新型外科材料和装置.pdf

上传人:r7 文档编号:331567 上传时间:2018-02-10 格式:PDF 页数:26 大小:962.54KB
返回 下载 相关 举报
摘要
申请专利号:

CN88100127

申请日:

1988.01.14

公开号:

CN88100127A

公开日:

1988.09.14

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)授权公告日:1996.7.3|||保护期延长|||授权||||||公开

IPC分类号:

A61L27/00; A61F2/00; A61B17/58

主分类号:

A61L27/00; A61F2/00; A61B17/58

申请人:

材料咨询股份公司

发明人:

帕蒂·特美拉; 彭蒂·洛卡伦; 塞普·外尼昂帕; 耶哈·赖何; 韦利-佩卡·赫庞伦; 蒂莫·扑约伦

地址:

芬兰坦佩雷

优先权:

1987.01.13 FI 870111

专利代理机构:

中国专利代理有限公司

代理人:

杨剑侠

PDF下载: PDF下载
内容摘要

本发明叙述了应用固定骨折、切骨术、关节固定术或关节损伤的至少部分原纤维化的固定材料和由这些材料制造的固定装置,如棒、板、螺钉、髓内钉和U型钉,这些材料和/或装置是由可再吸收的聚合物,共聚物或聚合物混合制造的,本发明还叙述了至少部分原纤维化的可再吸收材料的应用。本发明的可再吸收的固定材料和装置较已知的可再吸收的固定材料和装置明显地有更好的机械性能。有可能制造出比以往更小的、对患者安全可靠的固定装置。

权利要求书

1: 用于骨折、切骨术、关节固定术或关节损伤的至少部分原纤维化的固定材料和骨组织的再造材料以及增强材料,这些材料是由可再吸收的聚合物,共聚物和/或聚合物混合物制造的。
2: 固定装置,如棒、板、螺钉、髓内钉和U型钉,骨组织的再造和增强装置,如板和槽,这些装置至少部分是由权利要求所述的材料制造的。
3: 根据权利要求1所述的超取向的固定材料。
4: 可再吸收的固定装置,如棒、板、螺钉、髓内钉和U型钉,骨组织的再造和增强装置,如板和槽,这些装置至少部分是由权利要求3所述的超取向材料制造的。
5: 在骨折、切骨术、关节固定术或关节损伤的固定方面。权利要求1-4所述的任何可再吸收的固定材料或固定装置的应用。
6: 由权利要求1-4所述的任何一种材料构成的网状结构。
7: 一定形状的网状结构,如根据权利要求6所述的弯曲的网和槽。
8: 权利要求1-7所述的任何材料、装置或结构作为一种可再吸收的固定材料或装置的一个成分的应用。
9: 权利要求1-8所述任何材料、装置或结构作为由可再吸收的聚合物材料和生物陶瓷制造的生物组合物的一个成分的应用。

说明书


具有良好机械强度性能的外科植入体可以由包含可再吸收的增强元的可再吸收的聚合物材料(即可再吸收的组合物)来制造。在这里可再吸收的或可吸收的意思是材料可以被活组织所代谢。这样的可再吸收材料和用它们制造的植入体可以作棒、板、螺钉、髓内钉等应用,用以骨折固定、切骨术、关节固定术或关节损伤固定。这种的植入体和材料的一个优点是在被治疗的组织愈合后它们解聚成细胞养分被吸收了。因此,这种可再吸收的植入体不需要取出手术,而金属植入体通常是需要取出手术的。

    美国专利4,279,249的发明叙述了由聚乙交酯纤维作为增强元和聚丙交酯作为连接聚合物(即作为可再吸收的基体)所构成的可再吸收植入体材料。在专利申请FI851828中,叙述了自增强地可再吸收材料,其可再吸收的聚合物基体由与基体具有同样的化学元素含量的可再吸收的增强元所示增强。在这种情况典型的增强元是纤维或由它们所构成的结构。

    已知的由可再吸收的有机增强元所增强的可再吸收的材料具有相当高的机械强度值。因此,这样的材料可以应用于治疗松质的骨折、切骨术、关节固定术或关节损伤的矫形术和创伤治疗中。例如,FI851828所提出的白增强的可再吸收的材料,其弯曲强度超过300MPa(S.Vainion-paa,Thesis,Helsinki    1987),此值甚至明显地高于皮质骨的平均强度值。并且,已知的自增强的可再吸收的组合物的弹性模量也是相当高的,其典型的是10GPa数量级范围。所以,这些材料的强度值是明显地优于那些由熔融模塑技术制造的可再吸收材料的强度值。

