在多相催化剂上选择性氢化乙烯 基环氧乙烷以制备1,2-环氧丁烷的方法 本发明涉及在多相催化剂上通过催化氢化乙烯基环氧乙烷以制备1,2-环氧丁烷的改进方法。
用多相催化氢化乙烯基环氧乙烷的方法是已知。
在25℃/2巴的条件下,在载在活性炭上的钯催化剂存在下、在乙醇中氢化乙烯基环氧乙烷,反应3小时后得到作为主要产物的正丁醛。而在25℃和2巴条件下,反应1.5小时后阮内镍催化剂却主要产生了仲丁醇。但关于1,2-环氧丁烷的形成未作任何报道。
Aizikovich等人的论文(J.Gen.Chem.USSR,28(1958)3076)介绍了在甲醇或乙醇中、在铂、钯和阮内镍催化剂存在下催化氢化乙烯基环氧乙烷。在15℃/1巴下,载体-钯催化剂(在碳酸钙上的1.8%(重量)钯)主要导致形成正丁醇。尽管同时观察到了正丁醛的形成,但该文中称巴豆醇是最重要的氢化中间体化合物。但文中没有提到1,2-环氧丁烷的形成。
US-A5077418和US-A5117013报道了,在含钯催化剂存在下、氢化乙烯基环氧乙烷溶液,得到作为主要产物的正丁醛。例如,在50-55℃温度和3.5巴压力下、在载体钯催化剂(载在活性炭上的5%(重量)钯)存在下,乙烯基环氧乙烷与作为溶剂的四氢呋喃一起氢化,反应3小时后得到氢化流出物,该流出物含有55%正丁醛,只含有27%1,2-环氧丁烷和9%正丁醇。如果在氧化铝载体-钯催化剂(5%Pd/Al2O3)存在下进行氢化反应,那么在25-55℃和3.5巴下反应6小时后、或在100℃和20.7巴下反应4小时后,只形成微量的1,2-环氧丁烷。分别以87%或78%的选择性和定量转化率形成作为主要产物的正丁醛。这2个美国申请还叙述了当正丁醇以主要产物形成时,在阮内镍存在下乙烯基环氧乙烷地氢化。1,2-环氧丁烷的收率相当低,为41%。在100℃和20.7氢压下、在载体钯催化剂(1%(重量)Pt/Al2O3)存在下进行乙烯基环氧乙烷的氢化,4.6小时后,完全转化率仅为:40%的1,2-环氧丁烷,以及23%的正丁醇,24%的丁醇,5%的巴豆醛和3%的正丁醛。其他的铂催化剂甚至得到更低的1,2-环氧丁烷收率。
US-A5077418和US-A5117013还介绍了仅使用铑催化剂得到高收率的1,2-环氧丁烷。使用各种载体铑催化剂(在活性炭上的5%(重量)铑,在氧化铝上的5%(重量)铑)氢化乙烯基环氧乙烷,产生含量为60-93%的1,2-环氧丁烷,然而,该催化剂含有高含量的昂贵的贵金属铑或水合的氧化铑(Rh2O3★×H2O)。该方法的缺点是时空产率低(基于所用的铑),例如,US-A5117013的实施例2中的时空产率仅是110公斤1,2-环氧丁烷/公斤铑★小时。
Neftekhimiya 33(1993)131叙述了在镍、钯和铜催化剂存在下乙烯基环氧乙烷的氢化,使用在硅藻土上的阮内镍或镍作为催化剂,氢化作用主要是使环氧化物环断裂,导致主要形成1-丁烯醇和正丁醇。环氧丁烷的收率是低的,例如,在用异丙醇、烟酸、吡啶和吗啉预处理过的阮内镍催化剂存在下、在20℃/60巴氢压条件下、在甲醇中氢化试验,得到在89%转化率下的环氧丁烷的选择性仅为37%。与镍催化剂相比,钯催化剂确实得到了较高的环氧丁烷选择性。例如,在没有溶剂存在下、在15℃/60巴氢压下,反应13分钟后,以转化的乙烯基环氧乙烷计,钯/活性炭催化剂产生了81%环氧丁烷,转化率为61%。然而,因为用蒸馏方法实际上不可能将乙烯基环氧乙烷和1,2-环氧丁烷分离,因此该方法不适合工业应用。铜催化剂具有低的氢化活性,并导致氢化流出物在工业上不能树脂化。
德国专利申请P 4422046.4涉及用金属盐(Pd/BaSO4,Pd/ZrO2,Pd/TiO2,Pd/Re/载体)浸渍某些载体材料制备的钯催化剂用于选择氢化乙烯基环氧乙烷,生成1,2-环氧丁烷。尽管在该文献中指出,环氧丁烷的选择性高,但形成了相当大量的丁醛副产物(4-20%)。
