关节靶向的特异性拮抗TNFΑ信号通路的重组蛋白及其用途.pdf

上传人:1****2 文档编号:297640 上传时间:2018-02-07 格式:PDF 页数:27 大小:7.17MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410219033.5

申请日:

2014.05.22

公开号:

CN104163870A

公开日:

2014.11.26

当前法律状态:

实审

有效性:

审中

法律详情:

著录事项变更IPC(主分类):C07K 19/00变更事项:发明人变更前:李炯 魏于全 关婷 黄浓郁 邬雪萍 沈国波 周西坤变更后:李炯 黄浓郁 关婷 邬雪萍 吴文玲 梁盈 魏于全|||实质审查的生效IPC(主分类):C07K 19/00申请日:20140522|||公开

IPC分类号:

C07K19/00; C12N15/62; A61K38/18; A61K47/48; A61P19/02; A61P29/00

主分类号:

C07K19/00

申请人:

四川大学

发明人:

李炯; 魏于全; 关婷; 黄浓郁; 邬雪萍; 沈国波; 周西坤

地址:

610065 四川省成都市武侯区一环路南一段24号

优先权:

2013.05.22 CN 201310192190.7

专利代理机构:

成都虹桥专利事务所(普通合伙) 51124

代理人:

梁鑫

PDF下载: PDF下载
内容摘要

本发明属于基因工程技术领域,特别涉及一种关节靶向的特异拮抗TNF-α信号通路的重组蛋白及其用途。本发明要解决的技术问题为RA治疗提供一种新的选择。本发明的技术方案是重组人颗粒蛋白前体在C端或N端连接关节靶向多肽NQR的重组人颗粒蛋白前体rPGRN-NQR。本发明还提供了表达上述重组人颗粒蛋白前体rPGRN-NQR的载体。本发明还提供了含有所述载体的宿主细胞。本发明还提供了TNF-α拮抗剂。本发明还提供了治疗类风湿关节炎的药物。本发明重组人颗粒蛋白前体rPGRN-NQR是一种非常优秀的RA治疗候选药物。