    当人们采用象注射或挤出这样的熔融模塑技术来制造可再吸收的聚合物、共聚物或聚合物合金的棒、条、板等植入体时,产品的机械性能保持在热塑性聚合物典型的水平上,强度值(如拉伸、剪切和弯曲强度)不超过150MPa的值,典型的强度值是在40至80MPa之间,典型的模量是在1到6GPa之间。这是因为,当模塑样品的熔体被冷却时,存在于流动的聚合物熔体中的流体取向由于分子热运动的缘故而松散了。当聚合物是可结晶的聚合物时,样品结晶成局部性结晶体,呈球晶结构。所以,采用熔融模塑技术制造的聚合物材料典型地是由折叠晶片所示构成(厚度100-300A,宽度大约1μm),同时它被无定形聚合物所包裹着。另一方面,可认为晶片是由镶嵌式的折叠块(大约几百A的宽度)所构成。晶片通常形成带状结构,它从结晶中心(即所谓的核)生长成三维的球形的粒晶结构。由于按照球晶机理已经结晶的聚合物材料通常不表现出具有强共价键的聚合物分子那样的明显取向,所以它的机械强度值保持在上面讲到的那种水平上。由于样品在模中迅速冷却,(如在注射模塑的情况下)所以,仅仅在样品的表面上,分子取向可以被保持下来。

    虽然增强后的,可再吸收组合物比熔融模塑的可再吸收组合物的强度性能好得多但用可再吸收的:增强后的组合物加工相当大的植入体,如棒、髓内钉、螺钉或板,仍是经常需要的。这种需要是因为人们必须保证植入体的负载能力(如弯曲或剪切负载能力)在足够高的安全限上,以便确保在外部应力或肌肉应力指向固定的裂缝、切骨术、关节固定术或关节损伤时固定的稳定性,上述这些应力明显地是可能超过患者重量的。另一方面,当植入体被植入,如钻进骨头的钻孔中,或固定在骨的的表面时,为患者的安全性所要求的如此大的植入体对于骨组织和/或软组织会造成相当大的手术创伤。随着植入体尺寸的增加,对外来体发生反应的可能性增强,由于这些植入体可能使反应变得更强烈并且反应周期延长,同时植入体的再吸收作用对于活组织会带来物理和化学应力。这些应力与植入体的尺寸有直接的关系。

    至今,由有机材料制造的可再吸收的植入体的弹性模量中最好的是在10GPa的数量级与皮质骨的弹性模量相比,这弹性模量的水平较低,皮质骨的弹性模量典型地是在20GPa的数量级并且随着可能超过30GPa。当外科的主要目的是尽可能好的固定时,如果植入体的弹性模量尽可能地接近骨的弹性模量,对固定是有利的。理想的情况是被手术的骨骼弹性模量与植入体的弹性模量相等。因此,皮质骨(如长骨)的有效固定明显需要有比已知材料具有更高弹性模量的可再吸收的有机组合物材料。

    在本发明中,我们意外地发现,使材料的分子结构取向可使它的强度和模量值增强,以这种方法处理材料使其至少部分原纤维化,这样我们得到一种比已知的可再吸收的植入体材料的强度和弹性模量高得多的新型宏观可再吸收的自增强植入体材料。当本发明的材料被用作外科固定材料、装置或用于这些装置的制造时,人们能有效地减少植入体引起的手术创伤。同时,能获得比已知的材料有更好的固定效果。本发明叙述了至少部分原纤维化的(a)用于治疗骨折、切骨术、关节固定术或关节损伤的固定材料;(b)骨组织的再造和增强材料和(c)固定装置,再造装置和增强装置,如棒、板、螺钉、髓内钉、U型钉和槽,它们至少部分地用吸收的聚合物、共聚物或聚合物混合物这些原材料制造的。进一步,本发明还叙述了至少部分原纤维化的可再吸收的材料的应用,具体地在讲,就是由上述材料制造的棒、板、螺钉、髓内钉、U型钉和槽在骨折、切骨术、关节固定术或关节损伤的固定方面或在骨组织的再造或增强方面的应用。

