用于乙苯脱氢制苯乙烯的催化剂 本发明涉及具有特殊几何形状的空心颗粒形并适用于乙苯脱氢制苯乙烯的催化剂。
以前和现在申请人的在先申请中公开的催化剂具有复杂的几何形状,例如圆形的空心圆柱形状或每叶有通孔的多叶形横断面,该催化剂是通过使用一种润滑剂,将其加到模腔的壁上和模具的柱塞上作润滑用,压模粉末(压成片)得到的。
生成的催化剂的特征在于具有稳定的尺、高抗磨损、抗破裂特性以及窄的孔半径分布。
由于上述类型的催化剂具有多孔性和颗粒几何面积和体积之比高的优点,使催化剂能大大减小固定床反应器中产生的压力降,并能显著的改进催化剂的活性和选择性。
在有关乙苯催化脱氢制苯乙烯的专利文献中,兴趣总是针对改进和最优化化学成分,以便得到更加满意的性能。一般,这种改进是通过改变有关主组分的成分或使用助催化剂获得的。
迄今,对催化剂的几何形状还没有引起人们充分地注意。
形状的重要性可直接关系到在工艺中所使用的压力,因为脱氢反应是通过增大体积,降低压力以促使平衡向产品(苯乙烯和氢)的方向移动完成地,其结果促进了转化,因此,希望改进催化剂的形状,使操作在较低的压力下进行(这还可减小在催化剂床层中的压力降)。
此外,为了降低苯乙烯的分压,以促使平衡向着生成苯乙烯的方向移动,脱氢反应需在蒸汽存在下进行。
为了解决这些问题,已经采用了二种有关形状的改进;
(1)增大(到5mm)颗粒直径而不改变它的长度,这种解决问题的办法仅仅是很好的限制了其大小,由于堆积密度减小(即增大了孔隙率),实现了真正地减小压力降,而同时催化剂裸露的几何面积催化作用降低了,这二种相反作用的结果,降低了催化剂的性能。
(2)引入一三叶形或五叶形几何形状,这种形状仅仅稍微改善了催化剂的性能,然而,人们认为叶形的形状存在着缺陷,相对于实心圆柱形状,叶形有易破裂的尖端,容易产生粉末。
工业上用于催化剂成形的工艺是挤压模塑,要注意的是,这种技术简单的工艺有一个很重要的缺点,即不能得到复杂的几何形状,特别是空心形状。
用于乙苯脱氢制苯乙烯的催化剂的有关组分包括氧化铁、碱或碱土金属氧化物和选自铈、钼、钨的其它氧化物和氧化铬。
通过加入氧化铬作为稳定剂可以延长催化剂的使用时间。US 3,360,597公开了含有0.5-5%的Cr2O3,其它为80-90%Fe2O3和9-18%的K2CO3的催化剂。按照下述方法制备催化剂,使黄色的氧化铁、氧化铬和碳酸钾在水中混合,得到一种膏状物,将所述的膏状物通过挤压、干燥和焙烧得到圆柱状颗粒形催化剂。
US5,023,225公开了一种用于乙苯脱氢制苯乙烯的催化剂,它是按照氧化铁、碱或碱土金属氧化物以及铈、钼或钨的氧化物,其特征在于在模塑催化剂之前将黄色的氧化铁同少量的氧化铬混合。模塑工艺的特征在于,将和氧化铬混合后的黄色氧化铁加热到500-1000℃,在混合成分形成湿糊状物之前,转变成红色的氧化铁,通过挤压完成模塑。
本发明的脱氢催化剂具有用压模(压成片状)方法得到的空心几何形状(有一或多个通孔),在所述的方法中,待用的润滑剂不分散到要形成的松散粉末(松润滑)中,而是加到模塑腔的壁上和注模的柱塞上。
相对于用松润滑制备的润滑剂,该催化剂具有高孔隙率,较窄的孔径分布,减少了大孔。孔隙率一般在0.15-0.35cm3/g(用汞吸收法确定),表面积一般在1-6m2/(用BET法确定),孔的分布曲线不包括其平均孔径大于50000的大孔,50%以上的孔的平均孔半径大于 600,优选平均孔半径在800-1800 。
此外,催化剂具有稳定的尺寸参数值。而采用内润滑的模塑工艺不能得到固定的尺寸参数,这是因为在催化剂颗粒的局部或全部会产生大量的微裂纹,从而引起催化剂脆裂,进而引起其变形。
