内燃机排气净化装置.pdf

上传人:a2 文档编号:385844 上传时间:2018-02-13 格式:PDF 页数:18 大小:837.62KB
返回 下载 相关 举报
摘要
申请专利号:

CN200580015909.3

申请日:

2005.05.12

公开号:

CN1954136A

公开日:

2007.04.25

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的视为放弃IPC(主分类):F01N 3/24放弃生效日:20070425|||发明专利公报更正号=3卷=26页码=1563更正项目=专利权的^视为放弃误=专利权视为放弃正=撤回专利权视为放弃公告|||专利权的视为放弃|||实质审查的生效|||公开

IPC分类号:

F01N3/24(2006.01); B01D53/94(2006.01); F01N3/20(2006.01); F02D9/02(2006.01); F02D41/08(2006.01); F02D41/38(2006.01); F02M45/02(2006.01)

主分类号:

F01N3/24

申请人:

三菱扶桑卡客车株式会社;

发明人:

村田峰启; 武田好央; 筒井泰弘; 近藤畅宏; 高桥嘉则

地址:

日本东京

优先权:

2004.05.19 JP 149202/2004

专利代理机构:

北京天昊联合知识产权代理有限公司

代理人:

何立波;张天舒

PDF下载: PDF下载
内容摘要

在排气净化催化剂的排气上游侧具备氧化催化剂,该氧化催化剂催化剂容量的设定方式为,在排气流速除以催化剂容量的值与催化剂活性程度之间的关系中,排气流速为所述内燃机的怠速运转状态时的排气流速时,使催化剂活性程度为最大且使排气流速除以催化剂容量所得最大或在最大值附近。

权利要求书

1.  一种内燃机排气净化装置,其特征在于,具备:
排气净化催化剂,其设置于内燃机的排气通道中,能够净化排气中的有害成分;以及
氧化催化剂,其设置于该排气净化催化剂的排气上游侧,
该氧化催化剂的催化剂容量的设定方式为,在排气流速除以催化剂容量的值与催化剂活性程度之间的关系中,在排气流速为所述内燃机的怠速运转状态时的排气流速时,使催化剂活性程度为最大且使所述排气流速除以催化剂容量的值为最大或在最大值附近。

2.
  根据权利要求1所述的内燃机排气净化装置,其特征在于,
所述排气净化催化剂包含NOx催化剂。

3.
  根据权利要求1所述的内燃机排气净化装置,其特征在于,
所述内燃机是进气系统中具备节流阀的柴油发动机,具备使该节流阀进行开闭动作的节流阀控制单元,同时具备控制该柴油发动机运转的发动机控制单元,
所述节流阀控制单元在所述内燃机处于所述怠速运转状态时,使所述节流阀进行关闭动作以达到规定开度,
所述氧化催化剂的催化剂容量的设定方式为,在内燃机处于怠速运转状态,排气流速是利用所述发动机控制单元使所述节流阀进行关闭动作直至所述规定开度状态下的排气流速时,使所述催化剂活性程度为最大且使所述排气流速除以催化剂容量所得的值为最大或在最大值附近。

4.
  根据权利要求3中所述的内燃机排气净化装置,其特征在于,
所述发动机控制单元还包含控制燃料喷射量和燃料喷射时刻的燃料喷射控制单元,
该燃料喷射控制单元在所述内燃机处于所述怠速运转状态时,使主喷射的燃料喷射时刻比通常时刻延迟,在紧接着该主喷射之前,至少进行一次或一次以上的燃料喷射量比该主喷射少的前导喷射。

5.
  根据权利要求4中所述的内燃机排气净化装置,其特征在于,
所述燃料喷射控制单元在所述内燃机处于所述怠速运转的状态时,使主喷射的燃料喷射时刻延迟至缺火界限点附近。

