抗飞磨粒及其制备方法以及磨料产物.pdf

上传人:1520****312 文档编号:406203 上传时间:2018-02-14 格式:PDF 页数:29 大小:1.12MB
返回 下载 相关 举报
摘要
申请专利号:

CN89107843.6

申请日:

1989.10.13

公开号:

CN1040814A

公开日:

1990.03.28

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)授权公告日:1993.5.19|||保护期延长|||授权||||||公开

IPC分类号:

C09K3/14; C04B35/10; C04B35/64

主分类号:

C09K3/14; C04B35/10; C04B35/64

申请人:

明尼苏达州采矿制造公司

发明人:

弗嫩·M·沃尔特; 罗伯特·S·科克

地址:

美国明尼苏达州

优先权:

1988.10.14 US 258,196

专利代理机构:

中国国际贸易促进委员会专利代理部

代理人:

陈季壮

PDF下载: PDF下载
内容摘要

提供了表面积提高了的烧结陶瓷磨粒及其制备方法,加入这种磨粒可改善“抗飞”磨料制品,涂覆的磨料、磨轮和无纺磨料。陶瓷磨粒的制备方法如下:提供由α-氧化铝前体构成的第一种颗粒;导入细颗粒,这种细颗粒在第一种颗粒的烧结条件下能直接烧结到第一种颗粒的表面上;在烧结条件下加热混合物,使细颗粒自粘结到每一个第一种颗粒的表面上。

权利要求书

1: 1、一种制备陶瓷磨粒的方法,所述磨粒的特征在于具有自粘结到其表面上的无机材料的单独的凸出体,所述方法包括以下步骤: (a)提供第一种颗粒体,这种颗粒体含有α-氧化铝前体物质,其各颗粒能烧结成α-氧化铝基磨粒; (b)导入远比所述第一种颗粒细的第二种颗粒导入第一种颗粒中,所述第二种颗粒在所述第一种颗粒的烧结条件下能自粘结到所述第一种颗粒的表面上;以及 (c)在烧结条件下加热所述颗粒,以烧结第一种颗粒并使所述第二种颗粒自粘结到所述第一种颗粒的各颗粒的表面上。 2、权利要求1的方法,其中所述第二种颗粒的导入是通过滚磨所述第一种颗粒以在基本不影响所述第一种颗粒的粒径的条件下使所述第一种颗粒磨掉其表面形成所述第二种颗粒并使所述第二种颗粒粘着到各所述第一种颗粒的表面上而进行的。 3、权利要求1的方法,其中所述导入是加入所述第二种颗粒且所述第二种颗粒是由与形成所述第一种颗粒的物质组成不同的材料构成。 4、权利要求3的方法,其中滚磨所述第二种颗粒和所述第一种颗粒以使所述第二种颗粒粘着到各所述第一种颗粒的表面上。 5、权利要求1的方法,其中所述第一种颗粒的制备如下: (d)提供氧化铝水合物的水分散体的混合物; (e)使混合物胶化; (f)干燥胶化的混合物以得到干燥的固体;和 (g)压碎干燥的固化以得到所述第一种颗粒。 6、权利要求1的方法,包括至少煅烧所述第一种颗粒以在步骤(b)前基本上除去粘合的挥发性物质的另外步骤。 7、一种含有α-氧化铝基陶瓷颗粒的磨粒,这种磨粒具有自粘结到其表面上的无机材料的分离的突出体。 8、一种含有磨粒的磨料制品,这种磨料制品中至少一部分磨粒是权利要求7的磨粒。 9、权利要求8的磨料制品为涂覆的缶,它是由具有自粘结到其至少一侧的所述磨粒的背材构成。 10、权利要求8的磨料制品为粘合的磨料制品,它包括所述磨粒的成型物。 11、权利要求10的磨料制品,其中所述的成型物呈磨轮状形式。 12、权利要求8的磨料制品为结实的无纺磨料制品,它由张开的多孔结实的聚合物丝状结构材成,具有遍布的所述磨粒且用粘合材料粘合到所述结构内。 13、权利要求7的磨粒,其中各磨粒的表面积比基本上至少为
2: 5。 14、权利要求13的磨粒,其中所述的表面积比至少为
3: 0。

说明书


本发明涉及抗飞陶瓷磨粒及其制备方法以及含有这种磨粒的磨料产物。

    飞粒是熟悉磨料工业、特别是涂覆的磨料工业的专业人员常用的术语,指的是这样的现象,即磨粒过早地从粘合系统中脱落(所说的粘合系统典型地是用以在整个磨粒的使用寿命中固定磨粒)。当初,采用术语“飞粒”也许是由于一些人认为这种磨粒从粘合系统中脱落的现象与谷物去壳作业中谷物从谷穗中分离类似。尽管也有一些例外(例如磨料产物以磨粒来源形式供游浆使用时),但磨粒从磨料制品中飞粒是不希望的,因为它具有降低磨料制品的效率的作用,这是由于失去磨料所致的损失了磨面以及以下说明的其它原因造成的。由飞粒造成的效率降低可在各类磨料制品中见到,例如粘合的磨料制品(象磨轮一类)和无纺磨料制品,但在涂覆的磨料制品中特别显著。在这些制品中,基本上全部磨粒由粘合系统约束在片材上,其各颗粒一端典型地暴露或几乎暴露出来。由于飞粒,磨粒从涂覆的磨料制品中遗失掉,在涂覆的磨料表面上提供了非磨料区,因而降低了磨料效率,而且还造成表面磨光不均匀。