    球晶聚合物体系的取向和原纤维化是一个已经被广泛研究过的工艺,它是与热塑性纤维的制造联系在一起的。例如,U.S.Pat.3.161709的发明叙述了一个三相拉伸工艺,在这个工艺中熔融模塑的聚丙丝被转变成具有高机械拉伸强度的纤维。

    原纤维化的机理主要特征之一如下:(C.L.Choy    et    al.Polym.Eng.Sci.,23    1983,,P.910)。当一种部分结晶聚合物被拉伸时,晶片中的分子链迅速地沿着拉伸方向取向。与此同时,球晶被拉长并最终破裂。结晶块从晶片中撕裂出,并且与由部分未折叠的链产生的拉紧的缚结分子相联接在一起。交替的无定型和结晶区域与拉紧的缚结分子一起由此形成长而细的(大约100A粗)、沿拉伸方向排列的微原纤维。由于原纤维内的缚结分子是在结晶块间的界面上产生的,所以它们主要位于微原纤的外界面上。在起始的各向同性材料中连接不同晶片的缚结分子现在正连接着同的微原纤,即它们变成位于邻近微原纤之间界面层上的原纤维内的缚结分子。图1a示意地表示了由于拉伸的结果一组晶片如何被转变成原纤维结构(成为一条由一组微原纤构成的原纤维),图1b示意地表示微原纤内及它们之间的分子结构。图1c示意地显示了原纤维化的聚合物的结构,这张图显示了由数条几微米长的微原纤构成的数根原纤维(为了清晰起见,其中将一根原纤维涂成灰色)。

    原纤维结构已在相对地低的拉伸比(这里=样品拉伸后的长度/样品拉伸前的长度)下形成。如:高密度聚乙烯在在值等于8时已明显原纤维化了,聚乙缩醛在=3时已原纤维化。

    当原纤维化结构被进一步继续拉伸时(这一阶段的工艺经常被称为超取向作用),原纤维结构由于微原纤的剪切位移而变形,由此产生伸展的原纤维内缚结分子的体积数的增加。如果拉伸在高温下进行,完全排列成行的缚结分子将结晶形成连接结晶块的轴向晶桥。

    原纤维化结构有优异强度和弹性模量值的依据是聚合物分子和分子链段在拉伸方向(微原纤的长轴方向)的强烈取向。

    尽管原纤维化纤维具有高的拉伸强度,但它们不能被用作骨折、切骨术、关节固定术或关节损伤的固定装置,因为细纤维是柔软的,因此它们显示出宏观的弯曲强度和弯曲模量,还因为它们的横截面积小,不具有宏观的固定装置所必须有的必要的剪切负载能力。

    宏观聚合物样品,如棒、管的原纤维化较早地是在生物稳定的聚乙缩醛和聚乙烯的有关研究中被认识到(参见如,K.Nakagawa和T.Konaka,Polymes,27,1986,P.1553和其中的参考文献)。然而,可再吸收聚合物的宏观样品原纤维化以前还没有被认识到。宏观聚合物样品的至少部分原纤维化可通过如让流动的聚合物熔体在一个毛细管中迅速地冷却成固态来进行,以这种方法,流动分子的分子取向由于分子运动的结果不可能松散到完全的或部分的任意取向状态。

    更强烈的原纤维化和由此带来的更好机械性能可以通过宏观聚合物样品的机械形变(取向)来获得。通常,这样一种机械形变是通过在特定的物理条件下(在固态)将其进行拉伸或液压静力挤出来完成的,在此条件下结晶的和无定形的结构经历强烈的分子结构变化可能成为原纤维态。由于原纤维化的结果,初始主要是球晶结构的,由注射成型或挤出技术所加工的可再吸收的聚合物材料,首先部分地变为原纤维化结构,尔后全部地变为原纤维化结构。它在拉伸或液压静力挤出方向强烈地取向,这样一种可再吸收材料由长方形结晶微原纤,连接微原纤的缚结分子和取向的无定形区域所构成。在部分原纤维化的结构中,微原纤之间的无定形区域较之在超取向材料中更明显,对于超取向的材料,在极端情况下,无定形材料仅作为聚合物分子链段周围的晶体缺陷存在。当材料中原纤维化的程度增加时,材料的强度和弹性模量值比未原纤维化材料的数值增加许多倍。