6.
  根据权利要求1中所述的内燃机排气净化装置,其特征在于,
所述内燃机为柴油发动机,其具备控制燃料喷射量和燃料喷射时刻的燃料喷射控制单元,同时具备控制该柴油发动机运转的发动机控制单元,
所述燃料喷射控制单元在所述内燃机处于所述怠速运转状态时,使主喷射的燃料喷射时刻比通常时刻延迟,在紧接着该主喷射之前,至少进行一次或一次以上的燃料喷射量比该主喷射少的前导喷射。

说明书

内燃机排气净化装置
技术领域
本发明涉及一种内燃机排气净化装置,更详细地说,涉及一种提高柴油发动机中低速空转时的排气净化性能的技术。
背景技术
在安装有柴油发动机的车辆中,在通常运转时由于柴油发动机的空燃比为稀空燃比,所以容易生成NOx,为了净化该NOx,考虑在排气系统中配置NOx催化剂作为排气净化催化剂。作为NOx催化剂,例如可以举出吸附型NOx催化剂、选择性催化剂还原系统(SCR系统:Selective catalytic reduction system)等。
此外,这种吸附型NOx催化剂,具有在氧化气氛中吸附NOx,在还原气氛中将吸附的NOx还原的性能,但该NOx的吸附性能、还原性能(NOx净化率)如图6所示具有以下特性,即,如果催化剂温度未达到一定温度以上则不会活化(起燃(light off))。
因此,例如在柴油发动机低速空转(普通的怠速运转)时,由于燃料喷射量将变得极少,所以排气温度进而催化剂温度容易变得低于起燃温度,产生在该低速空转时NOx催化剂不能充分地发挥性能,NOx净化性能降低的问题。
因此,正在开发以下技术,即,在催化剂的排气上游侧的排气温度比较高的位置上(例如,排气歧管或涡轮增压器附近)另外设置氧化催化剂,由于处在高温气氛中,所以利用容易活化的该氧化催化剂的氧化反应热,实现排气下游处的排气净化催化剂的升温(例如,参照特开平10-159545号公报)。
此外,氧化催化剂如图7所示,与上述NOx催化剂的情况相同地具有以下特性,即,如果催化剂温度未达到一定温度以上,则不会活化(起燃)而不能获得充分的HC、CO净化率。详细来说,氧化催化剂具有以下特性,即,在达到起燃温度前通过吸附而俘获HC、CO,如果达到起燃温度后则该被俘获的HC、CO逐渐开始氧化反应,随后伴随着催化剂温度的上升HC、CO的氧化反应加速。
此外,如果氧化催化剂具有以上特性,则例如在氧化催化剂达到完全活化状态之前,保持低速空转而缓慢升温的情况下不会产生问题,但如果例如长时间持续氧化催化剂的温度小于或等于起燃温度的状态,随后柴油发动机进行加速操作而负载增大,脱离低速空转状态,则会存在以下问题,即,伴随负载增大,氧化催化剂的温度超过起燃温度而急剧上升,被俘获的HC、CO一次性发生氧化反应产生大量的反应热,氧化催化剂过度升温。
氧化催化剂的催化剂容量越大,以及达到起燃温度所需要时间越长,氧化催化剂对HC、CO的俘获量越大,这个问题越显著。
发明内容
本发明就是为解决上述问题而提出的,其目的在于,提供一种内燃机排气净化装置,其在怠速运转时能够利用在排气上游侧设置的氧化催化剂中的氧化反应热,将排气净化催化剂良好地维持在大于或等于起燃温度,并且能够防止氧化催化剂的过度升温。
为实现上述目的,本发明的排气净化装置具备:排气净化催化剂,其设置于内燃机的排气通道中,能够净化排气中的有害成分;以及氧化催化剂,其设置于该排气净化催化剂的排气上游侧,该氧化催化剂的催化剂容量的设定方式为,在排气流速除以催化剂容量的值与催化剂活性程度之间的关系中,排气流速为所述内燃机的怠速运转状态时的排气流速时,使催化剂活性程度为最大且使所述排气流速除以催化剂容量所得最大或在最大值附近。