    用磨料制品去除严重毛坯的应用场合下,飞粒问题特别显著。在这种应用中,磨料制品要能经受住高地压力和转速,而且还要提供充分的磨削。例如,涂覆的磨盘可以每分钟旋转12,000转,而且要经受高达15kg/cm2的界面压力。尽管这些苛刻的条件因通常会提高切削速度而受推荐,但它们会使磨粒和粘合系统之间的粘合力受到严重影响。如果这种粘合力失效,磨粒将以极高的速率从涂覆的磨料制品中射出(或剥离掉),这可能会对损伤人员造成严重伤害,特别是当磨粒是大粒度粗砂时。这种危害对磨料工业中的工作人员具有厉害关系,有时因可能的安全性问题使产品不能以其充分可能的潜力使用。

    此外,许多磨料制品,特别是涂覆的磨料制品采用了湿敏的树脂粘合系统,这些常用的粘合系统大多数含有酚醛树脂。已经知道,酚醛树脂基粘合系统随着研磨条件湿含量提高,磨料制品飞粒的可能性也就相应提高。

    已提出许多解决飞粒问题的方案,但这些方案或是因不能实施、费用高而实用性很小,或是不特别适用于烧结陶瓷磨粒。

    详细涉及解决飞粒问题的最早公知的文献是美国专利1,528,453(Hartmann),该专利公开了一种处理晶体矿物的方法,包括刻痕和粗化颗粒表面,从而提高其粘合性。各种其它文献公开了将小颗粒粘合到大颗粒的表面以提高表面积的方法,即利用粘合层或粘结助剂以得到表面粘合有更小的颗粒物质的颗粒。例如,美国专利3,269,815(Koopman)公开了用细散的固体颗粒(如碳化物和氮化物)涂覆磨粒。方法是用薄层陶瓷膜(如玻璃)将这些细颗粒粘结到颗粒上。所述薄层陶瓷膜在低于磨粒或固体物料的软化或熔融温度下软化,从而将细散的颗粒粘结到磨粒上以促进树脂粘合和提高粘合的磨料制品中磨粒间的粘结强度。另外,美国专利4,472,173(Bruning等人)公开了金刚砂磨粒,这种磨粒涂有磨过的烧结物、粘合剂和高细颗粒磨料(用于改善磨粒在其加工中对树脂粘合的磨料的粘结性)。

    此外,某些文献公开了形成更小颗粒紧密体的方法,所说的紧密体固有的表面粗度很高。例如,美国专利4,252,544(Takahashi)公开了用电熔融或高温煅烧的氧化铝粗晶粒和位于氧化铝粗晶粒间的氧化铝细晶粒构成的氧化铝磨粒。这些磨粒是按以下方法加工的,即形成特定类型的氧化铝粗粉,形成特定类型的氧化铝细粉,在水或(需要的话)伯胺粘合剂存在下将这两种粗粉和细粉搓揉,利用机械挤压机挤压经搓揉的物料,干燥挤压过的物料,按预定长度切割挤压过的物料,和在高于细粉状氧化铝煅烧温度及低于1700℃的温度下烧结干燥的和切成片的挤压过的物料。

    上述任何文献都未指出,按其讲述的方法能制备出具有要求的物理特性的二氧化铝基陶瓷磨粒,条件是不加粘合层或粘结助剂改变或改性陶瓷磨粒。举例来说,需要按本发明改进的陶瓷磨粒的类型是美国专利4,744,802(Schuabel)介绍的类型。公开了制备这类氧化铝基陶瓷磨粒的其它文献包括美国专利4,314,827(Leitheiser等人),4,518,397(Leitheiser等人)和4,574,003(Gerk)。

    上述文献没有一篇介绍具有小的分离的颗粒无机材料体自粘结到其表面上的陶瓷颗粒材料,以得到抗飞粒的改进的磨粒或磨料制品,如粘结的磨料制品、无纺磨料制品和涂覆的磨料制品(它们均含有颗粒无机材料体)。

    本发明提供了改进的磨粒,所说的磨粒是由小的分离的无机材料凸出体自粘结到其表面上的陶瓷材料构成。术语“自粘结”意指在没有任何类型的外部粘合介质(如粘结助剂、玻璃质粘合材料、有机粘合剂、玻璃等)的条件下,分离的小的表面体被粘结到各陶瓷颗粒的表面上。表面颗粒材料的粘结完全是由于形成磨粒材料的前体和形成无机体材料的前体之间无粘合剂粘结的结果,最终通过烧制这两种前体材料,在它们之间形成永久结合,从而形成陶瓷材料。