    已知可再吸收的组合材料典型地包含有任意取向的(即未取向的)粘合剂相(基体),粘合相将增强元,如已强烈取向的内部结构的纤维相互结合在一起。这样一种结构已经示意地表示在图2中,其中用细线表示出取向的和未取向的分子链或部分分子链。粘合相的强度性能明显地较增强元的强度性能弱。所以,当材料中增强元的量增加时,在增强元的取向方向上,组合物的强度性能增加。由于实施的困难,增强元的量不能超过组合物重量的大约70%。因此,由于组合物也包含了较弱的基体材料,这部分基体材料也对组合物的总强度起部分作用,所以增强元的强度性能不能充分地被利用。

    借助于取向和原纤维化,就有可能制造这样一种可再吸收的聚合物、共聚物和聚合物合金的自增强组合物,其中几乎所有材料都按所需的方式取向,而无定形相的量很小。因此,这种材料在取向方向上显示非常高的机械强度性能:拉伸强度甚至达到1000-1500MPa,弹性模量达到20-50GPa。显然,这些强度值是明显地高于已知可再吸收的组合物的强度值,甚至比熔融模塑可再吸收的材料强度值高约十倍。

    图3示意地表示了可在聚合物纤维的原纤维化的结构中以及在宏观的,原纤维化的聚合物样品(如棒和管)的结构中观察到的结构单元,它为:被无定形区域所互相分隔开的结晶块(如自由的聚合物链、链端和分子的折叠),将结晶块彼此连接在一起的缚结分子(缚结分子的量和厚度随拉伸比的增加而增加)和晶块间可能的晶桥。在拉伸期间,当缚结分子被取向和聚集在一起成桥时,桥就形成了(C.L.Chony et al.,J.Polynm.Sci.,Polym,Phys.Ed.,19,1981,P.335-352)。

    图1和图3所示取向后的原纤维化结构在所谓的自然的拉伸比3-8下已经形成了。在此之后,当拉伸在高温下继续进行达到超取向时,晶桥的量可以增加到非常高的程度,在极端的情况下,晶桥和晶块形成一个连续的结晶结构。缚结分子和晶桥的作用通常是类似的,因此,将它们彼此严格地区分开往往是不可能的。

    取向和原纤维化可借助几种方法实验地表征。取向函数f表征结晶相的分子链的取向,它可借助于X射线衍射的方法来测量。在自然拉伸比(<6)下f通常获得最大值1,具有球晶结构的聚合物材料显示出f<<1。

    可借助偏光显微镜来测量的双折射也是描述分子链分子取向的一个量。通常在自然拉射比(<6)下双折射强烈地增长,此后,在超取向期间,它增长较慢,这表明结晶相的分子链在自然拉伸绷下已取向到拉伸方向,而在较高的拉伸比下,无定形相的分子进一步继续取向(C.L.Choy.et al.,Polym.Eng.Sci.,23,1983,P.910-922)。

    原纤维化结构的形成许多情况下可以通过用光学或电子显微镜对原纤维化材料进行研究来说明(见如:T.Konaka    et    al.Polymer,26,1985,P.462)。甚至由微原纤构成的单根原纤维也可以从原纤维化结构的扫描电子显微镜照片上清楚地看到。

    表1表示了一些可被用于制造本发明的可再吸收材料和装置的已知可再稀释聚合物。进行有效的原纤维化的一个前提是,无论如何聚合物要以部分结晶的形式存在。因此,由于物理结构的原因(如构型)不可能结晶的聚合物是不可能有效地原纤维化的。

    表1可再吸收的聚合物

    聚合物

    聚乙交酯(PGA)

    乙交酯的共聚物:

    乙交酯/L-丙交酯共聚物(PGA/PLLA)

    乙交酯/丙撑碳酸酯共聚物(PGA/TMC)

    聚丙交酯(PLA)

    PLA的立规共聚物

    聚-L-丙交酸(PLLA)

    聚-DL-丙交酯(PDLLA)

    L-丙交酯/DL-丙酯共聚物

    PLA的共聚物

    丙交酯/四甲基乙交酯共聚物

    丙交酯/丙撑碳酸酯共聚物

    丙交酯/δ-戍内酯共聚物

    丙交酯/ε-己内酯共聚物

    聚缩酚酸肽

    PLA/聚环氧乙烷共聚物

    不对称的3,6-取代的聚-1,4-二噁烷2,5-二酮

    聚-β-羟丁酯(PHBA)

