303中建立动态
地图。

将理解的是,静态地图是可移动机器人的使用环境中的静止对象构成的地图,其
示例示于图4A中。如图4A所示,静态地图包括可移动机器人401所在的环境中的固定障碍
402。动态地图则是可移动机器人的使用环境中的经常移动的对象构成的地图,其示例示于
图4C中。如图4C所示,动态地图包括可移动机器人401所在的环境中的不固定(动态)障碍
404。应理解的是,固定障碍和动态障碍可能相互转化。例如,当动态障碍404长时间固定不
动时,可移动机器人401可将其识别为固定障碍,并且更新静态地图。另一方面,如果某一固
定障碍突然从原来的位置移动离开,则可移动机器人401同样更新静态地图,去除该固定障
碍。静态地图和动态地图示出了可移动机器人401的使用环境中的所有障碍。

在步骤S302中,可移动机器人可以直接载入其所存储的静态地图;在步骤S303中,
可移动机器人则需要使用各种传感器(例如摄像头、雷达等)对环境进行扫描,以建立动态
地图。静态地图和动态地图的组合构成了实时环境地图。虽然图3示出了载入静态地图的步
骤S302和建立动态地图的步骤S303,但是在本发明另一示例性实施例中,也可以不使用静
态地图,而是通过实时扫描来建立整个实时环境地图。使用静态地图的方案是优选的,因为
这将大大提高视觉定位的鲁棒性,同时减小对于固定障碍的扫描和识别的计算量,从而缩
短处理时间。

继续参照图3,在步骤S304中持续跟踪用户,从而可以在步骤S305中预测用户的移
动。例如,如果检测到用户正以一速度朝向一方向移动,则可以预测该用户在一定时间内的
位置。然后,在步骤S306中建立感知地图,感知地图可以是关于用户的当前位置、移动速度、
移动方向、以及预测位置中的一项或多项的地图。图4B示出了感知地图的示例,其示出了用
户403正以速度v朝向一方向移动。

接下来,在步骤S307中进行静态地图、动态地图(或者相当于二者的组合的实时地
图)、以及感知地图的融合,产生融合地图,其示例示于附图4D中。如图4D所示,融合地图包
括环境中的所有障碍以及用户在环境中的位置,可选地还包括用户的当前移动状态、以及
所预测的用户的将来位置。

基于该融合地图,即可在步骤S308中确定最佳交互点。应理解,确定最佳交互点的
策略有多种。例如,如果用户静止不动,则可以确定用户面前适当距离处的一个区域为最佳
交互点。如果用户面向窗外,则可以选择用户后方或侧后方适当距离处的一个区域为最佳
交互点。如果用户正在移动,则可以预测用户403在一短时间后的位置,该时间可以大致取
决于可移动机器人401与用户403之间的距离,即可移动机器人401走到用户403当前位置附
近所需的时间,然后根据该预测位置来规划最佳交互点,例如在该用户后面一适当距离处。
可以根据不同的场景来应用不同的策略以确定最佳交互点。还应理解的是,最佳交互点不
局限于某个点,而是能够在该场景下方便、舒适地进行类似人与人之间的交流的区域中包
括的所有点,都可以被认为是最佳交互点。当存在多个点时,可移动机器人可以根据预先设
置的策略自动地选取某一点。

在步骤S308中确定了最佳交互点之后,可以在步骤S309中规划可移动机器人401
从当前位置移动到最佳交互点的路径,该路径规划可以利用融合地图方便地进行,图4D示
出了规划得到的路径的示例,如从可移动机器人401引出的虚线箭头所示。这样,可移动机
器人401可以越过障碍,包括固定障碍402和动态障碍404等,到达合适的位置与用户403进
行交互。

如上所述,通过采用图2所示的判断方法和图3所示的规划方法,即可完成图1所示
的使可移动机器人移动到最佳交互点的方法。由此,在接收到来自用户的请求交互的指令
后,可移动机器人能够判断用户,并且主动移动到最佳交互点,迎合用户进行交互,提高了
机器人的智能化水平,使用户能够获得更富满足感的交互体验。

