控制燃油增浓模式下混合动力系发动机的方法.pdf

上传人:Y94****206 文档编号:392903 上传时间:2018-02-13 格式:PDF 页数:29 大小:1.69MB
返回 下载 相关 举报
摘要
申请专利号:

CN200810190974.5

申请日:

2008.11.04

公开号:

CN101503092A

公开日:

2009.08.12

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

B60W20/00; B60W10/06; B60W10/08; B60W10/10; F02D29/00

主分类号:

B60W20/00

申请人:

通用汽车环球科技运作公司

发明人:

A·H·希普; W·布伦森; S·J·汤普森

地址:

美国密执安州

优先权:

2007.11.4 US 60/985279; 2008.10.20 US 12/254534

专利代理机构:

中国专利代理(香港)有限公司

代理人:

温大鹏

PDF下载: PDF下载
内容摘要

控制燃油增浓模式下混合动力系发动机的方法。连接到混合动力变速器输入部件上的发动机。混合动力变速器在输入部件和转矩机械以及输出部件之间传递转矩,以响应于驾驶员转矩请求产生输出转矩。该转矩机械与能量存储装置相连。控制所述发动机的方法,包括:监控驾驶员转矩请求;确定在化学计量比下运行发动机的最大发动机转矩;确定最大马达转矩输出;当转矩机械产生最大马达转矩且在化学计量比下运行的发动机产生最大发动机转矩时,确定来自混合动力变速器的最大输出转矩;当转矩机械产生最大马达转矩且在化学计量比下运行的发动机产生最大发动机转矩时,在驾驶员转矩请求超过来自混合动力变速器的最大输出转矩时,控制发动机处于燃油增浓模式。

权利要求书

1.  控制连接到混合动力变速器的输入部件上的发动机的方法,该混合动力变速器可操作地在输入部件和转矩机械以及输出部件之间传递转矩,以响应于驾驶员转矩请求产生输出转矩,该转矩机械连接到能量存储装置上,该方法包括:
监控驾驶员转矩请求;
确定在化学计量比下运行发动机的最大发动机转矩;
确定来自转矩机械的最大马达转矩输出;
当转矩机械产生最大马达转矩以及在化学计量比下运行的发动机产生最大发动机转矩时,确定来自混合动力变速器的最大输出转矩;以及
当转矩机械产生最大马达转矩以及在化学计量比下运行的发动机产生最大发动机转矩时,在驾驶员转矩请求超过来自混合动力变速器的最大输出转矩时,控制发动机处于燃油增浓模式。

2.
  如权利要求1所述的方法,还包括基于驾驶员转矩请求和在化学计量比下运行发动机的最大发动机转矩确定用于操作发动机的燃油增浓转矩。

3.
  如权利要求2所述的方法,还包括:
确定与混合动力变速器传递发动机转矩的性能相关联的最大发动机转矩约束;以及
基于所述最大发动机转矩约束限制燃油增浓转矩。

4.
  如权利要求2所述的方法,还包括基于在化学计量比下运行发动机的最大发动机转矩和驾驶员转矩请求与最大输出转矩的比值来确定用于操作发动机的燃油增浓转矩。

5.
  如权利要求4所述的方法,还包括基于所述燃油增浓转矩控制发动机的运行。

6.
  如权利要求1所述的方法,还包括基于能量存储装置的功率极限来确定来自转矩机械的最大马达转矩输出。

7.
  控制连接到混合动力变速器的输入部件上的发动机的方法,该混合动力变速器可操作地在输入部件和第一和第二转矩机械以及输出部件之间传递转矩,以响应于驾驶员转矩请求产生输出转矩,该方法包括:
监控驾驶员转矩请求;
确定在化学计量比下运行发动机的最大发动机转矩;
确定来自第一和第二转矩机械的最大马达转矩输出;
当第一和第二转矩机械中的每个都产生最大马达转矩以及在化学计量比下运行的发动机产生最大发动机转矩时,确定来自混合动力变速器的最大输出转矩;
确定与混合动力变速器在所述输入部件和第一和第二转矩机械以及所述输出部件之间传递转矩的性能相关联的最大发动机转矩约束;
基于驾驶员转矩请求和在化学计量比下运行发动机的最大发动机转矩来确定用于操作发动机的燃油增浓转矩;
基于最大发动机转矩约束来约束所述燃油增浓转矩;以及
基于所述约束的燃油增浓转矩来控制发动机。

8.
  如权利要求7所述的方法,包括当转矩机械产生最大输出转矩以及在化学计量比下运行的发动机产生最大发动机转矩时,在驾驶员转矩请求超过来自混合动力变速器的最大输出转矩时,基于所述约束的燃油增浓转矩来控制发动机。

9.
  如权利要求7所述的方法,其中基于最大发动机转矩约束值来约束燃油增浓转矩包括将所述燃油增浓转矩限制为所述最大发动机转矩约束值。

10.
  如权利要求7所述的方法,还包括基于在化学计量比下运行发动机的最大发动机转矩和驾驶员转矩请求与最大输出转矩的比值来确定用于操作发动机的燃油增浓转矩。

11.
  控制连接到混合动力变速器的输入部件上的发动机的方法,该混合动力变速器可操作地在输入部件和多个电机以及输出部件之间传递转矩,以响应于驾驶员转矩请求产生输出转矩,该转矩机械连接到电能存储装置上,该方法包括:
监控驾驶员转矩请求;
确定在化学计量比下运行发动机的最大发动机转矩;
基于所述电能存储装置的功率极限来确定来自电机的最大马达转矩输出;
当转矩机械产生最大输出转矩以及在化学计量比下运行的发动机产生最大发动机转矩时,确定来自混合动力变速器的最大输出转矩;以及
当转矩机械产生最大输出转矩以及在化学计量比下运行的发动机产生最大发动机转矩时,在驾驶员转矩请求超过来自混合动力变速器的最大输出转矩时,控制发动机处于燃油增浓模式。

12.
  如权利要求11所述的方法,还包括基于驾驶员转矩请求和在化学计量比下运行发动机的最大发动机转矩来确定用于操作发动机的燃油增浓转矩。

13.
  如权利要求12所述的方法,还包括基于在化学计量比下运行发动机的最大发动机转矩和驾驶员转矩请求与最大输出转矩的比值来确定用于操作发动机的燃油增浓转矩。

14.
  如权利要求13所述的方法,还包括:
确定与混合动力变速器在所述输入部件和第一和第二转矩机械以及所述输出部件之间传递转矩的性能相关联的最大发动机转矩约束;以及
基于所述最大发动机转矩约束限制燃油增浓转矩。