参照图8,所示为氧化催化剂的排气流速除以催化剂容量所得的值(排气流速/催化剂容量)与催化剂活性程度(CO、HC净化率)之间的关系,根据该图可以看出,氧化催化剂具有以下特性,即,在排气流速/催化剂容量小的范围内催化剂活性程度大而促进氧化反应,另一方面,如果排气流速/催化剂容量大,超过某固定值则催化剂活性程度急剧下降,氧化反应减弱。此外,根据该图,相对于怠速运转(低速空转)时的排气流速氧化催化剂的催化剂容量越大,怠速运转时的排气流速/催化剂容量越小。
但是,如果如上所述怠速运转时的排气流速/催化剂容量小,则即使内燃机的负载增大(排气流速增大),催化剂活性程度大,也能暂时维持在促进氧化反应的状态。
上述氧化催化剂的过度升温问题的原因之一被认为是,由于这样的排气流速/催化剂容量与催化剂活性程度之间的关系,即使内燃机的负载增大仍使氧化反应继续处于被促进的状态。
本发明基于上述认识,所以,技术方案1的发明中,排气净化催化剂的排气上流侧的氧化催化剂的催化剂容量的设定方式为,使得在排气流速是内燃机的怠速运转状态时的排气流速时,使催化剂活性程度为最大(例如,规定最大活性范围)且使排气流速除以催化剂容量所得的值为最大或在最大值附近。
即,如图2所示,以使得怠速运转(低速空转)时的排气流速/催化剂容量在催化剂活性程度的规定最大活性范围内最大或在最大值附近、即排气流速/催化剂容量处于刚开始下降时的值(活性极限)附近的方式,调整排气流速/催化剂容量,设定氧化催化剂的催化剂容量。
如果这样调整排气流速/催化剂容量,设定氧化催化剂的催化剂容量,则在怠速运转时,由于催化剂活性程度大,能够利用氧化催化剂的氧化反应的反应热使排气净化催化剂良好地升温。另一方面,在内燃机的负载增大(排气流速增大)时,催化剂活性程度急剧降低,氧化反应大幅减弱。
因此,氧化催化剂只在接近怠速运转时起作用,在该怠速运转时将排气净化催化剂良好地维持在起燃温度以上,同时,例如在刚起动之后立即使车辆出发的情况下以及减速后再加速时这种,氧化催化剂的温度小于或等于起燃温度时,对内燃机进行加速操作而增加负载而脱离怠速运转状态的情况下,伴随负载增大催化剂温度上升,另一方面,氧化催化剂中的氧化反应大幅减弱,不会发生在达到起燃温度之前氧化催化剂中俘获的HC、CO一次性发生氧化反应,抑制氧化催化剂中大量的反应热的产生。
附图说明
图1是本发明所涉及的安装于车辆中的内燃机的排气净化装置的结构示意图。
图2是表示排气流速/催化剂容量与催化剂活性程度之间关系中本发明所涉及的低速空转时的排气流速/催化剂容量的图。
图3是本发明所涉及的低速空转排气升温控制的控制程序的流程图。
图4是表示对节流阀进行关闭动作时氧化催化剂温度(a)以及HC、CO浓度(b)的图。
图5是表示使燃料喷射时刻延迟时的主喷射时刻以及前导喷射时刻的图。
图6是表示NOx催化剂的温度与NOx净化率的关系的图。
图7是表示氧化催化剂的温度与CO、HC净化率的关系的图。
图8是表示排气流速/催化剂容量与催化剂活性程度之间关系中现有的低速空转时排气流速/催化剂容量的图。
具体实施方式
以下,基于附图对本发明的具体实施方式进行说明。
参照图1,所示为本发明所涉及的安装于车辆中的内燃机排气净化装置的结构示意图,以下基于该图对本发明所涉及的内燃机排气净化装置的结构进行说明。