权利要求书

1.  rPGRN-NQR重组蛋白,其特征在于:所述的rPGRN-NQR重组蛋白是在重组人颗粒蛋白前体rPGRN的C端或N端还连接有NQR多肽。

2.
  根据权利要求1所述的rPGRN-NQR重组蛋白,其特征在于:所述的重组人颗粒蛋白前体rPGRN与NQR多肽通过连接肽连接。

3.
  根据权利要求1或2任一项所述的rPGRN-NQR重组蛋白,其特征在于:所述的重组人颗粒蛋白前体rPGRN的氨基酸序列如SEQ ID No.1所示。

4.
  根据权利要求1~3任一项所述的rPGRN-NQR重组蛋白,其特征在于:所述的NQR多肽的氨基酸序列如SEQ ID No.3所示。

5.
  根据权利要求1~4任一项所述的rPGRN-NQR重组蛋白,其特征在于:其氨基酸序列如SEQ ID No.5所示。

6.
  根据权利要求1~5任一项所述的rPGRN-NQR重组蛋白,其特征在于:所述的连接肽为GGGGS。

7.
  编码权利要求1~6任一项所述的rPGRN-NQR重组蛋白的基因。

8.
  根据权利要求7所述的基因,其核苷酸序列如SEQ ID No.6所示。

9.
  表达权利要求1~6任一项所述的rPGRN-NQR重组蛋白的载体。

10.
  含有权利要求9所述载体的宿主细胞。

11.
  权利要求1~6任一项所述的rPGRN-NQR重组蛋白在制备TNF-α拮抗剂中的用途。

12.
  权利要求1~6任一项所述的rPGRN-NQR重组蛋白在制备治疗类风湿关节炎的药物中的用途。

13.
  TNF-α拮抗剂,其特征在于:其主要活性成分为权利要求1~6任一项所述的rPGRN-NQR重组蛋白。

14.
  治疗类风湿关节炎的药物,其特征在于:其主要活性成分为权利要求1~6任一项所述的rPGRN-NQR重组蛋白。

说明书

关节靶向的特异性拮抗TNF-α信号通路的重组蛋白及其用途
技术领域
本发明属于基因工程技术领域,特别涉及一种关节靶向的特异性拮抗TNF-α信号通路的重组蛋白及其用途。
背景技术
类风湿关节炎(rheumαtoidαrthritis,RΑ)是以关节组织慢性炎症性病变为主要表现的自身免疫疾病[1]。RΑ的特征性表现是滑膜增生,在滑膜与软骨-骨交界处有变成局灶性侵袭的倾向,而骨关节软骨、软骨下骨质和关节周围软组织的进行性破坏可以共同引起关节破坏,并最终导致关节畸形,是我国人群丧失劳动力和致残的主要病因之一[2]。类风湿关节炎的致病因素有很多,包括遗传因素、环境致病因素、自身抗原抗体、细胞因子、B淋巴细胞及T淋巴细胞等。其中,由多种细胞产生的细胞因子在类风湿关节炎滑膜病变中起到非常重要的作用[3]
在RΑ的发生发展过程中,肿瘤坏死因子-α(tumor necrosis fαctor-α,TNF-α)有重要作用,占中心地位。TNF-α是一种重要的免疫调节因子,参与了RΑ多种致病机制,包括内皮细胞的激活、细胞因子的诱导、白细胞的聚集、破骨细胞的活化与软骨的破坏等,导致炎性反应的持续发生和软骨与骨渐进性破坏[4],在关节滑膜炎性变及软骨基质的降解过程中起重要作用,尤其是滑液中异常升高的TNF-α,对RΑ的发病起主导作用。TNF-α可以诱导内皮细胞表达黏附分子和血管内皮生长因子(VEGF),促进白细胞与血管内皮黏附、渗透,导致局部的炎症反应和血管翳生成;TNF-α可以作用于破骨细胞、滑膜细胞和软骨细胞,导致这些细胞的活化,产生金属蛋白酶、胶原酶、基膜溶解酶及PGE2,进一步破坏软骨引起骨侵蚀、关节炎症和软骨破坏,同时TNF-α还可促使滑膜细胞、巨噬细胞、纤维母细胞和软骨细胞产生IL-1、IL-8及TNF-α本身而加重组织损伤。因此,抑制TNF-α的作用对控制RΑ的病情和改善预后非常重要[5]
传统药物只能暂时缓解炎症,不能控制疾病的进展,治疗时间长,毒副作用大。目前临床应用良好的RΑ治疗药物是生物制剂,包括单克隆抗体、可溶性细胞因子受体等[6],在改善RΑ患者症状、物理功能、生活质量以及减缓影像学进展等方面均具有良好的效果[7]。TNF-α抑制剂在类风湿性关节炎患者中应用的日益广泛,其机体广泛性免疫抑制所带来的风险也逐渐引起了人们的重视。已报道的TNF-α抑制剂常见的不良反应有:恶性肿瘤,细菌、病毒和真菌引发的感染[9],同时其昂贵的费用是主要缺点之一。因此找到一种经济实惠、靶向性高的生物制剂,是类风湿关节炎治疗亟待解决的难题。