    PHBA/β-羟基戊酸酯共聚物(PHBA/HVA)

    聚-β-羟基丙酸酯(PHPA)

    聚-P-二噁酮(PDS)

    聚-δ-戍内酯

    聚-ε-己内酯

    甲基丙烯酸甲酯-N-乙烯基吡咯烷酮共聚物

    聚酰胺酯

    聚草酸酯

    聚二氢吡喃

    聚烷基-2-氰基丙烯酸酯

    聚氨酯(PU)

    聚乙烯醇(PVA)

    聚肽

    聚-β-苹果酸

    聚-β-脂肪酸

    参考文献:P.Tormala,S.Vainionpaa和P.Rokkanen,IVA′s    Beijer    Sym-posium“生物材料和生物相容性”,Stockholm,Sweden,August    25-26,1987。

    在取向的,自增强可再吸收组合材料中,至少部分地原纤维化的,特别是超取向的可再吸收聚合物材料具有特别的优点。其中,机械形成变时形成了取向的增强元(晶块、缚结分子和晶桥),而且粘合上述结构单元的粘合相在下面的结构元之间构成:即无定形相,晶块间的界面区以及晶桥与微原纤的界面,这些结构元也强烈地在形变方向取向。

    与本发明有关的可再吸收的、部分原纤维化的植入材料和合成骨装置在几个方面与已知的可再吸收材料和装置不同。本发明的材料和装置由于材料结构高度取向并至少部分呈原纤维化,而具有极好的拉伸、弯曲及剪切强度和弹性模量。因此比起早期的材料来,能为矫形术和创伤学科提供更薄更小的棒、板、螺钉、钉和U型钉等。这样大大降低了手术创伤和由于对活组织植入异物带来的异体负荷。而且,由于有优良的机械强度和弹性模量性能,本发明的材料的植入体和装置,可用于固定长骨骼骨折以及切骨术和关节的固定手术中。另外还意外地发现,比较起用已有材料制造的相同尺寸植入体,本发明的植入体能在水解条件下更长期地保持其机械性能。这也使得本发明的材料和装置有可能应用到愈合较慢的骨折,切骨术和关节固定术的治疗中,而对这些病例已知的材料和植入体是不能应用的。

    因为在本发明意外地发现取向的可再吸收材料能在高温进行热机械加工而不会失去原纤维化结构,所以本发明制得的至少部分原纤维结构的棒、管、板等型材,可以按发明FI    Pat.No.69402和69403描述的方法,用作固定装置,或这种材料可制成不同类的固定装置如螺钉、具有鳞状表面的棒、其它截面的结构和紧固装置或者其它的弯曲结构。例如,用本发明的至少部分原纤维结构的棒可制造具有高强度和良好韧性螺钉。

    很自然原纤维化的可再吸收材料中可添加不同种类的添加剂或辅助材料以使得材料的加工更容易(如稳定剂、抗氧化剂、增塑剂)或者改变材料的性能(如增塑剂或粉末状的陶瓷材料)或者使之应用更方便(如颜色)。

    本发明的坚硬的可再吸收固定材料也可以棒、板或其它型材的形式作为增强元应用于制造较大的固定装置。例如把原纤维结构的棒装填于一个圆柱形的较长的注射模中再向其中注入适当的可再吸收的基体聚合物熔体使之充满模腔,当从较长的模腔一端完成注射时,注入的熔体沿可吸收的增强元方向流动。当基体材料(聚合物熔体)流进并迅速固化的时候,在增强元的方向上便形成了高度的取向。

    本发明的坚硬的固定棒或板也能用作构成刚性的网状或板状结构,其机械性能比由有机纺织纤维制成的网更接近于金属网。图4示意地表示了一些种类的由坚硬的可再吸收棒构成的网状结构。为了表示的清楚,部分棒被描绘成白色而另一部分呈黑色。这些网可应用于治疗粉碎性骨折,例如把被破坏的骨头粉碎部分结合在一起,然后围绕碎骨用弯曲的网加以支撑,并用可再吸收的缝合线或紧固装置将网进行固定。本发明的这种网还能靠热压等制成弯曲的板,槽或盒子等相应结构,而用于骨骼的再造等。即将骨头上的损伤组织(洞、坑、囊肿等)填充以组织相容的陶瓷粉末(如羟基磷灰石或磷酸三钙),然后用弯曲的网盖住损伤处,起到固定陶瓷粉末并防止其离开损伤处的作用。由于本发明的网状是坚硬的比起用可再吸收纤维制造的已有的固定网来,在这种连接中具有更有效的固定作用。