因为这些变形,在工业实践上,从未使用松润滑的压模工艺用于空心颗粒催化剂的生产,从而发明了本发明的催化剂,其特征在于其机械性能,特别是轴向最大抗拉强度(在孔的轴向上)大大高于松润滑得到的催化剂相应的抗拉强度,轴向最大抗拉强度大于15N/颗粒,它是强度(在孔的轴向上),该抗拉强度大大高于松润滑得到的催化剂相应的抗拉强度。轴向最大抗拉强度大于15N/颗粒,优选在20-80N/颗粒之间。其抗磨性也高,粉末百分比一般小于3%,通过挤压得到的催化剂中,抗磨性一般在4-8%(wt)之间。本发明的催化剂,相对于实心催化剂,事实证明,相同重量的空心催化剂能达到较高的转化率。
通过这种催化剂提供大量的孔隙,能使操作在相同的输送流量下,以低于在使用实形催化剂时所要求的工艺压力下进行。
这种有大量孔隙的催化剂,能使操作用的蒸汽/乙苯之比高于实心催化剂所使用的比率,在相同的压力下,从而提高了转化率。
本发明的催化剂中,可使用的蒸汽/乙苯的重量比大于1.5,可达到2.5或更高。
孔的存在能使本发明的催化剂以比实形催化剂较薄的壁厚下工作,从而可较好的利用催化物质。该催化剂可达到的最小壁厚在0.6-0.8mm之间。
对于相同重量的催化物质,将其用于本发明的催化剂至少是实际使用中机械性能一样的最小为3mm直径的实形催化剂的1.5倍以上。对于相等的暴露的几何表面,本发明的三叶形的催化剂相比于实心形的催化剂,所观察到的压力降至少低1.3倍。可使用的润滑剂制备本发明的催化剂包括固体和液体,所述固体和液体能降低待压片的粉末和所述粉末相接触的片剂部分间的摩擦系数。
适用的润滑剂的实例是硬脂酸和软脂酸;这些酸的碱和碱土金属的盐类,例如硬脂酸镁、硬脂酸钾、碳黑;甘油一酯和甘油三酯例如一硬脂酸甘油酯和一油酸甘油酯,石蜡油,和全氟聚醚类。
可用的润滑剂作为溶液或分散剂中的分散系。
液体润滑剂的量一般在0.025-25mg/颗粒。
可用固体润滑剂涂抹成形腔和柱塞,即用空气流或其它气流连续输送润滑剂粉末薄薄一层盖住上述的成形腔和柱塞,以实现最佳的固体分散。
模塑腔和柱塞可用自润滑材料例如聚四氟乙烯或陶瓷制造或涂覆,这样就能不用或少用润滑剂。
优选本发明的催化剂具有一或多个通孔的空心圆柱形。在二个或多个通孔的情况下,其通孔的轴线相互平行并平行于颗粒轴线,孔之间的距离大致相等。
优选通孔具有圆形断面,在有三个通孔的催化剂中,相对于颗粒的横向断面,轴线形成大致等边三角形的角隅,所述的角隅朝着与限定圆相接触的横向断面取向;叶形优选圆柱形的和圆形的,彼此一样,各通孔同轴。
颗粒还可具有带圆形角的大致呈三角形的横断面。
孔间距(即它们各自轴线之间的距离)和所述孔直径之比优选在1.15-1.5之间,更优选在1.3-1.4之间。
颗粒高和孔间距之比优选在1.5-2.5之间,更优选在1.7-2.3之间。
在具有圆形横断面催化剂的情况下,每个叶形的曲率半径与孔间距之比在0.6-0.9,更优选0.7-0.8之间。该叶形的曲率半径和通孔半径之比优选1.3-2.7之间,更优选在1.8-2.1之间。围绕横断面限定圆半径和圆形角曲率半径之比优选1.6-2之间,更优选在1.7-1.85之间。多叶形的每个颗粒表面对体积之比优选大于2.0,更优选大于2.2。
在具有三角形横断面催化剂的情况下,每个圆形角的曲率半径和孔间距之比优选在0.6-0.9之间,更优选在0.7-0.8之间;对横断面限定的圆半径和每个圆形角的曲率半径之比优选1.6-2之间,更优选在1.7-1.85之间。具有三角形断面形状每个颗粒表面对体积之比优选大于2.0,更优选大于2.2。