    已出乎意料地发现,在烧接作业中,无机表面体可在陶瓷磨粒上形成凸出体,而不有害地影响所得磨粒研磨特性。所得的磨粒具有由附着的突出体提供的鼓胀的表面,从而得到比传统的无突出体的表面更抗飞粒的结构,而且在某些情况下具有出乎意料的改进的性能。

    更具体地说,本发明提供了制备陶瓷磨粒的方法,这种方法制得的各磨粒的特征在于具有自粘结到磨粒表面上的众多的小的分离的凸出的无机材料体,该方法包括以下步骤:提供含α-氧化铝前体物质的第一种颗粒物,其各颗粒能烧结成α-氧化铝基磨粒;将比第一种颗粒更细的第二种颗粒导入颗粒物中,所说的第二种颗粒在将第一种颗粒烧结成无机材料的硬的凸出体的条件下能自粘结到第一种颗粒的表面上;在烧结条件下加热颗粒以烧结第一种颗粒并使第二种颗粒自粘结到每个第一种颗粒的表面上。

    该方法考虑通过滚磨第一种颗粒(即转鼓过程),使第一种颗粒磨掉其表面而形成第二种颗粒的方法引入第二种颗粒。这样做基本上不会对第一种颗粒的粒径产生影响。持续滚磨,直至生成的第二种颗粒附着在第一种颗粒的各颗粒表面为止。该方法还考虑通过将第二种颗粒加到第一种颗粒中,引入与形成第一种颗粒的物质组成不同的第二种颗粒。然后,将使第二种颗粒与第一种颗粒一起滚磨,使第二种颗粒附着到第一种颗粒的表面上。

    优选的方法涉及制备第一种颗粒,方法是提供氧化铝水合物的水分散体混合物,使混合物胶化,干燥胶化的混合物以得到干燥的固体,和压碎干燥的固体以得到第一种颗粒。

    该方法可包括在将第二种颗粒引入第一种颗粒物料之前至少煅烧第一种颗粒的步骤,以基本上除去粘合的挥发物。

    如前指出,本发明的磨粒含α-氧化铝基陶瓷颗粒,这些陶瓷颗粒具有自粘结的无机材料体,以在各磨粒上提供多个表面突出体。本发明优选的磨粒具有由以下一种物质构成的表面突出体,所述物质选自氧化铝,α-氧化铝,氧化铝:氧化锆,氧化锆,氮化硅,稀土金属氧化物,氧化钇,氧化铬,氧化铈,碳化钛,硅铝氧氮化物硅铝氧碳化物,钇氧化铝-石榴石,六方稀土铝酸盐,氧氮化铝、锌、镁或镍的氧化物和其混合物。

    本发明的磨粒还考虑在α-氧化铝基陶瓷中包括至少一种改性的添加剂。这种改性的添加剂最好是选自下述金属的一种或多种金属氧化物:镁、锌、锆、铬、钴、镍、钇、镨、钐、镱、钕、、钆、铯、镝和铒。

    本发明还提供了用本发明的磨粒制成的磨料制品。这些磨料制品可以采用以下形式:涂覆的磨料制品,粘合的磨料制品,如磨轮,搪磨石等(它们可包括玻璃质或非玻璃质的粘合剂,例如有机粘合剂)或无纺磨料制品。

    本发明的陶瓷磨料的表面积得到提高,从而在磨料型制品中改善了对粘合系统的粘着力。通过改善粘着力,磨料制品可在高压下使用,这便会提高去除毛坯的速率。另外,含本发明磨粒的磨料制品,与未经本文所述的磨粒表面改进制得的相应的磨料制品相比,从工件上磨掉毛料的速度更快。

    通过参考附图进一步说明本发明,其中:

    图1是本发明磨粒表面的700倍显微照片,摄像用的是扫描电子显微镜;

    图2是市售陶瓷磨粒表面的700倍显微照片,这种磨粒的组成与图1的磨粒相同,只是未按照本发明进行表面改进。

    本发明涉及α-氧化铝基陶瓷磨粒,它们是通过干燥和在陶瓷熔融温度以下烧制颗粒前体物料以使脱水的原料烧结而制备的。在加热过程中,前体物料将转化成脱水的金属氧化物结构。这种结构随加热的持续而致密。最普通的α-氧化铝基陶瓷可以用金属(如镁、镍、锌)氧化物、氧化钇、稀土氧化物、氧化锆、氧化铬等改性。制备陶瓷磨粒的优选的方法是所谓凝胶法,此方法在以下美国专利中有介绍:4,314,827;4,518,397;4,574,0034,623,364和4,744,802。