    图5示意地表示出本发明的一个网结构,它由可再吸收的棒构成并被弯曲成了槽的形状(例如靠热压成型)。按下面的方法,这种槽能非常方便地与陶瓷材料一起被应用于牙槽边缘骨组织的增强。首先在牙槽边缘表面的龈组织下面用外科手术开一个骨膜下的通道,把可再吸收的管推入通道内使得槽的凸表面朝着龈组织而槽的底表面放于牙槽边缘上。这在图6中作示意的描述,这是一个在右下额部位的手术的病例。当槽安装好以后就可以充填陶瓷接合粉末然后封上手术切口。如果需要的话,可以在同一牙槽边缘一个接一个地放置几个槽,这样的槽防止了充填于下面的陶瓷粉末运动。同时从牙边缘的骨组织和周围的软组织中的生长出骨和相连的组织细胞并进入陶瓷粉末中,最终将其固定成为牙槽边缘骨组织的一部分。同时或稍后可再吸收的槽被吸收掉。

    陶瓷粉末或小片也能以许多其它方式作为骨接合材料应用于骨组织的再造和增强中。

    与组织相容的,或者与骨组织形成化学键,或者能促进骨组织生长的陶瓷材料(生物陶瓷),它们是,磷酸钙;磷灰石如羟基磷灰石,HA,Ca10(PO4)6(OH)2(R.E.Luedemann等,第二届世界生物材料会议(SWCB),Washington,D.C.,1984,P.224),商品名称如:Durapatite,Calcitite,Alveograf和Permagraft;荧光磷灰石;磷酸三钙(TCP)(如商品名:Synthograft)和磷酸二钙(DCP);磁性磷酸钙,B-TCMP(A.Ruggeri等,欧洲生物材料会议(ECB),Bologna,Italy,1986,Abstracts,P.86);HA和TCP的混合物(E.Gruendel等,ECB,Bologna,Italy,1986,Abstracts,P.5,P.32);氧化铝陶瓷;生物玻璃如SiO2-CaO-Na2O-P2O5,例如生物玻璃45S(结构:SiO2-45%,CaO 24.5%,Na2O 24.5%以及P2O56%重量)(C.S.Kucheria等,SWBC,Washington,D.C.,1984,P.214)和和含磷灰石的玻璃陶瓷,如,MgO4.6%,CaO44.9%,SiO234.2%,P2O516.3%及CaF0.5%重量(T.Kokubo等,SWBC,Washington,D.C.,1984 P.351)及碳酸钙(F.Souyris等,EBC,Bologna,Italy,1986,Absracts,P.41)。

    上述陶瓷材料作为合成骨接合材料应用已进行了许多的研究。例如,对多孔和实心的粉末材料以及多孔和实心的客观样品作为骨接合材料都作了研究,在这方面也研究过使用陶瓷粉末一聚合物组合材料。(例如,W.Bonfield等,SWBC,Washington,D.C.,1984,P.77)。

    本发明的可再吸收的坚硬材料可以多种方法与多孔性的生物陶瓷相结合成为生物组合物来应用。这种组合物的机械性能,特别是抗冲强度、抗弯强度和剪切强度要比多孔生物陶瓷的相应的性能好得多。发明FI    Pat.Appl.863573描述了几种将可再吸收的聚合物材料与生物陶瓷相结合的可能性。当把本发明的材料与生物陶瓷结合应用时也可以应用这些原理。

    本发明借助于下述例子加以说明。

    例1

    聚L-丙交酯(PLLA)(Mw=600.000)被注射成型为直径(ψ)4mm的圆柱棒、这些棒在从室温到Tm-40℃(这里Tm=聚合物的熔点)的温度下被拉伸到拉伸比=7。拉伸后棒的原纤维组织结构用显微镜观察到。部分棒被进一步拉伸到拉伸比=12(超取向)。作为参比,PLLA纤维(拉伸强度800MPa,ψ=15μm)的自增强棒(ψ=1.5mm)经烧结样品,这些棒是按照FI Pat.Appl.851828所述的方法加工制造的。