DE-A 4407486介绍了在催化剂存在下乙烯基环氧乙烷的氢化,该催化剂是通过将催化活性组分汽相淀积在金属薄片或金属丝网上而得到的。这些催化剂使得能够高选择性地转化成所需的产物(1,2-环氧丁烷的收率:75-90%),但所用的载体是相当昂贵的。
德国专利申请19532645.8涉及在多相催化剂存在下催化氢化乙烯基环氧乙烷,该催化剂是通过将元素周期表的7-11族的组分气相淀积在惰性非金属载体上而得到的。
本发明的目的是提供从乙烯基环氧乙烷制备1,2-环氧丁烷的更经济的方法,用该方法可高收率地和选择性地形成1,2-环氧丁烷,通过用简单的活性组分负载方法和使用少量的活性组分,尤其是使用便宜的载体材料,使所用的氢化催化剂是便宜的。
我们发现,该目的可通过使用在多相催化剂存在下催化氢化乙烯基环氧乙烷以制备1,2-环氧丁烷的方法达到,该方法包括使用这样一种催化剂,该催化剂是将至少一种溶胶形式的7-11族金属组分负载到多相载体上而制备的。
本发明方法使得在氢化过程中按照下列反应式(1)能够选择性地加氢乙烯基环氧乙烷(I)的双键而不会使敏感的环氧化物环相当大量地加氢断裂,并且不会明显地发生其他的次要反应,例如,乙烯基环氧乙烷异构化,例如生成巴豆醛,该巴豆醛随后又氢化成巴豆醇和丁醇。当使用铑催化剂时,与US-A 5077418和5117013所述的铑催化剂相比,可得到更高的生产能力率,以所用的贵金属计。
本发明的催化剂是这样制备的:将溶胶形式的元素周期表的7-11族金属组分、优选Re,Ru,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Au,特别是Re,Ru,Rh,Pd和Pt负载在惰性载体上。本发明的催化剂包括一种或多种上述金属。
以催化剂计,本发明催化剂中的金属含量优选为0.001-2%(重量),有利的为0.005-0.5%(重量),特别为0.005-0.1%(重量),该催化剂是用预制的溶胶喷洒热的载体或浸渍载体而制备的,该金属溶胶是胶体物质,可用已知方法制备,例如从金属盐制备,其中金属以其氧化态大于零的形式存在。例如,可以使用金属的氯化物、乙酸盐或硝酸盐的水溶液。然而,也可使用其他金属盐;对阴离子没有限制。适合的还原剂包括有机化合物,如乙醇、甲醇、羧酸和其碱金属盐,和无机化合物,如N2H4或NaBH4。优选肼和乙醇。溶胶中的金属颗粒的大小取决于所用还原剂浓度和所用的金属盐。可以通过加入有机聚合物如聚胺、聚乙烯基吡咯烷酮或聚丙烯酸酯,在这些情况下优选聚乙烯基吡咯烷酮。然而,也可根据文献中所述的其他方法制备溶胶,例如,Bnnemann等人(Angew.Chemie,103(1991)1334)叙述了用(C8H17)4N[BEtH3]还原金属盐来制备稳定的金属溶胶。
适用于本发明方法所用的催化剂惰性载体包括,例如玻璃、石英玻璃、陶瓷、氧化钛、氧化锆、氧化铝、硅铝酸盐、硼酸盐、滑石、硅酸镁、氧化硅、硅酸盐、碳,如石墨,或它们的混合物的成形物。氧化铝是优选的。载体可以是多孔的或非多孔的。适合的成形物是条形物、片形物、车轮形物、星形物、块形物、球形物、碎片形物、环形物或挤条,特别优选的是球形物、片形物和条形物。
惰性载体一般具有的BET表面积为0-1000米2/克,优选0.1-400米2/克。
可用公知方法将溶胶施于载体上,这些方法会影响活性组分的分布。为了在整个条形条截面上产生活性组分的薄外壳,将溶胶喷洒到间接加热的载体上,可将载体放入可旋转、可加热的造粒容器中,并用热吹风机将其加热至80-200℃。随着容器旋转,将溶胶喷洒到载体上,容器的旋转确保了载体颗粒例如条形物或碎片充分混合。在与热载体接触时,溶胶中的液体蒸发出来,从而将活性组分留在了载体上。这种涂敷技术制备的催化剂中的活性组分是以薄层的形式负载到了载体上,薄层的厚度通常小于5微米。贵金属附聚物的颗粒大小通常与在溶胶中的颗粒大小是相同的。然后在不超过150℃的温度下干燥催化剂。