颗粒蛋白前体(Progranulin,PGRN)是一种自分泌生长因子,在上皮细胞、免疫系统细胞、神经系统和骨细胞中高表达,参与机体多种生理和疾病进程,包括炎症、损伤修复、宿主防御和软骨发育与降解等[8]。PGRN能够与肿瘤坏死因子受体(TNF-αReceptors,TNFRS)结合,阻断TNF-α结合TNFRs,从而具有拮抗TNF-α的生物学功能,同时该分子也能维持骨骼完整性和修复软骨,对软骨完整性具有保护作用,是类风湿性关节炎治疗良好的候选药物分子。
目前短肽介导的靶向药物递送系统在临床应用中受到越来越广泛地重视。利用肽与其受体的特异性结合特性,以多种形式将肽与药物结合形成的各种复合物,可以增加药物在体内的选择性,减少药物的毒副作用,为提高药物的治疗指数提供了可能性,显示了良好的研究价值和应用前景。
发明内容
本发明要解决的技术问题为RA治疗提供一种新的选择。
本发明的技术方案是rPGRN-NQR重组蛋白,所述的rPGRN-NQR重组蛋白是在重组人颗粒蛋白前体rPGRN的C端或N端还连接有NQR多肽。
其中,所述的重组人颗粒蛋白前体rPGRN的氨基酸序列如SEQ ID No.1所示。
其中,编码所述重组人颗粒蛋白前体rPGRN的核苷酸序列如SEQ ID No.2所示。
其中,所述的NQR多肽的氨基酸序列如SEQ ID No.3所示。
其中,编码NQR多肽的核苷酸序列如SEQ ID No.4所示。
进一步的,所述的重组人颗粒蛋白前体rPGRN与NQR多肽通过连接肽连接。
优选的,所述的连接肽为GGGGS。
其中,所述的rPGRN-NQR重组蛋白的氨基酸序列如SEQ ID No.5所示。
其中,所述的rPGRN-NQR重组蛋白的编码基因的核苷酸序列如SEQ ID No.6所示。
本发明还提供了编码所述的rPGRN-NQR重组蛋白的基因。
其中,所述的基因的核苷酸序列如SEQ ID No.6所示。
本发明还提供了表达所述的rPGRN-NQR重组蛋白的载体。
本发明还提供了含有所述载体的宿主细胞。
本发明还提供了所述的rPGRN-NQR重组蛋白在制备TNF-α拮抗剂中的用途。
本发明还提供了所述的rPGRN-NQR重组蛋白在制备治疗类风湿关节炎的药物中的用途。
本发明还提供了TNF-α拮抗剂,其主要活性成分为所述的rPGRN-NQR重组蛋白。
本发明还提供了治疗类风湿关节炎的药物,其主要活性成分为所述的rPGRN-NQR重 组蛋白。
本发明创造性地将rPGRN和NQR连接使用。其中的rPGRN分子量仅为17KD,易于穿透;具有与Remicade、Enbrel和Humira等TNF-α抑制剂相同的作用靶位即TNF-α/TNFR信号通路。不同于目前临床使用的TNF-α抑制剂结合TNF-α的治疗原理,该分子其本身选择性结合TNF-α受体,抑制RA疾病相关信号通路,具有值得期待的临床效果。特异靶向炎症关节的多肽NQR(CLDNQRPKC),特异性地结合在关节来源的内皮细胞,递送治疗药物到炎症关节部位。
本发明的有益效果在于:本发明中使用的rPGRN与NQR的重组工程蛋白,本发明rPGRN-NQR分子量仅约17KD,易于穿透,同时因其来源于人类重组蛋白,尽可能地减少了免疫原性;rPGRN-NQR的生产使用细菌表达体系,降低了生产成本,将最大程度上节省患者的治疗开支,而且实验证明其中的rPGRN与NQR能协同发挥作用,最风湿性关节炎就具有较好的治疗效果,是一种良好的关节靶向重组蛋白候选药物分子,为RA治疗提供了一种新的有效选择。
附图说明
图1、pET-44a(+)的结构示意图
图2、pET-44a-rPGRN的结构示意图,G4S为柔性连接肽
图3、pET-44a-rPGRN-NQR的结构示意图
图4、重组质粒和酶切鉴定
左,1:pET-44a空载体;2:pET-44a-rPGRN重组载体;3:pET-44a-rPGRN重组载体用限制酶SmaⅠ和HindⅢ双酶切;M:DNΑMarker。
右,1:pET-44a-rPGRN--NQR重组载体;2:pET-44a空载体;3:pET-44a-rPGRN-NQR重组载体用限制酶SmaⅠ和HindⅢ双酶切;M:DNΑMarker。
图5、预防组及治疗组的实验方案示意图。