    对于注射成型的、原纤维化的和烧结的自增强的棒,分别测量了下列强度值:拉伸强度、弹性模量和剪切强度。表1列出了这些测量的结果。

    表1    PLLA棒的强度性能

    样品号    加工方法    棒粗细(mm)    拉伸强度    弹性模量    剪切强度

    (MPa)    (GPa)    (MPa)

    1    注射成型    4    80    5.5    70

    2    注射成型

    十原纤维化    1.4    560    14    360

    (=7)

    3    注射成型

    十原纤维化

    (=12) 1.2 800 17 470

    4    自增强    1.5    400    10    260

    (烧结)

    表1表明,本发明的原纤维化的可再吸收棒的机械强度性能明显地优于已知的可再吸收材料的强度性能。

    例2

    例1的可再吸收的棒(长25mm)被用于拇指的邻近指骨处的关节固定术的固定,方法是除去两侧关节表面,通过关节表面钻两个孔道,将可再吸收的固定棒轻敲入孔道,紧固关节表面使复盖的骨表面临时地相互连接在一起。对20个病人进行了这种手术,关节表面的平均面积是大约170mm。当两个2号原纤维化被应用时,固定处的剪切负载能力的计算值是1100N。关节表面上孔道(它表示手术创伤)所占的比例是1.8%。对于3号原纤维化棒和4号烧结的棒,相应的上述两个值分别为1060N和1.3%以及920N和2.1%。显然,原纤维化的棒比烧结的棒有更强的固定效果,并且在使用原纤维化棒的情况下,手术创伤也是较小的。注射成型的棒不能用于固定,因为与其他材料相比,它们明显地会引起较大的手术创伤(大约15%)。

    例3

    应用注射成型方法制成下列可再稀释聚合物的棒:聚乙交酯(PGA)(Mw=100.00)、乙交酯/丙交酯共聚物(PGAPLA,克分子比87/13,Mw=120.00),聚-β-羟基丁酯(PHBA)(Mw=500.000)和聚-P-二酮(PDS)(Mw=300.000)。

    偏光显微镜和扫描电子显微镜显示出这些棒除了薄的表面层区域以外都有球晶结构。棒材的熔点(Tm)由差示扫描量热仪(DSC)测量,获得了下列Tm值:PGA(225℃),PGA/PLA(180℃),HBA(175℃)和PDS(110℃)。棒的拉伸强度是:PGA(60MPa)、PGA/PLA(50MPa)、PHBA(30MPa)和PDS(40MPa)。在从室温到Tm-10℃的温度下把棒拉伸到拉伸比=8-16进行原纤维化。原纤维化的棒直径在0.8mm到1.1mm之间。原纤维化的棒拉伸强度是:PGA(600MPa),PGA/PLA(550MPa),PHBA(400MPa)和PDS(300MPa)。

    例4

    例3的原纤维化的PGA棒和50mm长的烧结的棒(ψ=1.1mm;它由尺寸3-0、商品名称为Dexon的PGA缝合线制造)放在37℃的蒸馏水中水解5-7个星期。在加工后,原纤维化的棒(f)和烧结的棒(S)的剪切负载能力分别是f∶570N和S∶300N。经水解了5个星期之后,相应的值是f∶160N和S∶30N。在水解7个星期之后,烧结的棒已经失去了剪切负载能力,而原纤维化的棒仍然显示有75N的剪切负载能力。

    例5

    在180℃的弯曲温度下,例3的原纤维化的PGA棒(长50mm,ψ1.1mm)在一个模中被弯曲成如图7a所示意的那种U型钉,相应的自增强的U型钉由PGA缝合线(商品名称Dexon.尺寸3-0),制造,制造的方法是按照FI    Pat.Appl.851828上述在高温高压下在U型钉模中烧结这些缝合线。将U型钉的10mm长的臂固定于拉伸试验机的拉伸夹头的孔中,按图7b所示的方式拉伸U型钉,测量出纤维化的和烧结的U型钉的拉伸负载能力。按图7b所示,U型钉典型地是从臂的根部断裂。本发明的原纤维化的U型钉显示出300N的平均拉伸负载能力,而烧结的U型钉的相应值是120N。