15.
  如权利要求14所述的方法,还包括基于所述被限制的燃油增浓转矩控制发动机的运行。

说明书

控制燃油增浓模式下混合动力系发动机的方法
相关申请的交叉引用
本申请要求享有2007年11月4日提出的美国临时申请No.60/985,279的权益,该美国临时申请作为参考并入本文。
技术领域
本发明涉及混合动力系系统的控制系统。
背景技术
本部分的说明仅提供与本发明相关的背景技术信息,并且可能不构成现有技术。
已公知的混合动力系结构包括多种转矩产生装置,包括内燃机和非燃烧机械例如电机,其通过变速装置将转矩传递给输出部件。一种典型的混合动力系包括双模式、复合分离、电动机械变速器,其利用从主发动机动力源优选为从内燃机接收牵引转矩的输入部件,以及输出部件。输出部件可操作地连接到车辆动力传动系统以向其传递牵引转矩。电机,可作为马达或者发电机操作,产生给变速器的转矩输入,与来自内燃机的转矩输入无关。电机能将车辆的动能通过车辆动力传动系统转换成可储存在电能存储装置中的电能。控制系统监控来自车辆和驾驶员的各种输入,并提供对混合动力系的操作控制,包括控制变速器的工作状态和换挡,控制转矩产生装置,以及调节电能存储装置和电机之间的能量互换以控制变速器的输出,该输出包括转矩和转速。
发明内容
一种被连接到混合动力变速器的输入部件上的发动机。该混合动力变速器可操作在输入部件、转矩机械以及输出部件之间传递转矩,以生成响应于驾驶员转矩请求的输出转矩。该转矩机械连接到能量储蓄装置。一种控制发动机的方法包括监控驾驶员转矩请求,确定在化学计量下操作的发动机的最大发动机转矩,确定来自转矩机械的最大马达转矩输出,当转矩机械产生最大马达转矩并且发动机产生在化学计量下操作的最大发动机转矩时确定来自混合动力变速器的最大输出转矩,当转矩机械产生最大电机转矩并且发动机产生在化学计量下操作的最大发动机转矩时,如果驾驶员转矩请求超过来自混合动力变速器的最大输出转矩,则控制发动机处于燃油增浓模式。
附图说明
下面参照附图举例说明一个或多个实施例,其中:
图1是根据本发明的一种示范性混合动力系的示意图;
图2是根据本发明的控制系统和混合动力系的示范性构造的示意图;
图3,4,5是根据本发明的控制方案的示意性流程图;
图6是根据本发明的表示发动机转矩和电池功率与输出转矩的函数关系的图表。
具体实施方式
现在参考附图,其中图1和2所示出的混合动力系仅仅是为了说明某种示范性实施方式,而不是为了限制它。根据本发明图1中所示出的示范性混合动力系,包括双模式、复合分离、电动机械混合动力变速器10,该变速器可操作地连接到发动机14以及包括第一和第二电机(‘MG-A’)56和(‘MG-B’)72的转矩机械。发动机14和第一、第二电机56、72都产生能够被传递给变速器10的动力。由发动机14和第一、第二电机56、72所产生并被传递给变速器10的动力,用马达输入转矩来描述就分别称为TI,TA和TB,用速度来描述就分别称为NI,NA和NB
示范性发动机14包括多缸内燃机,其可选择地工作在多个状态下以将转矩通过输入轴12传递到变速器10,并且可以是点燃式发动机或者压燃式发动机。发动机14包括可操作地连接到变速器10的输入轴12的曲轴(未示出)。转速传感器11监控输入轴12的转速。包括转速和发动机转矩的来自发动机14的功率输出不同于变速器10的输入速度NI和输入转矩TI,因为在发动机14和变速器10之间的输入轴12上安置有消耗转矩的零件,例如液压泵(未示出)和/或转矩控制装置(未示出)。
示范性变速器10包括三个行星齿轮装置24、26和28,以及四个可选择接合的转矩传递装置,也就是离合器C1 70,C2 62,C3 73和C4 75。本文中,离合器指任何形式的摩擦转矩传递装置,包括单式或复式片离合器或组件、带式离合器以及制动器,例如。液压控制电路42,优选地由变速器控制模块17(称为“TCM”)控制,能可操作地控制离合器状态。离合器C2 62和C4 75优选地包括液压式旋转摩擦离合器。离合器C1 70和C3 73优选包括能选择性地固定变速器外壳68的液压控制静止装置。每个离合器C1 70,C2 62,C3 73和C4 75优选液压式的,通过液压控制电路42可选择地接收加压液压流体。
第一和第二电机56和72优选包括三相交流电机,每个都包括定子(未示出)和转子(未示出),以及各自的分相器80和82。每个电机的电机定子固定变速器外壳68的外部,而且包括定子铁心以及其上的电磁线圈绕组。第一电机56的转子支承在通过第二行星齿轮装置26可操作地连接到轴60的毂板齿轮上。第二电机72的转子固定接触套筒轴毂66。
每个分相器80和82优选包括带有分相器定子(未示出)和分相器转子(未示出)的可变磁阻装置。分相器80和82适当地定位并组装在各自的第一和第二电机56和72之一上。各个分相器80和82的定子分别可操作地连接到第一和第二电机56和72的定子。分相器转子可操作地连接到对应的第一和第二电机56和72的转子。每个分相器80和82信号地且可操作地连接到变速器功率转换控制模块(下文称为“TPIM”)19,每个都感应并监控分相器转子相对于分相器定子的旋转位置,从而监控对应的第一和第二电机56和72的旋转位置。另外,来自分相器80和82的信号输出被解读以分别提供第一和第二电机56和72的转速,也就是NA和NB
变速器10包括输出部件64,例如轴,其可操作地连接到车辆(未示出)的动力传动系统90,以提供被传递到车轮93的输出功率给动力传动系统90,图1中能看到一个车轮。输出部件64上的输出功率以输出转速NO和输出转矩TO来表征。变速器输出速度传感器84监控输出部件64的转速和转向。每个车轮93优选装备能监控车轮速度的传感器94,该传感器的输出受到参照图2所述的分散控制模块系统的控制模块所监控,从而确定车辆速度以及用于制动控制、牵引控制以及车辆加速控制的绝对和相对车轮速度。
来自发动机14的输入转矩和来自第一和第二电机56和72的马达转矩(分别是TI,TA和TB)是作为从燃油或者储存在电能存储装置(下文称为“ESD”)74中的电势能进行能量转换的结果而产生的。ESD74通过直流传递导体27高压直流连接到TPIM19。传递导体27包括接触器开关38。当接触器开关38合上时,在正常工作状态下,电流在ESD74和TPIM19之间流动。当接触器开关38断开时,ESD74和TPIM19之间的电流被中断。TPIM19通过传递导体29与第一电机56进行电能的送出和送入,同样地,TPIM19通过传递导体31与第二电机72进行电能的送出和送入,以满足对应于马达转矩TA和TB的第一和第二电机56和72的转矩指令。电流根据ESD74是在充电还是在放电被送入或者送出ESD74。