如图1所示,作为内燃机的发动机1是例如共轨式直列4汽缸的柴油发动机。在共轨式的柴油发动机1中,面向燃烧室2在各个汽缸上设置有电磁式的燃料喷射嘴4,各燃料喷射嘴4经由高压油管与公共油轨6连接。此外,公共油轨6虽未图示,但经由高压油管与高压油泵连接,进而经由低压油泵与油箱连接。而且,由于发动机1是柴油发动机,所以使用轻油作为燃料。
在发动机1的进气通道10中设置有电磁式(DC电动机式)的节流阀12,在节流阀12的上游侧,经过中间冷却器14、涡轮增压器16的压缩机,设置有空气流量传感器(AFS)18,其检测吸入的空气量Qa。节流阀12例如由蝶形阀构成,空气流量传感器18在这里采用例如热线式空气流量传感器,但也可以是卡门涡旋式空气流量传感器等。
另一方面,在排气通道20中安装有吸附型NOx催化剂(排气净化催化剂)22。吸附型NOx催化剂22中除了例如铂(Pt)等贵金属以外,还含有钾(K)等碱金属以及钡(Ba)等碱土金属,其构成方式为,在排气的空气过剩率λ大(即稀空燃比)的氧化气氛中能够吸附排气中的NOx(有害成分),另一方面,在排气的空气过剩率λ小(即浓空燃比)的还原气氛中能够释放所吸附的NOx,还原(以下称作NOx净化)并进行净化。此外,吸附型NOx催化剂22因贵金属的存在而兼具氧化性能,还能够净化HC、CO。
在与排气通道20的吸附型NOx催化剂22紧挨的上游处,设置有还原剂喷射器24,其在NOx净化时向排气中混入用于使排气的空气过剩率λ降低的还原剂(轻油等)。
此外,在排气通道20的吸附型NOx催化剂22的上游侧,位于与涡轮增压器16的涡轮紧挨的下游,安装有小型的氧化催化剂26。此外,涡轮增压器16的涡轮配置为位于与发动机1的排气歧管(未图示)紧挨的下游位置。
氧化催化剂26是一般使用的氧化催化剂,含有铂(Pt)等贵金属,但在这里其设置目的为,对排气中的HC、CO等进行氧化处理,利用该氧化反应的反应热量,使位于排气下游侧的吸附型NOx催化剂22升温。即,由于氧化催化剂26接近排气歧管,所以即便在排气温度低的低速空转(怠速运转)时,也能够利用较高温度的排气热量,维持在活化(起燃)状态,能够随时进行排气中的HC、CO的氧化处理,另一方面,由于吸附型NOx催化剂22位于离发动机1较远的位置,所以存在低速空转时温度容易降低而从起燃状态脱离的倾向,在这里,通过在吸附型NOx催化剂22的排气上游侧设置氧化催化剂26,可以利用由处于起燃状态的该氧化催化剂26的氧化反应产生的反应热,进行排气下游侧的吸附型NOx催化剂22的升温以及温度维持。
此外,对于氧化催化剂26,如上所述存在以下问题,即,例如在发动机1刚起动等立即使车辆出发的情况下以及减速后再加速的情况下,如果氧化催化剂26的温度小于或等于起燃温度时内燃机进行加速操作而负载增大,脱离低速空转状态,则伴随负载增大而氧化催化剂26的温度超过起燃温度并急剧上升,在达到起燃温度之前氧化催化剂26中所俘获的HC、CO一次性发生氧化反应,迅速产生大量的反应热,引起氧化催化剂26过度升温。
这个问题的原因之一被认为是,如图8所示,相对于低速空转时的排气流速,氧化催化剂的催化剂容量越大,怠速运转时的排气流速/催化剂容量(排气流速除以催化剂容量的值)越小,根据该图8所示的排气流速/催化剂容量与催化剂活性程度(CO、HC净化率)的关系,即使发动机1的负载增大,氧化反应也继续处于被促进状态。
因此,对于氧化催化剂26,这样设定催化剂容量,即,基于排气流速/催化剂容量与催化剂活性程度的关系,在低速空转时,使催化剂活性程度大,氧化反应成为被促进的状态,另一方面,当发动机1的负载增大时,则不再继续氧化反应被促进状态。