    例6

    在大约160℃温度下,例1中的4号原纤维化的PLLA棒在一个具有螺钉状模腔的模子中被压制成型,成为长30mm,核心直径1.1mm,螺纹高度0.5mm,螺距0.8mm的可再吸收的螺钉。螺钉的拉伸负载能力是300N。由PLLA注射成型制造的相应的螺钉拉伸负载能力为80N,而由例1的PLLA纤维制造的相应的自增强烧结棒的拉伸负载能力是150N。

    例7

    例1中的3号(长60mm,ψ1.2mm)原纤维化的PLLA棒被涂敷上PDLLA(Mw=100.000)。方法是将其浸入PDLLA的5%丙酮溶液,然后蒸发掉溶剂。这种操作被重复多次以使棒上最终有40%重量的PDLLA。涂敷过的棒在160℃的温度下在一圆柱型模中被压制成圆柱形的可再吸收的棒,其弯曲强度为450MPa,弯曲模量为14MPa。

    例8

    在多孔的羟基磷灰石(HA)棒(孔隙率大约50%,ψ=4mm,长度60mm)的外表面上,如图8a所示有6道纵向凹槽,图8b是棒的横截面图(图8a中的A-A横截面)。这种棒和本发明的可再吸收的增强材料被用于制造生物组合物棒(髓内钉)。使用的增强元材料是例1的原纤维化的PLLA棒(长60mm,ψ1.0mm)。涂以PDLLA的PLLA纤维束(涂层厚约0.1mm,纤维束稍微卷曲;单纤维的ψ为15μm,拉伸强度为800MPa),被按如下方法应用,5%的PDLLA(Mw=100,000)的丙酮溶液被涂到HA棒的槽中,浸过同样溶液的原纤维化的可再吸收的棒被推进槽中。当丙酮蒸发掉时,棒被粘在槽中槽中带有原纤维化的PLLA棒的HA棒用卷绕方法包上涂过PDLLA的PLLA纤维束。纤维是在150℃下进行的,用这样方法HA棒包上几层有不同方向的纤维束层以使纤维束层最多为0.4mm厚。进行纤维卷绕还要求在纤维束之间保留一些没有纤维的棒表面积。HA棒的这些未复盖的面积可以在生物组合物棒的表面上被观察到,如图8c所示。棒的可再吸收的增强的涂层在一圆柱型模中(ψ=5.0mm)被压制光滑。这些生物组合物的弯曲强度是140MPa,而当仅仅是HA棒时,其弯曲强度只有12MPa。

    上述的生物组合物棒按下述方法被用于固定兔股骨的切骨术。切骨术以金刚锯在离兔股骨颈部大约1cm的未复盖的邻近部位进行。切骨术用U型钉固定。一个钻孔(ψ=5mm)通过较大的转子垂直地钻进股骨的髓内道。生物组合物棒被轻敲进钻孔使棒的上端位于骨表面的水平上。然后移去U型钉,用可再吸收的缝合线缝合软组织。动物被放回笼子,麻醉过后它们立即能自由地活动。用了20只实验动物。手术后六个月所有切骨术愈合良好。骨一生物组合物实验样品的组织检验表明,骨组织从股骨生长进了HA棒的开孔中。

新型外科材料和装置.pdf_第1页
第1页 / 共26页
新型外科材料和装置.pdf_第2页
第2页 / 共26页
新型外科材料和装置.pdf_第3页
第3页 / 共26页
点击查看更多>>
资源描述

《新型外科材料和装置.pdf》由会员分享,可在线阅读,更多相关《新型外科材料和装置.pdf(26页珍藏版)》请在专利查询网上搜索。

本发明叙述了应用固定骨折、切骨术、关节固定术或关节损伤的至少部分原纤维化的固定材料和由这些材料制造的固定装置,如棒、板、螺钉、髓内钉和U型钉,这些材料和/或装置是由可再吸收的聚合物,共聚物或聚合物混合制造的,本发明还叙述了至少部分原纤维化的可再吸收材料的应用。本发明的可再吸收的固定材料和装置较已知的可再吸收的固定材料和装置明显地有更好的机械性能。有可能制造出比以往更小的、对患者安全可靠的固定装置。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1