TPIM19包括一对功率转换器(未示出)和对应的被设计成能接收转矩指令以及能控制转换器状态以提供马达驱动或再生功能性来满足指令的马达转矩TA和TB的控制模块(未示出)。功率转换器包括已公知的互补三相功率电子设备,每一个包括多个绝缘栅双极晶体管(未示出)用于将来自ESD74的直流电通过高频率下切换转换成给相应的第一和第二电机56和72供电的交流电。绝缘门双极晶体管构成能接收控制指令的开关模式电源。通常三相电机的每一相都有一对绝缘门双极晶体管。绝缘门双极晶体管的状态被控制以提供马达驱动的机械能生成或电能再生功能。三相转换器通过直流传递导体27接收或者供应直流电,并将其和交流电互相转换,其通过传递导体29和31分别被导入或者导出用作马达或者发电机的第一和第二电机56和72。
图2是分散控制模块系统的示意性框图。这里所描述的元件包括整车控制结构的分设备,以及提供图1中示范性混合动力系的配位系统控制。分散控制模块系统将恰当的信息和输入合成,并执行算法来控制各种致动器以满足控制目标,包括和燃油经济性、排放、性能、可驾驶性以及包括ESD74中的电池和第一和第二电机56和72的硬件的保护相关的目标。分散控制模块系统包括发动机控制模块23(称为“ECM”),TCM17,电池组件控制模块21(称为“BPCM”),和TPIM19。混合控制模块5(称为“HCP”)提供ECM23、TCM17、BPCM21和TPIM19的管理控制和配位。用户界面13(“UI”)可操作地连接到多个装置,通过所述装置车辆驾驶员能控制或者引导电动-机械混合动力系的工作。所述装置包括加速踏板113(“AP”),驾驶员制动踏板112(“BP”),变速器档位选择器114(“PRNDL”),以及车辆速度巡航控制(未示出)。变速器档位选择器114可以具有驾驶员可选择位置的离散部件,包括输出部件64的转向,以使得车辆前进或者后退。
前述的控制模块通过局域网(称为“LAN”)总线6和其它控制模块、传感器、和致动器通信。局域网总线6可以允许在各种控制模块之间交流工作参数状态和致动器指令信号。特定的用途采用特定的通信协议。局域网总线6和合适的协议用于鲁棒通信和前述控制模块之间多控制模块接口,其它控制模块提供的功能包括例如防抱死、牵引控制和车辆稳定性。可以使用多个通信总线来提高通信速度以及提供相当等级的信号冗余性和完整性的。单独控制模块之间的通信也能用直接连接实现,例如串行外外部接口(‘SPI’)总线(未示出)。
HCP 5提供混合动力系的管理控制,作为ECM 23、TCM 17、TPIM 19和BPCM 21的配位操作。基于来自用户界面13和混合动力系,包括ESD 74,的各种输入信号,HCP5确定用于变速器10的转矩传递离合器C1 70,C2 62,C373,C4 75的一个驾驶员转矩请求,一个输出转矩指令,一个发动机输入转矩指令,(多个)离合器转矩,以及用于第一和第二电机56和72的马达转矩TA和TB
ECM 23可操作地连接到发动机14,其作用是从传感器获取数据并越过多个离散线,图中简化为集合双向接口电缆35,控制发动机14的致动器。ECM 23从HCP 5接收发动机输入转矩指令。ECM 23决定实际发动机输入转矩TI,其转矩在基于监控到的转到HCP5的发动机转速和负载的时间占上提供给变速器10。ECM 23监控来自转速传感器11的输入以确定发动机输入到输入轴12的转速,其被转换成变速器输入速度,NI。ECM 23监控来自传感器(未示出)的输入以确定发动机其它工作参数的状态,包括例如,歧管压力、发动机冷却剂温度、环境空气温度、以及环境压力。发动机负载可以由例如歧管压力确定,或者根据驾驶员对加速踏板113的输入确定。ECM 23产生并通信指令信号以控制发动机致动器,包括例如,都没有在图中示出的燃油喷射器、点火模块、节气门控制模块。
TCM 17可操作地连接到变速器10并监控来自传感器(未示出)的输入以确定变速器工作参数的状态。TCM 17产生并通信指令信号以控制变速器10,包括控制液压控制电路42。从TCM 17到HCP 5的输入包括每个离合器,也就是C1 70,C2 62,C3 73,C4 75的估算离合器转矩,以及输出部件64的输出转速NO。为了达到控制的目的可以使用其它致动器和传感器从TCM 17提供额外的信息到HCP 5。TCM 17监控来自压力开关(未示出)的输入并且选择性地致动液压控制电路42的压力控制电磁线圈(未示出)和换挡电磁线圈(未示出)以选择性地致动各个离合器C1 70,C2 62,C3 73,C4 75,从而实现下面将要描述的各种变速器工作范围状态。
BPCM 21信号地连接到传感器(未示出)以监控ESD 74,包括电流和电压参数的状态,以提供指示ESD 74的电池参数状态的信息给HCP 5。电池参数状态优选地包括电池的充电状态、电池电压、电池温度、和可用的电量,用PBAT_MIN和PBAT_MAX表示。
制动控制模块(称为“BrCM”)22可操作地连接到每个车轮93上的摩擦制动器(未示出)。BrCM 22监控驾驶员对制动踏板112的输入并产生控制信号以控制摩擦制动并发送控制信号给HCP 5以基于该信号操作第一和第二电机56和72。
每一个控制模块ECM 23、TCM 17、TPIM 19、BPCM 21、以及BrCM 22优选普通用途的数位计算机,其包括微处理器或中央处理单元,包括只读存储器(‘ROM’)、随机存储器(‘RAM’)、电可编程只读存储器(‘EPROM’)的存储介质,高速时钟,模数(‘A/D’)和数模(‘D/A’)电路,输入/输出电路和装置(‘I/O’)以及适当的信号调节和缓冲电路。每个控制模块都有一套控制算法,包括存储在所述存储介质的一个中并被执行用以提供每个计算机各自功能的驻留程序指令和标定。控制模块之间的信息传递优选通过LAN总线6和SPI总线完成。要被执行的控制算法预置在环路中使得每个算法在每个循环中至少执行一次。存储在长期存储器中的算法通过中央处理单元被执行以监控来自感应装置的输入并且执行控制和诊断程序来控制致动器的工作,使用预置标定。在混合动力系工作运行期间,环路以固定的时间间隔被执行,例如3.125、6.25、12.5、25和100毫秒。另一种可选方式是,算法对应于某个动作的发生被执行。
示范性混合动力系选择性地工作在若干个被称为发动机状态中的一个状态下,包括发动机开动状态(‘ON’)和发动机关闭状态(‘OFF’)之一,变速器工作范围状态包括多个固定档位且连续可变的工作模式,下面结合表1进行说明。
表1
 