具体地说,如图2所示,以使得低速空转时的排气流速/催化剂容量在催化剂活性程度(CO、HC净化率)的规定最大活性范围内为最大或在最大值附近、即排气流速/催化剂容量处于催化剂活性程度刚开始下降之前的值(活性极限)附近的方式,调整排气流速/催化剂容量,设定氧化催化剂26的催化剂容量。
详细地说,如下所述,为了在低速空转时利用氧化催化剂26使尽量多的HC、CO发生氧化反应,使节流阀12进行闭阀动作,如果这样使节流阀进行闭阀动作,则排气流量变化而排气流速减小,在这里,基于使节流阀12进行关闭动作以达到规定开度的状态下的排气速度,设定氧化催化剂26的催化剂容量,以使低速空转时的排气流速/催化剂容量在催化剂活性程度的规定最大活性范围内为最大或最大值附近。
如果像这样调整排气流速/催化剂容量,设定氧化催化剂26的催化剂容量,则在低速空转时,如图2所示由于催化剂活性程度大,所以能够利用氧化催化剂26的氧化反应的反应热使排气下游侧的吸附型NOx催化剂22良好地升温,即使在低速空转时,也能够将吸附型NOx催化剂22维持为大于或等于起燃温度,吸附型NOx催化剂22中NOx的吸附以及释放还原能够良好地进行,提高NOx净化性能。另一方面,在发动机1的负载增大(负载增大),脱离低速空转状态时,如图2所示,催化剂活性程度急剧降低,氧化反应大幅减弱,抑制在达到起燃温度之前因氧化催化剂26中俘获的HC、CO发生氧化反应引起的反应热的大量产生,防止氧化催化剂26的过度升温。因此,实现氧化催化剂26寿命的延长。
此外,如上所述,如果基于使节流阀12进行关闭动作以达到规定开度的状态下的排气速度,设定氧化催化剂26的催化剂容量,则可以将氧化催化剂26的催化剂容量设定的尽量小,能够实现氧化催化剂26的小型化,即使低速空转时的温度较低的排气热量,也能够在短时间内将氧化催化剂26升温至起燃温度,能够减少在达到起燃温度之前氧化催化剂26中俘获的HC、CO量。因此,与上述氧化反应的减弱相配合,能够充分抑制在发动机1的负载增大的情况下的反应热的产生。
此外,此时,关于氧化催化剂26的载体,可以由热导率高的金属载体构成,由此,能够使氧化催化剂26在更短时间内升温至起燃温度,可以进一步抑制在发动机1负载增大的情况下的反应热的产生。
回到图1,从排气歧管延伸出EGR通道30,其使排气的一部分作为EGR排气回流至进气系统,该EGR通道30的终端与进气通道10的节流阀12的下游部分相连接。此外,在EGR通道30中安装有电磁式(DC电动机式)的EGR阀32,其可以将EGR排气流量调节至应调整的任意开度。此外,在EGR通道30的靠近排气歧管附近,安装有EGR冷却器34。
电子控制单元(ECU)40,是进行包含发动机1的燃料喷射控制在内的车辆各种控制的控制装置(发动机控制单元),由输入输出接口、CPU、存储器等构成。此外,在ECU 40的输入侧,除了上述空气流量传感器18之外,还连接有例如基于发动机1的曲柄角检测发动机转速Ne的Ne传感器42、检测驾驶员的加速器操作的加速器传感器43、检测吸附型NOx催化剂22的温度的温度传感器44等各种传感器类器件。
另一方面,在ECU 40的输出侧,连接有上述燃料喷射嘴4、节流阀12、还原剂喷射器24、EGR阀32等各种设备类器件。
因此,基于来自各种传感器类器件的输入信息,对各种设备类器件的进行动作控制,对发动机1以及车辆进行适当的运转控制。
以下,对具有上述结构的内燃机排气净化装置的本发明所涉及的低速空转时的排气升温控制进行说明。