在制备本发明的催化剂中,含前体的粉末和/或催化剂的活性组分干混合或加少量水混合得到含均匀分布组分的混合物。
使生成的混合物在120-1000℃的温度下进行干燥和/或焙烧循环一段时间,充分的除去水和挥发性的分解产物。
使用压力高于100Kg/cm2,可达到1000KG/cm2或更高。
从而发现,并构成本发明的另一方面,催化剂具有的机械性能,特别是轴向最大抗拉强度在用外润滑模塑得到的催化剂的那些数值范围内,也在用松润滑成形得到的催化剂的那些数值范围内,提供了在成形之前的粉末对其进行热处理,能保证在模塑步骤之前分解反应发生重量损耗。在这种情况下,使用内润滑剂的量小于5%(Wt)。
生成的粉末适用于用压模法制得所希望的形状和尺寸的颗粒。
模塑之后,在600-900℃焙烧颗粒。
助催化剂和稳定剂例如钙、镁、铬、钼和钨的氧化物可分布在颗粒物质内或在它的表面。可使用各种方法使所希望的组分在颗粒表面沉积,例如在外润滑步骤之后压片期间,可在颗粒上喷一种组分或几种组分。
使用一润滑剂作用所希望的化合物的前体,例如碱和碱土金属的硬脂酸盐是可允许的。
这些化合物,在焙烧之后转变成相应的氧化物或混合氧化物或盐。
使用其它的润滑剂和氧化物或其它的催化活性化合物的混合物并在模塑期间,在颗粒表面上喷覆薄薄一层是可做到的。
作为一种选择,在一个与压片分开的并在压片后的操作步骤中用薄薄一层涂至催化剂颗粒上是可能的。根据一种优选的方法,在焙烧段的出口,加热到80-200℃,用喷雾器将助催化剂、稳定氧化物或金属盐的溶液或分散体喷覆到催化剂上。分散体的浓度,接触时间和进行沉积的温度,可以改变,只要能保证快速地和完全地蒸发水分和其它的分散剂液体,以形成具有所希望厚度的表面层,一般在0.1-100微米。
按最后的组分重量计,用氧化物表示,催化剂包括50-92%氧化铁、5-20%碱金属氧化物、0.5-14%碱土金属氧化物、2-10%镧系元素、0.5-6%元素周期表第六族的金属氧化物。
在碱金属氧化物中,氧化钾是优选的;而在碱土金属氧化物中,镁和钙的氧化物是优选的;在镧系氧化物中,氧化铈是优选的;在第六族氧化物中,钼和钨氧化物是优选的。
使用例如氢氧化铁、硝酸铁或碳酸铁、氢氧化钾、碳酸钾、碳酸铈或钼酸铵作为活性组分的前体是可行的。
一种代表性的但非限定其组分如下,按氧化物的重量百分比表示:
Fe2O3=78%;K2O=12%;CeCO2=5%;MgO=2%;WO3=0.9%;
MoO3=2.1%;
其它代表性的组分,还用氧化物重量百分比表示:
Fe2O3=74%;K2O=6%;CeO2=10%;MgO=4%;WO3=6%;
含有一种非均匀组分的催化剂,所述的组分是在颗粒表面沉积获得的助催化剂和稳定成分,含有40-95%氧化铁、5-30%碱金属氧化物、0.05-4%碱土金属氧化物,0.1-10%镧系元素氧化物、0.05-4%铬、钼或钨氧化物。
特别的,仅次于氧化铁,氧化钾、氧化钙、氧化镁、氧化铈和铬、钼、钨的氧化物也是优选的。
优选但非限制性的实例其组分列表于后,注星号表示可沉积在表面上的组分。%Fe2O3%K2O3 %CeO2 %MgO %CaO %Cr2O3 %MoO3 %WO3 78 12 5 2 0.09* / 2.1 0.9 78 14 5 0.1* / / 2 0.9 74.5 16.1 9.6 4.0 / / / 5.8 78 12 5 2.9 / / 2 0.1* 78 12 5 4 / / 0.1* 0.9 78 14 5 2.8 / / 0.1* 0.1* 78 12 0.1* 5 4.6 / 0.1* 0.1* 0.1*