描述发动机状态变速器工作范围状态所用的离合器M1_Eng_OffOFFEVT模式1C1 70M1_Eng_OnONEVT模式1C1 70G1ON固定传动比1C1 70 C4 75G2ON固定传动比2C1 70 C2 62M2_Eng_OffOFFEVT模式2C2 62M2_Eng_OnONEVT模式2C2 62G3ON固定传动比3C2 62 C4 75G4ON固定传动比4C 262 C3 73

表中描述了每个变速器工作范围状态以及指出了用于每个工作范围状态的特定离合器C1 70,C2 62,C3 73,C4 75。通过应用离合器C1 70可以选择第一连续可变模式,也就是EVT模式1或者M1,仅使得第三行星齿轮装置28的外齿轮部件“固定(ground)”。发动机状态可以是ON(‘M1_Eng_On’)或者OFF(‘M1_Eng_Off’)。通过应用离合器C2 62可以选择第二连续可变模式,也就是EVT模式2或者M2,仅使得轴60连接到第三行星齿轮装置28的载体。发动机状态可以是ON(‘M2_Eng_On’)或者OFF(‘M2_Eng_Off’)。出于所述目的,但发动机状态是OFF时,发动机输入速度等于零转每分钟(‘RPM’),也就是发动机曲轴不旋转。固定档位操作能提供固定变速器10输入-输出速度比的操作,也就是NI/NO。通过应用离合器C1 70和C4 75能选择第一固定档位操作(‘G1’)。通过应用离合器C1 70和C2 62能选择第二固定档位操作(‘G2’)。通过应用离合器C2 62和C4 75能选择第三固定档位操作(‘G3’)。通过应用离合器C2 62和C3 73能选择第四固定档位操作(‘G4’)。由于减少了行星齿轮装置24,26和28中的齿轮传动比,所以固定输入-输出速度比的操作随着固定档位操作的增加而增加。第一和第二电机56和72的转速,分别是NA和NB,取决于由离合器定义的机构的内部转速,并且和从输入轴12测得的输入转速成比例。
对应于用户界面13所捕获到的驾驶员通过加速踏板113和制动踏板112的输入,HCP 5和一个或者多个其它控制模块确定转矩指令以控制包括发动机14和第一和第二电机56和72在内的转矩产生装置,从而满足驾驶员对输出部件64的转矩请求并将其传递到动力传动系统90。基于来自用户界面13和混合动力系包括ESD74的输入信号,HCP 5确定驾驶员转矩请求、从变速器10到动力传动系统90的指令输出转矩、来自发动机14的输入转矩、用于变速器10的转矩传递离合器C1 70,C2 62,C3 73,C4 75的离合器转矩;而用于第一和第二电机56和72的马达转矩,分别在后面描述。
车辆最终加速受到其它因素的影响,包括例如道路负荷、道路等级、和车辆重量。基于混合动力系的各种工作参数确定发动机状态和变速器工作范围状态。包括前面所述的通过加速踏板113和制动踏板112传递给用户界面13的驾驶员转矩请求。基于在发电模式和转矩产生模式下操作第一和第二电机56和72的指令所引起的混合动力系转矩请求可以预测变速器工作范围状态和发动机状态。通过优化算法或者根据驾驶员对功率的要求、电池充电状态、和发动机14以及第一和第二电机56和72的能量效率确定的最优系统效率流程能确定变速器工作范围状态和发动机状态。控制系统基于执行优化流程所得到的结果来控制来自发动机14以及第一和第二电机56和72的转矩输入,由此优化系统效率,从而控制燃油经济性和电池充电。另外,基于零件或系统中的缺点确定操作。HCP 5监控转矩产生装置,并确定输出部件64上来自变速器10的被要求满足驾驶员转矩请求以及其它动力系统工作需求例如,给ESD 74充电的功率输出。如前面清楚地描述那样,ESD 74和第一第二电机56和72为了它们之间的电能流动可操作地电连接。另外,发动机14,第一和第二电机56和72,以及电动-机械变速器10可操作地机械连接以在它们之间传递功率,从而给输出部件64生成功率流。
图3示出了用于控制管理具有多个转矩产生装置的混合动力系系统中与转矩和功率流相关的信号的控制系统结构,下面的描述参考图1和2中的混合动力系系统,其以可执行算法和标定的形式存在与前述的控制模块中。所述控制系统结构可用于其它具有多个转矩产生装置的混合动力系系统,包括例如具有内燃机和单转矩机械的混合动力系系统,以及具有内燃机和多转矩机械的混合动力系系统。转矩机械可以包括电机,或者非电动转矩机械,例如液压机械的转矩机械。
控制系统结构包括有多个输入的战略优化控制方案(‘Strategic Control’)310,其能基于输出速度和驾驶员转矩请求确定优选输入速度(‘Ni_Des’)和优选工作范围状态(‘Hybrid Range State Des’),并能基于混合动力系的其它工作参数而被优化,所述工作参数包括电池功率极限和对应的发动机14、变速器10以及第一和第二电机56和72的极限。战略优化控制方案310优选通过HCP 5在每个100ms环路和每个25ms环路中被执行。
战略优化控制方案310的输出被用于换挡执行和发动机启/停控制方案(‘Shift Execution and Engine Start/Stop’)320以指令变速器工作的改变(‘Transmission Commands’),所述改变包括改变工作范围状态。方案包括如果优选工作范围状态不同于当前工作范围状态通过改变一个或多个离合器C1 70,C2 62,C3 73,C4 75的指令以及其它变速器指令指令执行工作范围状态的改变。当前工作范围状态(‘Hybrid Range State Actual’)和输入速度曲线(‘Ni_Prof’)被确定。输入速度曲线是在变速器的工作范围状态过渡期间基于发动机工作范围指令和驾驶员转矩请求的一个即将发生时率变化的输入速度估算值,优选包括用于下一个环路的目标输入速度的标量参数值。
战术控制方案(‘Tactical Control and Operation’)330在控制环路之一期间被重复执行以确定用于操作发动机14的发动机指令(‘Engine Command’),包括基于输出速度、输入速度以及包括实时加速器输出转矩请求、预测加速器输出转矩请求、实时制动输出转矩请求、预测制动输出转矩请求在内的驾驶员转矩请求、轴转矩响应类型以及当前变速器工作范围状态从发动机14给变速器10的优选输入转矩。发动机指令还包括全汽缸工作状态和部分发动机汽缸停缸并未装载燃油的停缸工作状态之一的发动机状态,以及分为燃油装载状态和燃油切断状态之一的发动机状态。发动机指令包括优选地由ECM 23确定优选的发动机14的输入转矩和作用在发动机14与输入部件12之间的当前输入转矩(‘Ti’)。每个离合器C1 70,C2 62,C3 73,C4 75的离合器转矩(Tcl)包括当前用于离合器的和未用于离合器的都被估算出来,优选在TCM 17中。