    为制备凝胶α-氧化铝基陶瓷磨粒,先形成一种含约2-约60wt%α-氧化铝-水合物(如-水软铝石)的分散体。一水软铝石既可以用本技术领域公知的各种技术制备,也可以从大量的厂商购买。市售的这种物质的例子有D:SperalTM(Condea Chemie生产)GMBH和CatapalTM(Vista化学公司生产)。这些氧化铝-水合物呈α-形式且相当钝(如果有的话,含相当低的一水合物除外的水合物),而且表面积很高。

    这种分散体可含有一种改性添加剂的前体,加入这种改性添加剂是为了提高成品的所需特性或提高烧结步骤的效率。这些添加剂是水溶盐形式,典型的是水溶性的,一般由含金属的化合物构成,它们可以是镁、锌、钴、镍、锆、铪、镍、锆、铬、钛、钇的氧化物、稀土氧化物及其混合物的前体。对本发明来说,这些组分在分散体中的确切比例并不严格,因此可方便地改变。

    通常,将胶化剂添加到一水软铝石分散体中,以得到更稳定的水溶胶或胶态分散体。可用作胶化剂的一元酸包括醋酸、盐酸、甲酸和硝酸。硝酸是优选的胶化剂。通常避免用多元酸,因为它们迅速使分散体胶化,使其难以处理或混合在另外的组分中。某些市售的一水软铝石含有某种酸附物(如吸附的甲酸或硝酸),便于形成稳定的分散体。

    可采用任何合适的方法形成分散体,这些方法可简单地使氧化铝一水合物与含胶化剂的水混合,也可以通过形成加有胶化剂的氧化铝一水合物淤浆实现。一旦形成了分散体,最好使其胶化,可通过任何传统技术,如添加含改性添加剂的溶解的或分散的金属(如硝酸镁),这类技术的某些组合,从分散体中除水,形成凝胶体。

    分散体可含有成核剂,以提高α-氧化铝转变。合适的成核剂有α-氧化铝、α-氧化铁或其前体和任何其它能成核转变的物质的细颗粒。成核剂的用量应足以引起核化。美国专利4,744,802介绍了这种分散体的成核方法。

    一旦形成了凝胶体,可通过任何方法的方法,如压制、模塑、涂覆或挤出将其成型,然后精心干燥以得到干燥的固体物料。

    凝胶体可典型的在低于胶体起泡温度下,挤出或简单地分布成方便的形状并干燥。可采用几种脱水方法中任何一种,包括溶剂萃取法在内,以除去凝胶体的游离水形成固体。

    在凝胶体干燥后,可采用任何合适的装置如锤磨机或球磨机或压碎机压碎或破碎干燥了的固体,形成磨粒前体颗粒(以下称作前体颗粒)。可采用任何固体造粒的方法,并采用术语“压碎”来包括所有这些方法。

    可通过滚磨未烧结的颗粒制备表面积提高了的本发明的陶瓷磨粒。未烧结的颗粒指的是已干燥、但未充分烧结的颗粒,在这种条件下,未烧结的颗粒典型的密度小于60%理论密度。煅烧过的未烧结的颗粒典型的密度约为50%理论密度。美国专利4,744,802(受权给未申请的专利转让者)介绍了制备未烧结的颗粒的优选方法。滚磨未烧结的颗粒既可以在煅烧之前进行,也可以在最终烧制(烧结)之前进行。未烧结的颗粒比较软,当它们在混合机中一起滚磨时,边刃脱落,形成细颗粒,这些细颗粒借助于机械碰撞,随着滚磨的持续重新沉积到磨粒的表面。在第一种方案中,未烧结的颗粒在混合机中滚磨,形成细颗粒物。可通过将定量的未烧结颗粒加到混合机中进行滚磨。此时,在工艺中未烧结颗料相对较软。滚磨会使形成细颗粒的未烧结的颗粒间接触。

    持续滚磨使细颗粒借助于机械碰撞重新沉积到未烧结的颗粒的表面上。在最终烧制的过程中,细颗粒与未烧结的颗粒烧结成磨粒。重新沉积的细颗粒在磨粒表面上形成分离的凸出体,从而提高了磨粒的表面积,由此改善了对粘合系统的附着力。

    在第二种方案中,未烧结的颗粒在混合机中与加入的组成与未烧结的颗粒不同的细颗粒一起滚磨。这种细颗粒在磨粒表面上也形成无机材料的凸出体。这些颗粒与在滚磨过程中从未烧结的颗粒表面上破碎下来的未烧结的颗粒的细粒一起,在持续的滚磨过程中重新沉积到未烧结的颗粒的表面上。最终烧结使细颗粒(加入的细颗粒的产生的细颗粒)与未烧结的颗粒烧结成具有表面凸出体的磨粒。