乙苯脱氢制苯乙烯的反应,通常在540-650℃,高于、低于或等于大气压力下进行,由于动力学原因,优选在低压下进行反应,这能够在相同的温度下得到较高的转化率。
提供以下的实施例说明本发明,但不限制本发明;分析测定
按照ASTM D4179/82测定轴向最大抗拉强度;根据ASTM D4164/82测定表观密度(堆积的);对比例
通过混合水合氧化铁、碳酸铈、碳酸镁和氧化钨以及一种氢氧化钾的水溶液制备一种膏状物,得到具有下列组分的最终催化剂产品(用氧化物的重量%表示): 氧化物 % Fe2O3 76.1 K2O 14.0 CeO2 6.5 MgO 2.5 WO3 0.9
挤压膏状物,形成长5mm,直径3.5mm的颗粒,在150℃干燥挤压成形的颗粒16小时,然后在400℃焙烧2小时。一些颗粒在700℃焙烧2小时。这些颗粒构成催化剂1。实施例1
将按照对比例1制备的第二部分颗粒磨成粉,用硬脂酸作外润滑剂将粉末压成片。压片机的柱塞和圆筒形腔用硬脂酸通过空气流涂覆薄薄一层。压成的圆柱4mm长、有2mm直径的通孔。使用压力500Kg/cm2。在700℃焙烧圆柱形颗粒2小时。
这是2号催化剂,其轴向最大抗拉强度为13.4N/颗粒。实施例2
将按照对比例1制备的第二部分颗粒磨成粉并压制成(用硬脂酸外润滑)带三个内径1.3mm平行的通孔、壁厚0.8mm、圆周半径2.5mm、高5mm的三叶形。孔位于等边三角形的顶角处,在700℃焙烧片剂2小时。
这是3号催化剂,其轴向最大抗拉强度20.9N/颗粒。实施例3
用对比例1的方法制备含有下列组分(用氧化物表示)的催化剂:
Fe2O3=74.5%;K2O=6.1%;CeO2=9.6%;MgO=4.0%,WO3=5.8%;
作为Fe2O3,使用了红球状的Fe2O3,K2O以KOH形式引入。
在800℃进行焙烧4小时。
这是第4号催化剂。实施例4
将按照实施例3的方法制备的部分颗粒磨成粉并按实施例2的方法压成片,以得到具有实施例2特征的带三孔的三叶形颗粒。
用硬脂酸镁代替硬脂酸用作外润滑。
这种催化剂的轴向最大抗拉强度为32N/颗粒;孔的半径在600-800的占体积的38%,孔的半径在800-1000的占体积的11%,孔的半径在1000-2000的占体积的12%,孔的半径在2000-4000的占体积的6%;没有半径大于50000大孔;
催化剂的表面积为4.9m2/g;孔隙率为0.17ml/g;
这是5号催化剂。实施例5
在内径35mm的钢制反应器内试验1、2、3、4和5号催化剂,在每次试验中,放入反应器中的催化剂200cm3,用钢栅承载,在570℃、590℃、和610℃进行每种催化剂的试验;在这些试验中水蒸气和乙苯被预热到以上温度,通过催化剂床,水/乙苯之比为2.4(wt);出口压力为1.05atm,乙苯的时空速度为0.5;在每种条件下系统稳定至少20小时后收集反应产品的样品2个多小时;转化率和摩尔选择性列在下表:表1 温度(℃) 转化率% 选择性% Cat.1 BD=1.08 570 590 610 50.31 62.47 74.62 93.3 91.34 88.05 Cat.2 BD=1.01 570 590 610 54.66 64.85 75.34 93.34 91.52 88.73 Cat.3 BD=0.857 570 590 610 55.12 65.43 76.17 93.53 91.70 89.08 Cat.4 BD=1.42 570 60 88 Cat.5 BD=1.08 570 60 90.5BD=表观密度g/ml.