输出转矩和马达转矩确定方案(‘Output and Motor Torque Determination’)340被执行以确定输出动力系统的优选输出转矩(‘TO_CMD’)。方案包括确定马达转矩指令(‘TA’,‘TB’)以通过控制实施方式中的第一和第二电机56和72传递能满足驾驶员转矩请求的净指令输出转矩给变速器10的输出部件64。实时加速器输出转矩请求、实时制动输出转矩请求、来自发动机14的当前输入转矩以及估算的(多个)被应用的离合器转矩、变速器10的当前工作范围状态、输入速度、输入速度分布、以及轴转矩响应类型被输入。在环路之一的每次重复期间执行输出转矩和马达转矩确定方案340以确定马达转矩指令。输出转矩和马达转矩确定方案340包括在6.25ms和12.5ms的环路期间被固定执行的算法代码以确定优选马达转矩指令。
当驾驶员选择了变速器档位选择器114指令车辆朝前的操作时,响应于驾驶员给加速踏板113的输入,混合动力系被控制将输出转矩传递给输出部件64以作用于动力传动系统90在(多个)车轮93处产生牵引转矩朝前驱动车辆。类似地,当驾驶员选择了变速器档位选择器114指令车辆朝后的操作时,响应于驾驶员给加速踏板113的输入,混合动力系被控制将输出转矩传递给输出部件64以作用于动力传动系统90在(多个)车轮93处产生牵引转矩朝后推进车辆。优选地,推进车辆使得车辆一直加速到输出转矩足够克服车辆的外部负载为止,例如由于道路等级引起的负载、空气动力负载以及其它负载。
操作所述动力系系统包括在工作范围状态之间切换变速器操作,其包括在换挡和控制发动机运行期间转换到一个或者多个中间工作范围状态以实现目标输入速度。将发动机14的运行从当前速度改变为目标输入速度包括执行算法以确定一个可实现的或者优选的输入部件加速率,例如包括实时提前输入加速曲线和预测提前输入加速曲线在内的优选加速率之一。这包括独立地选择用于控制通过动力系系统的功率的传递的可控制参数。基于来自第一和第二转矩机械,例如实施方式中的第一和第二电机56和72的转矩输出导出参数方程用于输入部件的加速率。执行所述算法以同时进行解参数方程和确定用于输入部件的优选加速率。发动机14的运行能被控制以实现用于输入部件12的优选加速率。
BrCM 22指令车轮93上的摩擦制动以施加制动力并给变速器10发出指令创建一个响应于驾驶员给制动踏板112和加速踏板113的净输入随动力传动系统90一起作用的逆输出转矩。优选地被施加的制动力和逆输出转矩能使车辆减速并停止直到其足以克服车辆上(多个)车轮93处的动能为止。逆输出转矩随动力传动系统90作用,所以将转矩传递给电动-机械变速器10和发动机14。通过电动-机械变速器10被作用的逆输出转矩能被传给第一和第二电机56和72以产生电能存储在ESD 74中。
驾驶员给加速踏板113和制动踏板112的输入包括可独立确定的驾驶员转矩请求输入包括实时加速输出转矩请求(‘Output Torque Request Accel Immed’)、预测加速输出转矩请求(‘Output Torque Request Accel Prdtd’)、实时制动输出转矩请求(‘Output Torque Request Brake Immed’)、预测制动输出转矩请求(‘OutputTorque Request Brake Prdtd’)和轴转矩响应类型(‘Axle Torque Response Type’)。本文中,“加速”一词意为用于向前推进的驾驶员请求,优选当驾驶员选择了变速器档位选择器114指令车辆朝前的操作时,使得车辆速度增到到超过当前速度。“减速”和“制动”一词意为优选使得车辆速度从当前速度减少的驾驶员请求。实时加速输出转矩请求、预测加速输出转矩请求、实时制动输出转矩请求、预测制动输出转矩请求和轴转矩响应类型是给控制系统包括战术控制方案330的独立输入。
实时加速输出转矩请求基于当前发生的驾驶员给加速踏板113的输入确定,包括在输出部件64上产生优选用以加速车辆的实时加速输出转矩的请求。实时加速输出转矩请求是未定型的,但是可以通过在动力系控制之外影响车辆运行的事件来定型。这些能用于定型或者限定实时加速输出转矩请求的事件包括用于防抱死的在动力系控制中的车辆水平遮断、牵引控制和车辆稳定性控制。
预测加速输出转矩请求基于驾驶员给加速踏板113的输入确定包括在输出部件64处最适合的或者优选的输出转矩。在正常运行条件下,例如,防抱死、牵引控制或者车辆稳定性中任一个均没有被指令,预测加速输出转矩请求优选等于实时加速输出转矩请求。当防抱死、牵引控制或者车辆稳定性中任一个被指令时,随着实时加速输出转矩请求响应于和防抱死、牵引控制或者车辆稳定性控制有关的输出转矩指令而被减少,预测加速输出转矩请求保留优选输出转矩。
混合制动转矩包括车轮93处产生的摩擦制动转矩和输出部件64上产生的、随动力传动系统90作用的、响应于驾驶员给制动踏板112的输入来减速车辆的输出转矩。
实时制动输出转矩请求基于当前发生的驾驶员给制动踏板112的输入确定,包括在输出部件64上产生实时制动输出转矩以影响随动力传动系统90的作用转矩优选用以减速车辆的请求。实时制动输出转矩请求基于当前发生的驾驶员给制动踏板112的输入和控制信号确定,以控制摩擦制动器产生摩擦制动转矩。
预测制动输出转矩请求包括响应于驾驶员给制动踏板112的输入在输出部件64处最合适的或者优选的制动输出转矩,它不超过在不考虑驾驶员给制动踏板112的输入的情况下在输出部件64处所允许产生的最大制动输出转矩。在一个具体实施方式中在输出部件64处所产生的最大制动输出转矩被限制在-0.2g。在不考虑驾驶员给制动踏板112的输入的情况下,当车辆速度接近于零时预测制动输出转矩请求逐渐归零。如用户所称那样,在一些运行条件下预测制动输出转矩请求被设为零,例如,当驾驶员将变速器档位选择器114设置到倒档时,以及当变速箱(未示出)被设置成四轮驱动低范围时。所述预测制动输出转矩请求被设为零的运行条件下由于车辆运行因素不推荐采用混合制动。
轴转矩响应类型包括用于描述和限定通过第一和第二电机56和72的输出转矩响应的输入状态。用于轴转矩响应类型的输入状态可以是主动状态,优选包括愉悦性受限状态、最大范围状态和非主动状态。当被指令的轴转矩响应类型是主动状态,输出转矩指令是实时输出转矩。优选地用于该响应类型的转矩响应尽可能快。