参照图3,所示为本发明所涉及的低速空转排气升温控制的控制程序的流程图,以下按照该流程图进行说明。
首先,在步骤S10中,判断发动机1当前是否处于低速空转状态。具体地说,基于来自Ne传感器42的信息,判断检测出的发动机转速Ne是否为与低速空转对应的转速Ni、且利用加速传感器43检测出的加速器开度是否为0%。在判断结果为假(否),判断不是低速空转状态的情况下,跳出该程序。另一方面,在判断结果为真(是),判断是低速空转状态的情况下,进入步骤S12。
在步骤S12中,判断吸附型NOx催化剂22的温度Tcat是否低于吸附型NOx催化剂22的起燃温度T1。在判断结果为假(否),吸附型NOx催化剂22的温度Tcat大于或等于起燃温度T1的情况下,判断吸附型NOx催化剂22可以充分地发挥性能,跳出该程序。另一方面,在判断结果为真(是),温度Tcat比起燃温度T1低的情况下,判断必须进行吸附型NOx催化剂22的升温,进入步骤S14。
在步骤S14中,使EGR阀32关闭,禁止EGR排气向进气系统的回流。
然后,在步骤S16中,使节流阀12进行关闭动作以达到规定开度,将吸入空气量Qa限制为较小值(节流阀控制单元)。
这样,由于利用节流阀12的关闭动作,将吸入空气量Qa限制为较小值,且EGR阀32关闭而没有EGR排气向进气系统的回流,因此发动机1中泵送损耗(pumping loss)增加,与此相对,增大用于维持低速空转的燃料喷射量。此外,产生因柴油发动机1中缸内压力的降低而燃料的点火时刻延迟的现象。因此,发动机1的排气温度上升,氧化催化剂26的温度被保持在高温。
此外,如果这样点火时刻延迟,则燃烧变缓慢,如图4(b)所示,与上述燃料喷射量的增大相配合,排气中的HC、CO浓度增加,由氧化催化剂26中HC、CO的氧化反应产生的反应热增加,如图4(a)中实线所示,伴随着氧化催化剂26升至比涡轮增压器16的涡轮的出口温度(虚线)更高的温度,吸附型NOx催化剂22可靠地升温。
在步骤S18中,使由燃料喷射嘴4喷射的燃料的主喷射时刻,比除了低速空转以外的普通运转时的燃料喷射时刻延迟(燃料喷射控制单元)。具体地说,使主喷射的燃料喷射时刻从普通运转时的燃料喷射时刻(例如,ATDC5°)延迟至缺火界限点附近,成为低速空转时专用的燃料喷射时刻(例如,ATDC20°)。
这样,如果使主喷射的燃料喷射时刻延迟至缺火界限点附近,则燃烧不完全而排气中的HC、CO浓度增加,由氧化催化剂26中的HC、CO的氧化反应产生的反应热进一步增大,吸附型NOx催化剂22进一步可靠地升温。
此外,如果如上所述使主喷射的燃料喷射时刻延迟至缺火界限点附近,则燃料的点火不稳定,会引起燃烧恶化,在最严重的情况下会引起不点火,因此同时在紧接着主喷射之前,实施前导喷射(燃料喷射控制单元)。
这里,前导喷射是为了使主喷射的燃料稳定地点火,发挥作为该主喷射的燃料的火种的作用。因此,对于前导喷射,与主喷射中的燃料量相比为极少量。此外,虽然前导喷射可以只为一次,但如果考虑作为火种的作用,优选进行多次,在这里,例如进行两次。具体地说,如图5所示,在缸内压力(实线)为最大的压缩上止点附近,进行第一次前导喷射,在ATDC10°附近,进行第二次前导喷射(双前导喷射)。
因此,即使使主喷射的燃料喷射时刻延迟至缺火点界限附近,也能够使主喷射的燃料稳定而可靠地燃烧,防止不点火以及燃烧恶化。