    为便于滚磨,将未烧结的颗粒以特定的重量比加到混合机中。一般来说,混合机全负荷的约10-70%、最好约20-50%(体积)应是未烧结的颗粒。将未烧结的颗粒滚磨一段时间,以足以产生适量的细颗粒而又不会把未烧结的颗粒的边刃不希望地弄圆,不会通过烧结制成具有不希望有的圆边刃的磨粒,因为圆边刃的磨粒不如尖边刃的磨粒磨光那样好。可能需要做某些实验以确定滚磨未烧结的颗粒所需的确切时间,因为时间是产生的能量的函数、预先烧制或煅烧的未烧结的颗粒需要更长的滚磨时间,因为这些颗粒比未煅烧过的颗粒更硬。本技术领域专业人员可容易地确定滚磨时间。一般来说,给定时间内产生的能量越高,所需的滚磨时间就越少。此能量是由未烧结的颗粒相互间作用产生的机械能,而且还是混合机构型的函数。也推荐用具有挡板或凸缘的混合机以提高产生的能量并由此降低滚磨时间。虽然可以使用任何类型的混合机,但推荐密闲式系统以避免细颗粒损失。并不是所有混合机构型都能提供使细颗粒借助于机械碰撞粘着到未烧结的颗粒上所需的条件。例如,振动磨机便不能提供使细颗粒碎裂并自己沉积到未烧结的颗粒上所需的颗粒间相互作用。优选的混合机构型是没有磨料介质的球磨机。典型的滚磨时间为5-180分钟左右,最好是20-50分钟。

    在第一种方案中,未烧结的颗粒单独滚磨以得到与未烧结的颗粒化学组成相同的细颗粒。在第二种方案中,未烧结的颗粒与加入的组成不同的细颗粒一起滚磨,得到这种细颗粒与由于滚磨未烧结的颗粒产生的相同化学组成的细颗粒的掺合物。第二种方案出乎意料的优点在于,它通过选择要与未烧结的颗粒一起滚磨的合适的细颗粒,能使磨粒表面的尺寸制得很合适。本技术领域专业人员都知道,磨粒的表面在研磨应用过程中具有重大作用。

    在压碎(和滚磨,此时如进行的话)之后,将干燥的凝胶体颗粒煅烧以基本上除去全部挥发物并将磨粒的不同组分转变成陶瓷。通常,在约400℃-800℃的温度下加热(煅烧)干燥的凝胶体颗粒并在此温度范围内保温直至除去游离水和90%(重量)以上的任何结合水为止。

    既可以在煅烧之前滚磨,也可在煅烧之后滚磨,只要滚磨是在最终烧制步骤前进行便可。推荐滚磨是在煅烧步骤前进行,以易于处理。

    然后,通过加热到约1000℃-约1650℃并在此温度范围内保温直至差不多所有α-氧化铝前体物料(如2-氧化铝-水合物)转变成α-氧化铝为止,烧结煅烧的颗粒。当然,陶瓷必须暴露此烧结温度以达到这种转化率所需的时间取决于多种因素,但通常约5-约30分钟便足够了。

    在此工艺中可包括其它步骤,例如将物料从煅烧温度迅速加热到烧结温度,将颗粒物分粒,离心分离分散体以除去废渣等等。此外,如果需要,还可通过将两个或多个所述单独的步骤结合来改进此工艺。

    可以相邻,陶瓷磨粒可经过几道高温烧制。滚磨必须在最后一道烧制(或烧结)之前进行。滚磨工序不应在烧结之后进行,因为这会使部分磨粒碎裂,无法将它们烧结到磨粒表面上。

    图1示出了本发明的磨粒凸出的表面,相比之下,图2示出了常用陶瓷磨粒非常光滑的表面。应注意,本发明的磨粒提高了表面积,但也提高了磨粒的孔隙率。本发明的磨粒最好具有至少90%的理论密度。虽然多孔的磨粒往往具有大的表面积,但由于降低了强度和整体性,其性能大大下降。

    表面积比可以是本发明的磨粒的一个特征。本发明的磨粒的表面积比至少为1.5,最好至少为2.0。表面积比是磨粒表面积是否提高的量度,它是用本发明的磨粒的表面积除以给定级配的标准未处理分级的磨料的表面积确定的。表面积比是一种表征表面积是否提高更有意义的方式,因为每种磨粒都有不同的颗粒尺寸,由此具有不同的表面积。在美国国家标准所(ANSI)标准B74.18(1984)中可查到磨粒分级标准;用粗的对照组分作为给定级配以计算表面积比。未处理的分级的标准磨粒可从Minnesota        Mining和St.Paul,Minnesota的Manufacturing(3M)公司以商品牌号Cubitron的磨粒购买。按照美国专利4,744,802讲述的方法制备滚磨过的磨粒,所不同的是磨粒在预烧之前在不含磨剂或磨料介质的球磨机中滚磨20分钟。所用的球磨机长约1.82米,内径1.82米,转速为16rpm。挡板(5.1cm高,5.1cm厚)以约46cm间隔配置在球磨机的内周围。其余步骤与美国专利4,744,802讲述的相同。