预测加速输出转矩请求和预测制动输出转矩请求被输入到战略优化控制方案(‘Strategic Control’)310。战略优化控制方案310确定变速器10的期望工作范围状态(‘Hybrid Range State Des’)以及从发动机14到变速器10的期望输入速度(‘Ni Des’),包括执行换挡和发动机运行状态控制方案(‘Shift Execution andEngine Start/Stop’)320的输入。
利用电子节气门控制系统(未示出)控制发动机节气门位置,包括打开发动机节气门增加发动机转矩和关闭发动机节气门减少发动机转矩,来改变发动机14的入口空气量能影响随变速器10的输入部件作用的来自发动机14的输入转矩的变化。通过调节点火正时,包括从平均最佳转矩点火正时推迟点火正时以减少发动机转矩,能影响来自发动机14的输入转矩的变化。发动机状态可以在发动机停机状态和发动机启动状态间变化以影响输入转矩的变化。发动机状态可以在全汽缸运行状态和发动机部分汽缸未装载燃油的停缸运行状态之间变化。通过选择性地操作发动机14处于装载燃油状态和发动机旋转但未装载燃油的燃油切断状态之一能改变发动机状态。通过选择性地应用或者停用离合器C170,C2 62,C3 73,C4 75能指令和实现在变速器10中执行换挡从第一工作范围状态到第二工作范围状态。
图4详细描述了用于控制发动机14运行的战术控制方案(‘Tactical Controland Operation’)330,描述参考图1和2中的混合动力系系统以及图3中的控制系统结构。战术控制方案330包括优选同时执行的战术优化控制路径350和系统约束控制路径360。战术优化控制路径350的输出被输入到发动机状态控制方案370。发动机状态控制方案370和系统约束控制路径360的输出被输入到发动机响应类型确定方案(‘Engine Response Type Determination’)380用于控制发动机状态、实时发动机转矩请求和预测发动机转矩请求。
如果发动机14包括点燃式发动机,利用电子节气门控制装置(未示出)控制发动机节气门(未示出)的位置,通过控制发动机14的进气量来实现关于所述的输入转矩和输入速度的发动机14的操作点。这包括开大节气门增加发动机输入速度和转矩输出,以及关小节气门减少发动机输入速度和转矩。发动机操作点能通过调节点火正时实现,通常是从平均最佳转矩点火正时推迟点火正时以减少发动机转矩。
如果发动机14包括压燃式发动机,发动机14的操作点能通过控制燃油喷射,以及从平均最佳转矩喷射正时推迟喷射正时减少发动机转矩来实现。
通过在发动机停机状态和发动机启动状态之间改变发动机状态能实现所述发动机操作点。通过控制发动机状态在全汽缸状态和部分发动机汽缸没有装载燃油、发动机阀门失效的停缸状态能实现所述发动机操作点。发动机状态包括发动机还在旋转但未装载燃油使得发动机制动的燃油切断状态。
战术优化控制路径350作用于基本稳定的状态输入以选择优选的发动机状态以及确定从发动机14到变速器10的优选输入转矩。所述输入源自换挡执行和发动机运行状态控制方案320。战术优化控制路径350包括优化方案(‘TacticalOptimization’)354以确定在全汽缸状态下(‘Optimum Input Torque Full’)、在停缸状态(‘Optimum Input Torque Deac’)下、在燃油切断的全汽缸状态下(‘InputTorque Full FCO’)、在燃油切断的停缸状态下(‘Input Torque Deac FCO’)以及优选发动机状态下(‘Optirmal Engine State’)用于操作发动机的优选输入转矩。给优化方案354的输入包括变速器10的提前工作范围状态(‘Lead Hybrid RangeState’)、预测的提前输入加速曲线(‘Lead Input Acceleration Profile Predicted’)、当前被用于每个离合器的离合器作用转矩的预测范围(‘Predicted Clutch ReactiveTorque Min/Max’)、预测的电池功率极限(‘Predicted Battery Power Limits’)以及预测的用于加速的输出转矩请求(‘Output Torque Request Accel Prdtd’)和预测的用于制动的输出转矩请求(‘Output Torque Request Brake Prdtd’)。用于加速和制动的预测输出转矩请求被组合并通过预测的输出转矩定型滤波器352用轴转矩响应类型来定型以产生预测的净输出转矩请求(‘To Net Prdtd’)和预测的加速输出转矩请求(‘To Accel Prdtd’),它们均被输入优化方案354。变速器10的提前工作范围状态包括变速器10的工作范围状态的时移提前以容纳工作范围状态的指令变化和工作范围状态被测到的变化之间的响应时滞。预测的提前输入加速曲线包括输入部件12的预测的输入加速曲线的时移提前以容纳预测的输入加速曲线的被指令的变化和预测的输入加速曲线的被测到的变化之间的响应时滞。优化方案354确定用于操作发动机14在发动机状态的消耗,包括发动机装载燃油运行在全汽缸状态(‘PCOST FULL FUEL’)、发动机未装载燃油运行在全汽缸状态(‘PCOST FULL FCO’)、发动机装载燃油运行在停缸状态(‘PCOST DEAC FUEL’)以及发动机未装载燃油运行在停缸状态(‘PCOST DEAC FCO’)。前述的运行发动机14的消耗连同实际发动机状态(‘Actual Engine State’)和允许或准许发动机状态(‘Engine State Allowed’)被一起输入稳定分析方案(‘Stabilization andArbitration’)356以选择所述的发动机状态之一作为优选发动机状态(‘OptimalEngine State’)。
优选的用于操作发动机14在有和无燃油切断的全汽缸状态下和停缸状态下的输入转矩被输入发动机转矩转换计算器355,并在考虑到了引入发动机14和变速器10之间的寄附负载和其它负载的情况下被分别转换成优选的在全汽缸状态下和停缸状态下(‘Engine Torque Full’)和(‘Engine Torque Deac’),以及带有燃油切断的全汽缸状态下和停缸状态下(‘Engine Torque Full FCO’)和(‘Engine Torque Deac FCO’)的输入转矩。优选的用于操作在全汽缸状态下和停缸状态下的发动机转矩和优选的发动机状态包括给发动机状态控制方案370的输入。