如上所述,本发明所涉及的内燃机的排气净化装置中,以节流阀12进行关闭动作以达到规定开度状态下的排气流速为基准,以低速空转时的排气流速/催化剂容量在催化剂活性程度的规定最大活性范围内为最大或最大值附近的方式,将氧化催化剂26的催化剂容量设定为尽量小(参照图2),此外,利用低速空转排气升温控制,在低速空转时,使节流阀12进行关闭动作以达到规定开度,同时延迟燃料喷射时刻,实现氧化催化剂26的升温和氧化催化剂26中的氧化反应的促进,进而促进吸附型NOx催化剂22的升温(参照图3)。
因此,根据本发明所涉及的内燃机排气净化装置,仅在发动机1处于低速空转状态时使氧化催化剂26有效地发挥性能,利用该氧化催化剂26的氧化反应的反应热使吸附型NOx催化剂22升温,将吸附型NOx催化剂22的温度良好地维持在起燃温度以上,能够提高NOx净化性能,同时在氧化催化剂26的温度为起燃温度以下时,发动机1进行加速操作而增大负载的情况下,氧化催化剂26中的氧化反应大幅减弱,抑制达到起燃温度之前氧化催化剂26中所俘获的HC、CO的氧化反应迅速产生的大量反应热,能够防止氧化催化剂26的过度升温。
以上,对本发明的具体实施方式进行了说明,但实施方式并不仅限于上述实施方式。
例如,在上述实施方式中,以节流阀12进行关闭动作以达到规定开度的状态下的排气流速为基准,设定氧化催化剂26的催化剂容量,通过低速空转排气升温控制,在低速空转时使节流阀12进行关闭动作以达到规定开度,但也可以在不具有节流阀12的系统中,或者即使在具有节流阀12的情况下,以不使节流阀12进行关闭动作的通常的低速空转中的排气流速为基准,设定氧化催化剂26的催化剂容量,不进行低速空转排气升温控制、即节流阀12的关闭动作以及延迟燃料喷射时刻,这样仍然可以得到很好的效果。
此外,在上述实施方式中,以在吸附型NOx催化剂22的排气上游侧设置氧化催化剂26的情况为例进行说明,但并不限于吸附型NOx催化剂22,在该吸附型NOx催化剂22的位置可以设置任意的排气净化催化剂,例如可以设置选择性催化剂还原系统(SCR系统)。
此外,在上述实施方式中,低速空转排气升温控制中,进行关闭节流阀12以及延迟燃料喷射时刻这两者(步骤S16以及步骤S18),但也可以仅进行节流阀12的关闭动作,或者,仅进行延迟燃料喷射时刻以及前导喷射(步骤S16或者步骤S18)。
此外,在上述实施方式中,在吸附型NOx催化剂22的温度Tcat比吸附型NOx22催化剂22的起燃温度T1低的情况下,进行节流阀12的关闭动作以及延迟燃料喷射时刻,但并不限于吸附型NOx催化剂22的温度Teat,也可以在低速空转时,总是进行节流阀12的关闭动作以及延迟燃料喷射时刻。

内燃机排气净化装置.pdf_第1页
第1页 / 共18页
内燃机排气净化装置.pdf_第2页
第2页 / 共18页
内燃机排气净化装置.pdf_第3页
第3页 / 共18页
点击查看更多>>
资源描述

《内燃机排气净化装置.pdf》由会员分享,可在线阅读,更多相关《内燃机排气净化装置.pdf(18页珍藏版)》请在专利查询网上搜索。

在排气净化催化剂的排气上游侧具备氧化催化剂,该氧化催化剂催化剂容量的设定方式为,在排气流速除以催化剂容量的值与催化剂活性程度之间的关系中,排气流速为所述内燃机的怠速运转状态时的排气流速时,使催化剂活性程度为最大且使排气流速除以催化剂容量所得最大或在最大值附近。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 一般机器或发动机;一般的发动机装置;蒸汽机


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1