图5是示出根据本发明另一示例性实施例的使可移动机器人移动到最佳交互点的
方法500的流程图。可以看出,方法500基本采用了与方法100相同的步骤,只是省略了判断
步骤S107。下面仅描述方法500与方向100不同的部分。

如图5所示,在步骤S106中确定锁定了用户之后,即可在步骤S108中规划最佳交互
点。同样,规划最佳交互点的步骤S108可以如图3所示的方法300那样执行。然后在步骤
S109,可移动机器人可以移动到所规划的最佳交互点,并且在该位置进行人机交互步骤
S110。应理解的是,由于用户可能移动,所以规划最佳交互点的步骤S108可移动到最佳交互
点的步骤S109是在交互过程中不断重复地进行的,从而使得可移动机器人可以保持在最佳
交互位置,直到交互结束或因其他原因而使可移动机器人停止对该用户的锁定为止。

与图1所示的方法100相比,方法500省略了判断步骤S107,而是通过重复执行规划
步骤S108并且在步骤S109中使可移动机器人移动到规划的交互点来使可移动机器人保持
在最佳交互点。因此,方法500更简单,且易于执行。

图6示出根据本发明一示例性实施例的移动控制装置600的功能框图。如图6所示,
移动控制装置600可包括识别模块610,其可用于识别用户的指令并且锁定用户。例如,识别
模块610可包括图像识别模块612和语音识别模块614以接收来自用户的视觉指令或语音指
令,并且通过图像检测、声源定位等技术来锁定用户。将理解的是,除了接收用户指令之外,
识别模块610还可用于识别各种其他环境数据,例如用于关于图2描述的各种检测以及关于
图3描述的建图步骤等。

移动控制装置600还可包括最佳交互点规划模块620和移动控制模块630。最佳交
互点规划模块620可用于规划与用户进行交互的最佳交互点,如关于图3描述的那样,这里
不再重复描述。基于规划模块620规划的最佳交互点,移动控制模块630可以控制可移动机
器人移动到该最佳交互点。

可选地,移动控制装置600还可包括判断模块640,其可配置为执行图2所示的判断
操作。具体而言,判断模块640可以与识别单元610协作,确定对用户和环境的逐项检测的得
分,确定得分的总和或加权总和,并且基于该总和来确定可移动机器人当前是否处于最佳
交互点。

因此,图6的移动控制装置600可配置来执行前面关于图1-3、5所描述的方法。应理
解的是,移动控制装置600的这些功能块可以通过硬件、软件、硬件与软件的组合、固件等形
式来实施以实现其功能。还可以理解的是,图6描绘的功能框中每个都可以组合或者分离成
子框以实施上面描述的本发明的原理。因此,这里的描述可以支持这里描述的功能框的任
何可行的组合或分离或者进一步定义。

图7示出根据本发明一示例性实施例的可移动机器人700的结构框图。如图7所示,
可移动机器人700可包括多个传感器710a和710b、存储器720、交互装置730、驱动装置740和
处理器750,它们通过总线系统760彼此连接。

如图7所示,多个传感器710a、710b可以分别是图像传感器和语音传感器。例如,图
像传感器710a可以是单目摄像头、双目摄像头或者更多目的摄像头等,语音传感器710b可
以是麦克风或麦克风阵列,麦克风阵列包括按预定图案排列的多个麦克风。虽然图7示出了
两个传感器,但是应理解,可移动机器人700可包括更多或更少的传感器,例如仅包括图像
传感器,或者出了图像和语音传感器之外还包括诸如雷达之类的距离传感器等。