操作发动机14的消耗包括通常由车辆可驾驶性、燃油经济性、排放和电池利用率这些因素所确定的操作消耗。消耗被分配并且和燃油以及电能消费相联系,以及和混合动力系的特定操作点相联系。对于每个发动机速度/负载操作点而言较低的操作消耗通常和高转换效率、较低电池利用率以及较低排放下的低燃油消费相联系,同时考虑到当前的发动机14运行状态。
在全汽缸状态下和停缸状态下优选的发动机状态和优选的发动机转矩被输入发动机状态控制方案370,其包括发动机状态机(‘Engine State Machine’)372。发动机状态机372基于优选的发动机转矩和优选的发动机状态确定目标发动机转矩(‘Target Engine Torque’)以及目标发动机状态(‘State’)。目标发动机转矩和目标发动机状态被输入监控发动机状态中任何被指令的转变的转变滤波器374并且滤波目标发动机转矩以提供滤波过的目标发动机转矩(‘Filtered TargetEngine Torque’)。发动机状态机372输出指令来指示选择停缸状态和全汽缸状态之一(‘DEAC Selected’)以及选择发动机启动状态和减速燃油切断状态之一(‘FCO Selected’)。
对停缸状态和全汽缸状态之一以及对发动机启动状态和减速燃油切断状态之一的选择、滤波过的目标发动机转矩、以及最小和最大发动机转矩被输入发动机响应类型确定方案380。
系统约束控制路径360确定对输入转矩的约束,包括通过变速器10被作用的最小和最大输入转矩约束(‘Input Torque Hybrid Minimum’和‘Input TorqueHybrid Maximum’)。最小和最大输入转矩基于对变速器10和第一以及第二电机56和72的约束确定,包括能影响变速器10的性能以在当前的环路期间作用输入转矩的离合器转矩和电池功率极限。给系统约束控制路径360的输入包括由加速踏板113测得的实时输出转矩请求(‘Output Torque Request Accel Immed’)和由制动踏板112测得的实时输出转矩请求(‘Output Torque Request BrakeImmed’),两者被组合并通过实时输出转矩定型滤波器362用轴转矩响应类型进行定型以产生净实时输出转矩(‘To Net Immed’)和实时加速输出转矩(‘ToAccel Immed’)。净实时输出转矩和实时加速输出转矩被输入约束方案(‘Outputand Input Torque Constraints’)。其它给约束方案364的输入包括变速器10的当前工作范围状态、实时提前输入加速曲线(‘Lead Input Acceleration ProfileImmed’)、对于每个当前所用离合器的实时提前离合器作用转矩范围(‘LeadImmediate Clutch Reactive Torque Min/Max’)、以及包括从PBAT_MIN到PBAT_MAX范围的可用电池功率(‘Battery Power Limits’)。实时提前输入加速曲线包括输入部件12的实时输入加速曲线的时移提前以容纳实时输入加速曲线被指令的变化和实时输入加速曲线被测到的变化之间的响应时滞。提前实时离合器作用转矩范围包括离合器的实时离合器作用转矩范围的时移提前以容纳实时离合器转矩范围被指令的变化和实时离合器作用转矩范围被测到的变化之间的响应时滞。约束方案364确定变速器10的输出转矩范围,然后基于前述输入确定通过变速器10起作用的所允许输入转矩的最小值和最大值(‘Input Torque HybridMinimum’和‘Input Torque Hybrid Maximum’)。由于前述输入的变化,所允许输入转矩的最小值和最大值在持续运行期间能被改变,包括通过变速器14和第一第二电机56和72的电能再生提高能量的回收。
所允许输入转矩的最小值和最大值被输入发动机转矩转换计算器355,并在考虑到被引入发动机14和变速器10之间的寄附负载和其它负载的情况下被转换成最小和最大发动机转矩(‘Engine Torque Hybrid Minimum’和‘EngineTorque Hybrid Maximum’)。
滤波过的目标发动机转矩、发动机状态机372的输出以及发动机的最小和最大发动机转矩被输入发动机响应类型确定方案380,其能输入发动机指令给ECM 23用于控制发动机状态、实时发动机转矩请求和预测的发动机转矩请求。所述发动机指令包括基于滤波过的目标发动机转矩被确定的实时发动机转矩请求(‘Engine Torque Request Immed’)和预测的发动机转矩请求(‘Engine TorqueRequest Prdtd’)。其它指令控制发动机的状态为发动机装载燃油状态和减速燃油切断状态(‘FCO Request’)之一,以及停缸状态和全汽缸状态(‘DEAC Request’)之一。另外的输出包括发动机响应类型(‘Engine Response Type’)。当滤波过的目标发动机转矩在最小和最大发动机转矩范围之内时,发动机响应类型是非主动的。当滤波过的目标发动机转矩在最小和最大发动机转矩的约束(‘EngineTorque Hybrid Minimum’)和(‘Engine Torque Hybrid Maximum’)之外时,发动机响应类型是主动的,意味着需要发动机转矩有实时变化,例如,通过发动机点火来控制和推迟使发动机转矩和输入转矩落入最小和最大发动机转矩的约束之内的改变。
图5示出了和战术控制方案330相互作用以选择性地指令发动机14运行在对应于驾驶员转矩指令的燃油增浓模式下的功率增浓确定方案400。优选地,只有在转矩机械,例如,第一和第二电机56和72,在最大马达转矩输出下运行时才指令发动机14运行在燃油增浓模式。
功率增浓确定方案400监控预测的加速输出转矩请求(‘Output TorqueRequest Accel Prdtd’)、来自战术优化控制路径350的优选发动机转矩请求、化学计量的最大发动机转矩(‘Engine Torque’)和来自系统约束控制路径360的包括最小和最大发动机转矩约束(‘Engine Torque Hybrid Minimum’和‘EngineTorque Hybrid Maximum’)的发动机转矩约束。战术优化函数350确定优选的发动机转矩(‘Preferred Engine Torque’)用于在化学计量超过发动机运行点范围的地方操作发动机14。优选的发动机转矩包括在动力系系统响应于驾驶员转矩请求运行时使总动力系系统消耗最小的发动机转矩。所述总动力系系统消耗由能确定表示整个动力系系统损失的消耗的消耗函数确定。在一个实施方式中,消耗函数通常基于和燃油经济性相关的预设动力系测量值、排放、和电池功率确定消耗。另外,消耗通常和动力系运行点的较低的电池功率利用率以及较低的排放相关联,同时要考虑动力系系统的当前工作范围状态。