将活性组分负载在载体上的另一种方法包括,根据载体预先测定的水吸收容量,该吸收容量基本上相应于其孔体积,用金属溶胶浸渍载体,当载体停止滴液后,在不超过150℃的温度下干燥。令人意外的是,在这种方法制备的催化剂中活性组分同样以非常薄的层存在。然而,当使用大孔载体时,活性组分在这种情况下优选以表面上可看到的大孔形式存在,当溶胶喷洒时,活性组分基本均匀地分布在大孔中,并形成了大孔。溶胶浸渍和溶胶喷洒方法的主要优点是,当溶胶载于载体上之后,活性组分基本上已经以还原态存在。这样就不需要在高温下还原活性组分,高温通常会使活性组分烧结在一起,从而减小了催化表面积。
本发明方法包括,在通常为0-200℃,优选10-130℃,特别是20-100℃,特别优选25-60℃的温度下、在通常为1-300巴,优选1-100巴,特别优选1-50巴的压力下、在根据本发明所用的催化剂存在下、在反应条件下为惰性的溶剂中,氢化乙烯基环氧乙烷或乙烯基环氧乙烷溶液。
本发明方法可在没有溶剂存在下,或优选在反应条件下是惰性的溶剂存在下进行。这些溶剂包括,例如醚,如四氢呋喃、二噁烷、甲基叔丁基醚、二正丁基醚、二甲氧基乙烷和二异丙基醚,醇,如甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇和叔丁醇、C2-C4二元醇,烃,如石油醚、苯、甲苯和二甲苯,和N-烷基内酰胺,如N-甲基吡咯烷酮和N-辛基吡咯烷酮。
本发明方法可在气相或液相中连续和间歇地进行。连续方法可在例如管状反应器中有效地进行,在管状反应器中,催化剂以固定床形式存在,反应混合物可以以上流或下流方向通过催化剂床。在间歇方法中,催化剂可以以例如在搅拌反应器中的悬浮形式、或优选以固定床的形式,例如当使用环形(loop)反应器时。
可用常规方法,例如通过蒸馏法将反应混合物分离成1,2-环氧丁烷。
例如,可用US-A4897498的方法、在银催化剂存在下,通过部分氧化1,3-丁二烯来制备用作原料的乙烯基环氧乙烷。
1,2-环氧丁烷可用作发动机燃料添加剂和氯化烃的稳定剂。
制备催化剂实施例1:制备催化剂A(载在Al2O3上的Pb)
将1.60克11%(重量)浓度的Pd(NO3)2溶液和5克聚乙烯基吡咯烷酮溶解于1.17升水中,以制备稳定的Pb溶胶。加入25毫升0.8%(重量)浓度的N2H4溶液,并在室温下搅拌混合物1/2小时,然后加热回流4小时。冷却得到含有0.15克Pd/升的钯溶胶。用600毫升水稀释400毫升这种溶胶至1升。将100克BET表面积为290米2/克的Al2O3载体放入加热的造粒容器中,并用预先制备的稀释溶胶喷洒。在120℃下干燥催化剂16小时。得到的催化剂含有0.05%(重量)钯(以载体催化剂计)。实施例2:制备催化剂B(载在Al2O3上的Pb)
重复实施例1,只是仅将267毫升未稀释的溶胶稀释至1000毫升。将100克BET表面积为244米2/克的Al2O3载体放入加热的造粒容器中,并用预先制备的稀释溶胶喷洒。在120℃下干燥催化剂16小时。得到的催化剂含有0.035%(重量)钯(以载体催化剂计)。实施例3:制备催化剂C(载在Al2O3上的Pb)
将9.09克11%(重量)浓度的Pd(NO3)2溶液和5克聚乙烯基吡咯烷酮溶解于990毫升乙醇和水的1∶1混合物中,以制备稳定的Pb溶胶。在室温下搅拌溶液1/2小时,然后加热回流4小时。冷却得到含有1克Pd/升的钯溶胶。用980毫升水稀释20毫升这种溶胶至1升。将100克BET表面积为244米2/克的Al2O3载体放入加热的造粒容器中,并用预先制备的稀释溶胶喷洒。在120℃下干燥催化剂16小时。得到的催化剂含有0.023%(重量)钯(以载体催化剂计)。实施例4:制备催化剂D(载在Al2O3上的Pb)
将1.60克11%(重量)浓度的Pd(NO3)2溶液和5克聚乙烯基吡咯烷酮溶解于1170毫升水中,以制备稳定的Pb溶胶。加入25毫升0.8%(重量)浓度的N2H4溶液,在室温下搅拌混合物1/2小时,然后加热回流4小时。
冷却得到含有0.15克Pd/升的钯溶胶。用水稀释33毫升这种溶胶至1升。将100克BET表面积为270米2/克的Al2O3载体放入加热的造粒容器中,并用预先制备的稀释溶胶喷洒。在120℃下干燥催化剂16小时。得到的催化剂含有0.005%(重量)钯(以载体催化剂计)。实施例5:制备催化剂E(载在滑石上的Pb)