存储器720可以是其上存储有计算机程序指令的各种形式的计算机可读存储介
质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存
储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储
器(ROM)、硬盘、闪存等。所述存储器720还可以是可移除存储器或者诸如网络附属存储
(NAS)之类的远程存储器。存储器720中还可以存储各种其他应用程序和数据,例如用户数
据、用于人机交互的知识数据库等。

交互装置730可用于与用户执行人机交互,其可因可移动机器人700的具体用途而
具有特定的交互功能。例如,交互装置730可包括扬声器、显示屏、各种颜色的指示灯等。

驱动装置740可以驱动可移动机器人700的驱动轮或者履带从而使可移动机器人
700移动到期望的位置。例如,驱动装置740可以是驱动电机,其可以由可移动机器人700中
的蓄电池供电,或者可以通过电缆连接到插座以获取供电。

处理器750可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力
的其他形式的处理单元、处理核、或控制器。处理器750可以执行存储器720中存储的计算机
程序指令,从而使得可移动机器人700能够执行前面参照图1-3、5-6描述的步骤或方法,这
里不再对这些步骤或方法进行重复的描述,但是基于前面的描述,这里对这些步骤或方法
的执行对于本领域技术人员而言是清楚的。

除了上述方法、装置和设备以外,本申请的各示例性实施例还可以包括计算机程
序产品,其包括有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理
器执行本说明书中描述的根据本发明各示例性实施例的步骤和方法。

所述计算机程序产品所包括的程序指令可以由一种或多种程序设计语言编写,所
述程序设计语言的示例包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过
程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在可移动机
器人上执行、部分地在可移动机器人上执行、作为一个独立的软件包执行、部分在可移动机
器人上部分在远程计算设备(例如,用户的便携式电子设备,诸如手机或平板)上执行、或者
完全在远程计算设备或服务器上执行。

此外,本发明的示例性实施例还可以是计算机可读存储介质,其上存储有计算机
程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书描述的根
据本发明各示例性实施例的步骤或步骤。

所述计算机可读存储介质可以采用一种或多种机器可读介质的任意组合。可读介
质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、
光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更
具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存
取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式
紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。

以上结合示例性实施例描述了本发明的基本原理,但是需要指出的是,在本申请
中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请
的各个实施例必须同时具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理
解的作用,而非限制,上述细节并不将本发明限制为必须采用上述具体的细节来实现。

本发明中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图
要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到
的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。本申请提供的流程图所示
的方法并不限于流程图的说明顺序,而是,多个步骤可以按照不同的顺序执行,或者两个或
更多步骤可以同时执行,这些变化对于本领域技术人员而言是显见的。诸如“包括”、“包
含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用
的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这
里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。

还需要指出的是,在本申请的设备和方法中,各部件或各步骤是可以分解和/或重
新组合的。这些分解和/或重新组合应视为本申请的等效方案。

提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本
申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义
的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在
此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。

为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实
施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技
术人员将认识到其某些变型、修改、改变、添加和子组合。

移动控制装置、可移动机器人和移动到最佳交互点的方法.pdf_第1页
第1页 / 共19页
移动控制装置、可移动机器人和移动到最佳交互点的方法.pdf_第2页
第2页 / 共19页
移动控制装置、可移动机器人和移动到最佳交互点的方法.pdf_第3页
第3页 / 共19页
点击查看更多>>
资源描述

《移动控制装置、可移动机器人和移动到最佳交互点的方法.pdf》由会员分享,可在线阅读,更多相关《移动控制装置、可移动机器人和移动到最佳交互点的方法.pdf(19页珍藏版)》请在专利查询网上搜索。

本发明涉及移动控制装置、可移动机器人和移动到最佳交互点的方法。在一实施例中,一种使可移动机器人移动到最佳交互点的方法可包括:接收用户指令;基于该指令锁定用户;规划与该用户交互的最佳交互点;以及移动到该最佳交互点以与该用户进行交互。本发明的可移动机器人能够主动移动到与用户交互的最佳交互点以迎合用户的交互需求,从而改善用户的人机交互体验。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1