发动机运行点包括优选的发动机转矩和相应的优选的发动机状态,例如,上面提到的全汽缸状态下的优选的发动机转矩。战术优化控制路径350优选地生成化学计量的最大发动机转矩(‘Engine Torque’)。所述化学计量的最大发动机转矩包括当发动机14化学计量运行时可实现的最大发动机转矩。
但第一和第二电机56和72正产生最大马达转矩和发动机正产生以化学计量运行的最大发动机转矩时,功率增浓确定方案400确定来自变速器14的最大输出转矩。燃油增浓确定函数412和燃油增浓比较函数(‘MAX’)414基于彼此被执行。最大输出转矩基于化学计量的最大发动机转矩确定。所以,所述最大输出转矩是当发动机转矩Te运行在化学计量的最大发动机转矩Te_MAX下以及来自(多个)电机的(多个)马达转矩Tm运行在最大马达转矩‘Tm_MAX’下时被传递到输出部件64的输出转矩。在一个实施方式中,最大马达转矩‘Tm_MAX’包括被组合的由第一和第二电机56和72所产生的最大马达转矩TA_MAX和TB_MAX,其基于电池功率极限确定。
所述燃油增浓确定函数412监控预测的加速输出转矩请求、最大输出转矩、以及最小和最大发动机转矩约束。燃油增浓确定函数412比较预测的加速输出转矩请求和最大输出转矩。如果最大输出转矩小于预测的加速输出转矩请求,那么燃油增浓确定函数412计算燃油增浓转矩(‘Te_RICH’)。燃油增浓转矩Te_RICH是当发动机14运行在增浓的空燃比下时,例如,空燃比小于1(‘λ<1’)时,被计算出来用以满足驾驶员转矩请求的发动机转矩。燃油增浓转矩Te_RICH基于利用预测的加速输出转矩请求和最大输出转矩的比率进行调整的最大发动机转矩来确定。燃油增浓转矩Te_RICH被限制为,例如在不考虑预测的加速输出转矩请求和最大输出转矩的比率的情况下,不能超过最大发动机转矩的约束。
燃油增浓比较函数(‘MAX’)414比较优选的发动机转矩和燃油增浓转矩Te_RICH并确定燃油增浓转矩Te_RICH是否大于优选的发动机转矩。如果燃油增浓转矩Te_RICH大于优选的发动机转矩,发动机状态控制方案370的所述目标发动机转矩(‘Target Engine Torque’)被设置成燃油增浓转矩Te_RICH。所得到的预测的发动机转矩请求被ECM 23利用来控制发动机运行,包括例如发动节气门(未示出)和发动机加油。在一个实施方式中,燃油增浓信号状态FE_act被送到ECM23以使得发动机运行在燃油增浓模式。在一个替换性实施方式中,ECM 23通过比较预测的发动机转矩请求和最大发动机转矩Te_MAX来确定燃油增浓模式。
当燃油增浓转矩Te_RICH大于优选的发动机转矩时,通过在转矩优化函数350以后确定燃油增浓转矩Te_RICH以及控制发动机14采用燃油增浓,当驾驶员转矩请求,例如预测的加速输出转矩请求,超过操作发动机14运行在最大发动机转矩下以及操作转矩机械,例如第一第二电机56和72运行在最大马达转矩下,的可实现最大输出转矩时,发动机14只采用燃油增浓模式运行。
图6示出的图表500显示了示范性实施方式中作为输出转矩To(X轴)函数的发动机转矩水平(Y轴),以及图表530显示了作为输出转矩函数To(X轴)函数的电池功率水平(Y轴)。发动机转矩水平包括最小发动机转矩约束Te_MIN510、化学计量的最大发动机转矩Te_MAX 508、最大发动机转矩约束504、优选的发动机转矩502、以及预测的发动机转矩请求512。仅当预测的发动机转矩请求512大于化学计量的最大发动机转矩时发动机14运行在燃油增浓模式,如图表500中区域514所示。
图表530示出了由战术优化控制路径350所确定的用于输出转矩的电池功率532。战术优化控制路径350基于马达转矩,例如第一和第二电机56和72的TA和TB,计算输出转矩To。马达转矩和电池功率PBatt直接相关。战术优化控制路径350确定马达转矩在对应最小电池功率极限PBattMIN534的最小马达转矩Tm_MIN和对应最大电池功率极限PBattMAX536的最大马达转矩Tm_MAX之间。
当发动机运行在最大发动机转矩508下同时第一和第二电机56和72运行在基于最大电池功率PBattMAX536的最大马达转矩下时,增浓转矩的起始阈值540是输出转矩To。当输出转矩To低于该阈值540时,预测的转矩512等于基于化学计量的空燃比确定的优选的发动机转矩502。当输出转矩To高于阈值540时,发动机运行在燃油增浓模式下并且预测的发动机转矩请求512被设置成燃油增浓转矩Te_RICH,如前面所述那样确定。
应该知道的是,在本发明的范围内修改是允许的。已经特别参考优选实施例及对其的修改描述了本发明。在阅读与理解说明书后,可以对其它内容作进一步的修改与替换。其旨在包括所有落入到本发明的范围之内的修改与替换。

控制燃油增浓模式下混合动力系发动机的方法.pdf_第1页
第1页 / 共29页
控制燃油增浓模式下混合动力系发动机的方法.pdf_第2页
第2页 / 共29页
控制燃油增浓模式下混合动力系发动机的方法.pdf_第3页
第3页 / 共29页
点击查看更多>>
资源描述

《控制燃油增浓模式下混合动力系发动机的方法.pdf》由会员分享,可在线阅读,更多相关《控制燃油增浓模式下混合动力系发动机的方法.pdf(29页珍藏版)》请在专利查询网上搜索。

控制燃油增浓模式下混合动力系发动机的方法。连接到混合动力变速器输入部件上的发动机。混合动力变速器在输入部件和转矩机械以及输出部件之间传递转矩,以响应于驾驶员转矩请求产生输出转矩。该转矩机械与能量存储装置相连。控制所述发动机的方法,包括:监控驾驶员转矩请求;确定在化学计量比下运行发动机的最大发动机转矩;确定最大马达转矩输出;当转矩机械产生最大马达转矩且在化学计量比下运行的发动机产生最大发动机转矩时,。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般车辆


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1