    下表给出了未处理的ANSI标准分级的磨粒和按本发明制得的滚磨过的磨粒的表面积以及计算的面积比。表面积是在Quantos-orb,Model        QS        13表面积测定装置(购于Quanthchr-me公司,Syusett,纽约)上测定的。在测定以前,试样在氮气中吸收20分钟。

    表面积测定

    级配        ANSI磨粒        滚磨过的磨粒        比值

    (m2/g) (m2/g)

    36        0.045        0.26        5.8

    50        0.041        0.29        7.1

    80        0.19        0.40        2.1

    120        0.12        0.47        3.8

    细颗粒粘着到磨粒表面上形成的凸出的覆盖层是不连续的,留下了磨粒的原始表面的暴露部分,具有细的无机颗粒的不规择覆盖层。这种不连续的覆盖层的表面积要比连续覆盖层的大,从而改善了对粘合系统的粘着力。

    所选择的细颗粒物料是能烧结成陶瓷的材料(典型的是以金属氧化物、氮化物、氧氮化物或氧碳化物为基础)。典型加入的细颗粒的例子将烧结以下物质:氧化铝,氧氮化铝,锌、镁或镍的金属氧化物,2-氧化铝,氧化铝氧化锆,氧化锆,氮化硅,稀土氧化物,氧化钇,氧化铯,氧化钛,氮化钛、硅铝氧氮化物,硅铝氧碳化物,钇氧化铝-石榴石和六方稀土铝酸盐。添加的细颗粒可以最终烧结的组合物的前体形式加入。添加的细颗粒最好以1份细颗粒比99份前体颗粒-30份细颗粒比70份前体颗粒的比率直接加到混合机中。添加的细颗粒可以粉末状加到混合机中。借助于扫描电子显微镜和能量分布X-射线分析法(EDAX)(用于元素分析)已证实,添加的细颗粒确实粘着到磨粒的表面上。

    某些添加的细颗粒还可在烧结过程中共同与氧化铝基磨粒反应。例如,钴、镍、锌和镁的氧化物与氧化铝典型的形成尖晶石结构。氧化钇典型地与氧化铝反应生成3Y2O3-5AL2O3(石榴石晶体相)。镨、镱、钕、、钆、铯、镝、铒和这些稀土金属的两种或多种的混合物典型地与氧化铝反应生成石榴石、β-氧化铝、钙钛矿或六方稀土铝酸盐晶体结构。

    细颗粒的平均粒径最初应为约0.05-50微米。未烧结的颗粒的平均粒径介于50微米-1200微米之间。对小粒径的未烧结颗粒来说,大粒径的细颗粒起的作用不如小颗粒那样好。例如,粒径为120微米的磨粒典型地具有0.2-5微米左右的细颗粒。同样,粒径为600微米的磨粒最好具有0.2-10微米左右的细颗粒。优选加入的细颗粒的平均粒径为0.1-15微米。如果细颗粒的粒径太大,对磨粒表面的粘着力可能不充分。如果细颗粒的粒径太小,则表面积提高很少或没有提高。

    本发明的陶瓷磨粒能方便地处理,并能按公知的技术加入到各种磨料制品中,例如制成涂覆的磨料制备、粘合的磨料制品和结实的无纺磨料制品。制备这类磨料制品的方法是本技术领域专业人员公知的。

    涂覆的磨料制品包括用例如纸、纤维、织物(如纺织或无纺织物如纸)形成的、并可用填充的粘合材料浸透的背材;聚合物薄膜,例如取向的热硬化聚对苯二甲酸丙酯或聚对苯二甲酸乙酯薄膜(需要的话,这些薄膜可用底涂物质先涂底层);或任何其它常用的背材。涂覆的磨料还包含粘合剂物质,典型地是在涂层中(包括加工层,精加工层和特制层在内)。常用的粘合剂物质是酚醛树脂。

    无纺磨料制品典型地包括一种开口多孔结实的聚合物丝状结构,陶瓷磨粒遍布这种结构并由粘合剂物质粘合。制备这种无纺磨料制品的方法是公知的。

    粘合的磨料制品典型地是由有机或陶瓷粘合剂物质固定的磨粒成型物体构成。成型物体最好呈磨轮状。推荐用于本发明的陶瓷磨粒的粘合剂物质是有机粘合剂。陶瓷或玻璃质粘合剂如果能在室温和对本发明的陶瓷磨粒没有不利影响的条件下固化,也可以使用。

    粘合系统中最好有偶联剂,特别是当粘合系统用于高湿度或湿磨条件的部分涂覆的磨料时。偶联剂的典型例子及其在磨料制品中的用量在美国专利申请132,485(申请日:1987年12月14日)中可见。