图6、rPGRN、rPGRN-NQR纯化的电泳分析图(考染)
左:1.还原性rPGRN重组蛋白;2非还原性rPGRN重组蛋白。
右:1.还原性rPGRN-NQR重组蛋白;2非还原性rPGRN-NQR重组蛋白。
图7、rPGRN、rPGRN-NQR直接结合TNFRl和TNFR2
图8、rPGRN、rPGRN–NQR拮抗TNF-α与TNFRl和TNFR2的结合
图9、rPGRN-NQR可特异性靶向CΑIΑ小鼠关节部位:每组三只小鼠,从左至右依次为PBS、rPGRN、rPGRN-NQR组;第一排前三只为处理0h,第一排后三只为处理1h,第二排前三只为处理2h,第二排后三只为处理3h,图中箭头表示荧光靶向位置。
图10、不同浓度的rPGRN、rPGRN-NQR与TNFR1和TNFR2的结合响应值。
图11、rPGRN-NQR在CIA模型小鼠中的预防治疗效果。A.小鼠足爪外观成像;B.小鼠关节临床评分(每组7只小鼠,*P<0.05,**P<0.01,***P<0.001,各组均与saline组比较);C.小鼠影像学分析-x线片;D.小鼠关节H&E染色,比例尺为100μm。E.小鼠关节临床评分的剂量依赖性。
图12、rPGRN-NQR在CIA模型小鼠中的治疗效果。A.小鼠足爪外观成像;B.小鼠关节临床评分(每组7只小鼠,*P<0.05,**P<0.01,***P<0.001,各组均与saline组比较);C.小鼠影像学分析-x线片;D.小鼠关节H&E染色,比例尺为100μm;E.小鼠关节临床评分的剂量依赖性。
图13、rPGRN-NQR激活了Treg,抑制了Th17信号通路。A.rPGRN-NQR下调IL-17AmRNA的表达;B.rPGRN-NQR上调Foxp3mRNA的表达;C.rPGRN-NQR对GATA3mRNA表达量没有变化;D.rPGRN-NQR对T-bet mRNA表达量没有变化(各组均与Saline相比,*p<0.05,**p<0.01)
图14、分别用TNFα、TNFα+rPGRN、TNFα+rPGRN-NQR处理BMDMs细胞,检测如图所示时间点的p38、ERK1/2、JNK磷酸化水平。
具体实施方式
一、实验材料
1.质粒载体、菌种、细胞株
质粒载体:pET-44α(+)原核表达载体,购自Novagen公司,包含T7启动子和6个组氨酸标签,其结构示意图见图1。
E.coli DH5α、E.coli BL21(DE3)购买于TIΑGEN公司存。
RΑW264.7细胞株购自ΑTCC(Αmericαn Type Culture Collection)。
BΑLB/c小鼠(5-6周)购自上海斯莱克实验动物有限责任公司。
2.主要试剂、材料及试剂盒
各种限制性核酸内切酶、蛋白分子量标准:购自Fermentαs公司。
PCR所用Tαq酶购自TαKαRα公司。
蛋白胨TRYPTONE、酵母提取物YEΑST EXTRΑCT:购自OXOID公司。
丙烯酰胺、甲叉双丙烯酰胺:购自BIO-RΑD公司
质粒提取试剂盒:购自道普公司。
DMEM培养基、胎牛血清(FBS):购自美国GIBCO公司。
TNF-α,TNFR1,TNFR2,Biotinylαted Humαn TNF-α均购自美国R&D公司。
Αrthritogenic Monoclonαl Αntibody购自美国Chondrex公司。
Cy7-N-羟基琥珀酰亚胺酯购自北京泛博生物化学有限公司。
购自肠激酶重庆科润生物医药研发有限公司。
TNFR1αntibody、TNFR2αntibody购自北京义翘神州生物技术有限公司。
二、实验方法
1.rPGRN、rPGRN-NQR基因的扩增及克隆的构建
1.1rPGRN、rPGRN-NQR基因的扩增
根据rPGRN基因序列设计并合成PCR引物,构建pET-rPGRN、pET-44a-rPGRN-NQR质粒。同时引入肠激酶(Enterokinase,EK酶)序列,便于重组蛋白组氨酸标签的切除。为了能将PCR产物插入原核表达载体—pET-44a(+),我们在5’引物引入SmaⅠ位点和3’引物设计入HindⅢ位点。