将27.27克11%(重量)浓度的Pd(NO3)2溶液和5克聚乙烯基吡咯烷酮溶解于990毫升乙醇和水的1∶1混合物中,以制备稳定的Pb溶胶。在室温下搅拌溶液1/2小时,然后加热回流4小时。冷却得到含有3克Pd/升的钯溶胶。将17毫升钯溶胶以3次浸渍步骤(2次6毫升和一次5毫升)浸渍100克滑石载体(无内表面积的滑石球)。在每次浸渍步骤之间间隔约1小时,进行观察,在此期间重复摇动这些滑石球。在120℃下干燥催化剂16小时。得到的催化剂含有0.027%(重量)钯(以载体催化剂计)。实施例6:制备催化剂F(载在SiO2上的Pb)
将1.37克11%(重量)浓度的Pd(NO3)2溶液与2.25升水混合,并将该溶液与1.5克聚乙烯基吡咯烷酮混合。向该溶液加入750毫升乙醇,并将该溶液加热回流4小时。冷却得到稳定的溶胶。将400毫升溶胶稀释至1升,然后将稀释的溶胶喷洒在加热的造粒容器中的100克BET表面积为136米2/克的SiO2载体上,在120℃下干燥催化剂16小时。得到的催化剂的Pb含量为0.024%。实施例7:制备催化剂G(载在Al2O3上的Re)
将1.127克氯化铼(V)溶解于加有1.5克聚乙烯基吡咯烷酮的700毫升水中,该溶液与300毫升乙醇混合,并在加热回流下搅拌4小时。冷却后得到稳定溶胶(0.6克/升)。用水将83毫升该溶胶稀释至1升。将100克BET表面积为222米2/克的Al2O3载体放入加热的造粒容器中,并用预先制备的稀释溶胶喷洒,在120℃下干燥催化剂16小时。得到的催化剂含有0.05%(重量)铼(以载体催化剂计)。实施例8:制备催化剂H(载在Al2O3上的Ru)
将1.68克氯化钌(Ⅲ)水合物溶解于加有5克聚乙烯基吡咯烷酮的700毫升水中,该溶液与300毫升乙醇混合,并在加热回流下搅拌4小时。冷却后得到稳定溶胶(0.6克/升)。用水将83毫升该溶胶稀释至1升。将100克实施例7所述的载体放入加热的造粒容器中,并用预先制备的稀释溶胶喷洒,在120℃下干燥催化剂16小时。根据分析,得到的催化剂含有0.05%(重量)钌(以载体催化剂计)。实施例9:制备催化剂I(载在Al2O3上的Rh)
将1.73克氯化铑(Ⅲ)水合物溶解于加有1克聚乙烯基吡咯烷酮的700毫升水中,该溶液与300毫升乙醇混合,并在加热回流下搅拌4小时。冷却后得到稳定溶胶(0.6克/升)。用水将83毫升该溶胶稀释至1升。将100克实施例7所述的载体放入加热的造粒容器中,并用预先制备的稀释溶胶喷洒,在120℃下干燥催化剂16小时。得到的催化剂含有0.05%(重量)铑(以载体催化剂计)。氢化实施例实施例10
在一个50毫升高压釜中、在25℃和40巴下,使用0.5克悬浮的催化剂A、用氢气氢化在22.5克四氢呋喃中的2.5克乙烯基环氧乙烷溶液8小时。用气相色谱法分析氢化流出物,在定量的乙烯基环氧乙烷转化率下,得到90%(摩尔)1,2-环氧丁烷、1.0%(摩尔)正丁醛和1.7%(摩尔)正丁醇。实施例11-18
在40巴下使用如实施例1所述的催化剂B-I氢化在22.5克四氢呋喃中的2.5克乙烯基环氧乙烷。下面的表列出了氢化条件、温度、压力和反应时间和氢化流出物的气相色谱分析结果。
表实施例号 催化 剂 催化 剂量 [克]温度[℃] 反应时 间[小 时] VO转 化率 [%] 收率[摩尔%] BO n-BA n-BuOH 11 B 1 20 4 100 85 1 3 12 C 1 20 4 100 82 2 3 13 D 1 20 8 100 80 1 4 14 E 1 20 6 100 81 2 6 15 F 0.5 25 6 100 83 4 4 16 G 1 20 17 100 74 1 2 17 H 2 20 24 100 74 1 2 18 I 1 20 8 100 83★ 1 3VO=乙烯基环氧乙烷,BO=1,2-环氧丁烷,n-BA=正丁醛,n-BuOH=正丁醇,★时空产率:550公斤BO/公斤Rh★h