    实施例

    以下用非限制性实施例进一步说明本发明。

    对照例和实施例1-3

    对照例和实施例1-3比较了滚磨对磨粒性能的影响。

    对照例

    对照例是按常规方法、不与细颗粒一起滚磨制得的磨粒。

    按照以下方法制备对照例的磨粒。在一个连续混合机中装入12,000ml无离子水、282.5克11N分析试剂纯硝酸、4780克α-氧化铝-水合物粉末(固含量78%,商品牌号DisperalR)和761克α-氧化铁前体水溶液(固含量10%)。将加料分散,直至得到均匀的溶液为止。制得的分散体和硝酸镁水溶液〔Mg(NO3)2.6H2O〕计量地通过连续混合机中形成定量的胶体,在最终烧制后得到以下组成:93.5α-氧化铝,4.5%MgO和2%Fe2OS。然后,将得到的胶体在强制空气循环的烘箱中于150℃干燥成易碎固体。

    用冲击式锤磨机和滚碎机压碎所得干燥的物料。

    通过把胶体放入煅烧炉的端处,将干燥、过筛、压碎的胶体进行煅烧。所述煅烧炉是直径23cm、长4.3米的不锈钢管,具有2.9米长的热区,所述不锈钢管相对于水平线倾斜2.4度,转速为7rpm,从而提供约15分钟的驻留时间。煅烧炉热区进料端温度为350℃,出口端温度为800℃。从煅烧炉取出的烧过的产物加到一个1390℃的炉子中,此炉子是直径10.1厘米长1.53米的碳化硅管,相对于水平线倾斜4.4度并具有76厘米长的热区,转速为10rpm,从而提供约3.8分钟的驻留时间。将磨粒从炉子中取出放入室温的空气中,并收集到金属容器中使其冷却到室温。这种磨粒是常规级配36,平均粒径为700微米。

    磨盘的制备

    磨粒制备完毕后,用其制备涂覆的磨盘。磨盘是用传统的涂覆磨盘的制备工序、常用的0.76mm硫化纤维背材和常用的碳酸钙填充的酚醛制备的树脂及常用的冰晶石填充的酚醛胶料树脂制备的。平均制备颗粒重量为172克/平方米,平均尺寸颗粒重量为696克/平方米。将制备树脂于88℃预固化90分钟,胶料树脂于88℃预固化90分钟然后于100℃最终固化10小时。采用传统技术涂覆,以一次往返操作(one-trip)和在强制空气循环烘箱中固化。先按常规方法使固化的磨盘弯曲,以可控方式破碎变硬的粘合系统。试验结果列于表1飞粒试验和表2切割试验中。

    飞粒试验

    设计飞粒试验是为了测定磨粒从涂覆的磨盘中剥离掉(飞粒)所用的时间。试验设备包括直径17.8cm的试验用涂覆的磨盘,此磨盘具有2.22cm安装孔,固定到直径16.5cm、深1.57mm的硬酚醛支撑垫上,支撑垫再安装到直径15.2cm的钢法兰盘上。由此固定的试验磨盘以3550rpm逆时针旋转。将1010号碳钢磨盘工件(直径25cm,与磨盘垂直的位置成18.5℃并以2rpm逆时针旋转)的1.8mm圆周形边刃在2.9kg负载下与磨盘的磨面接触。试验终点为20分钟或磨盘开始飞粒(即大部分磨粒从磨盘中飞出),随便哪个先发生。试验结束后,将工件称重以测定从工件中切削掉(磨掉)的金属量。在测定下表Ⅰ或表Ⅱ给定的湿含量之前,使磨盘潮湿1星期。

    切割试验

    此切割试验中,具有2.22cm中心孔的直径17.8cm的磨盘固定到具有斜边的铝上,用以磨2.5cm×18cm1018号中碳钢工件的表面。磨盘以5,500rpm驱动,同时重叠到支撑垫的斜边上的磨盘部分以5.92kg压力接触工件,产生约140cm2的磨盘磨程。用各磨盘来磨单独的工件各磨1分钟,总时间12分钟或者工件每段磨足1分钟,直至在一分钟内磨掉的金属碎屑不高于5克。

    实施例1

    按照对照例的同样的方法制备实施例1,并进行试验,所不同的是磨粒在煅烧前进行滚磨。将约1200千克干燥的胶体加到不含磨剂或粉碎介质的球磨机中。此球磨机约1.82米宽,内径为1.82米,转速为16rpm。挡板(5.1cm高,5.1cm厚)以46cm间隔在球磨机内周围分开放置。未烧结的干燥胶体颗粒滚磨10分钟。滚磨后,其余步骤与对照例相同。

    实施例2

    按实施例1同样方式制备实施例2并进行试验,不同的是滚磨时间为20分钟。

    从以上列举的数据可以看出,在飞粒试验中性能得到显著改进,特别是在高湿度下,这表明与对照例相比,粘合系统和本发明实施例1和2的磨粒之间的粘着力得到改善。切割试验的结果表明,与对照例相比,实施例1和2中性能稍有改善(切割试验中粘合系统和磨粒间的粘着力并不关键)。

    实施例3-5

    实施例3-5说明了本发明的第二种方案,其中加入的细颗粒与前体颗粒一起滚磨。所得的磨粒具有直接烧结到其表上的加入的细颗粒和由前体颗粒产生的细颗粒。

    实施例3

    按照对照例同样的方法制备实施例3的磨粒和涂覆的磨盘,所不同的是含氧化铝和氧化锆氧化物的细颗粒在煅烧之前与磨粒前体颗粒一起滚磨。按照美国专利4,314,827的实施例1的方法制备磨料细颗粒。将500克干燥胶体的前体颗粒和500克含氧化铝和氧化锆氧化物细颗粒装入混合机中。细颗粒的尺寸范围为0.25-3微米。混合机的容积为1.15立方米,且从Patterson-Keller        Co.Inc.,East        Stroudsburg.S.Mo-del#P.K.232213牌号购买。混合机内无任何挡板或凸缘。将细颗粒和干燥、过筛、粉碎的胶体前体颗粒滚磨1小时。制备磨粒和涂覆的磨盘的其余步骤与对照例相同。表Ⅲ列出了试验结果。

    实施例4

    按实施例1同样的方法制备实施例4的磨粒和涂覆的磨盘并进行试验,不同的是细的无机颗粒是含氧化铝、氧化钇和氧化镁氧化物的磨料细颗粒。磨料细颗粒是按美国专利4,770,671的方法制备的,含有90%α-氧化铝、8.5%氧化钇和1.5%氧化镁。在最终烧制过程中,细颗粒中的镁共同与磨料中的α-氧化铝反应,形成尖晶石。同时,氧化钇也与α-氧化镁反应,形成3Y2O3-5AL2O3。

    实施例5

    按照对照例的同样方法制备实施例5的磨粒和涂覆的磨盘并进行试验,不同的是在煅烧之前,氮化硅细颗粒与磨粒前体颗粒一起滚磨。而且,实施例5处于氮化硅细颗粒所需的不同的煅烧和烧制条件。滚磨后,将所得涂覆的前体颗粒装入5cm直径、30cm长的氧化铝管中,该铝管再放入直径7.5cm的固定式管型炉中,在氮气氛下(保持在95%氮气/5%氢气气氛)将其加热到1050℃。在几小时内,将温度提高到1350℃,保温30分钟以烧结磨粒,然后再用几小时冷却到室温。

    用磨粒制备磨盘,再用上述方法进行试验。飞粒试验结果示于表Ⅲ。

    从表Ⅲ所示的数据可以容易去看出,自粘结的添加的细颗粒提高了磨粒和粘合树脂间的粘结力。

    实施例6和7

    实施例6和7对煅烧前和煅烧后滚磨的磨粒做了比较。表Ⅳ列出了试验结果。

    实施例6

    按实施例1的同样方法制备实施例6并进行试验,所不同的是用不同的球磨机滚磨磨粒。将约182克干燥的胶体加到不含磨剂或粉碎介质中。球磨机的内径约为1.82米,宽为0.3米。挡板(5.1cm高,5.1cm厚)以46cm间隔分开配置在球磨机内圆周。球磨机以16rpm的速度转动。未烧结的颗粒滚磨20分钟。滚磨后,其余步骤同实施例1。实施例6的未烧结的颗粒在滚磨前不煅烧。

    实施例7

    按实施例6的同样方法制备实施例7并进行试验,不同的是未烧结的颗粒在滚磨前不煅烧。

    从以上数据可以断言,煅烧前或煅烧后都改善了涂覆的磨料制品的抗飞粒性。

    尽管已根据具体实施例介绍了本发明,不用说本发明能进一步改进。所附权利要求旨在包括这些变体,本技术领域专业人员能容易地识别出这些已描述的本发明的变体。

抗飞磨粒及其制备方法以及磨料产物.pdf_第1页
第1页 / 共29页
抗飞磨粒及其制备方法以及磨料产物.pdf_第2页
第2页 / 共29页
抗飞磨粒及其制备方法以及磨料产物.pdf_第3页
第3页 / 共29页
点击查看更多>>
资源描述

《抗飞磨粒及其制备方法以及磨料产物.pdf》由会员分享,可在线阅读,更多相关《抗飞磨粒及其制备方法以及磨料产物.pdf(29页珍藏版)》请在专利查询网上搜索。

提供了表面积提高了的烧结陶瓷磨粒及其制备方法,加入这种磨粒可改善“抗飞”磨料制品,涂覆的磨料、磨轮和无纺磨料。陶瓷磨粒的制备方法如下:提供由-氧化铝前体构成的第一种颗粒;导入细颗粒,这种细颗粒在第一种颗粒的烧结条件下能直接烧结到第一种颗粒的表面上;在烧结条件下加热混合物,使细颗粒自粘结到每一个第一种颗粒的表面上。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 染料;涂料;抛光剂;天然树脂;黏合剂;其他类目不包含的组合物;其他类目不包含的材料的应用


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1