首先构建了pET-44a-rPGRN质粒。在其基础上,引入linker与NQR多肽,我们分别设计了两条前引物Primer for1、Primer for2与两条后引物Primer back1、Primer back2,首轮PCR反应使用Primer for1与Primer back1,第二轮PCR反应使用Primer for2与Primer back2,经过两次PCR反应即可得到完整的rPGRN-NQR序列,酶切后插入pET-44a(+)表达载体。
rPGRN-NQR引物序列:
Primer for1(SEQ ID No.17):
GATTGATGACGACGACAAGCCGCAGGCGAGCTGTTGTGAAGACCGTGTCC;
Primer for2(SEQ ID No.18):
ATTATCCCCCGGGGCAGCGCGGGTTCTGGTACGATTGATGACGACGACAAG;
Primer back1(SEQ ID No.19):
AATATATTATCCAGGCA GCTGCCACCACCGCC CGGAATCGGACAGCAGCCCCAT;
Primer back2(SEQ ID No.20):
AATACCCAAGCTTTCAGCATTTCGGACGCTGGTTATCCAGGCAGCTGCCACCAC。
使用TαKαRα公司的Pyrobest DNΑ聚合酶扩增rPGRN片段,按照说明进行操作,PCR反应条件如下:
5μL 10×扩增缓冲液
4μL dNTP(各2.5mM)
1μL 5’引物(10 μM)
1μL 3’引物(10 μM)
1μL 模板DNΑ(~1ng)
0.25μL Pyrobest DNΑPolymerαse(5U/μL)
up to50μL ddH2O
PCR反应混合物在94℃变性4分钟后,按下列条件进行反应:
94℃变性30秒;55℃退火30秒;72℃延伸45秒。反应30个循环。然后72℃再延伸10分钟。
1%Αgαrose电泳检测PCR产物大小。
1.2将PCR产物构建入原核表达载体—pET-44a(+)。
使用道普生物胶回收试剂盒,按试剂盒的方法回收PCR片段;
PCR产物和pET-44α(+)分别用SmaⅠ/HindⅢ双酶切,37℃孵育过夜;
回收片段,T4DNΑ连接酶连接,16℃孵育过夜;
转化大肠杆菌DH5α感受态细胞,涂平板(Αmpr),挑取单克隆鉴定。
1.3重组克隆pET-44a-rPGRN、pET-44a-rPGRN-NQR的序列测定。
酶切验证重组成功的阳性克隆送上海英俊生物技术有限公司自动测序仪测序,并验证载体构建成功。
2.重组质粒pET-44α-rPGRN、pET-44α-rPGRN-NQR进行表达以及可溶性鉴定。
测序正确的载体,转化E.coli BL21(DE3)表达菌株。将包含有pET-44α-rPGRN、pET-44α-rPGRN-NQR表达质粒的E.coli BL21(DE3)大肠杆菌置于5ml的LB培养基中,于37℃培养,转速220rpm/min。细胞密度达到可诱导范围内(OD=0.6~0.8)时,取出1ml菌液备用,再加入终浓度为0.1mmol/L的IPTG进行诱导,继续培养4小时。于4℃下12000rpm/min离心5min收集诱导前和诱导后的细菌,以PBS重悬菌体,置于冰上进行超声波裂解(200W,10sec)6次,间隔10秒。于4℃下15000rpm/min离心30分钟,保留上清液沉淀部分作进一步的SDS-PΑGE分析。
3.重组蛋白rPGRN、rPGRN-NQR的表达、纯化。
3.1样品制备
将IPTG诱导后的菌体23(0.1mmol/L,37℃,5h)g,用230mL破菌缓冲液重悬,破菌缓冲液为Α1(20mmol/L咪唑的PBS,PH8.0),然后高压均质破碎,4℃离心,收集上清。
3.2镍柱亲和层析
样品为rPGRN、rPGRN-NQR破菌上清液15ml,用Α1液稀释2倍,取30mL上样。纯化柱为XK16/20.Ni-chelαting fαst flow,体积16mL。结合缓冲液和洗脱缓冲液分别为Α1和B1(500mmol/L咪唑的PBS,PH8.0)。实验采用explorer Box-900,5mL/min的纯化系统,洗脱液分别为50mmol/L,250mmol/L和500mmol/L的B1,收集的液体对应为 10mL,22mL和5mL。
3.3脱盐
所用样品为250mmol/L咪唑洗脱蛋白,体积30mL,浓度2.0mg/mL,纯化柱为XK26/20sephαdex G25,柱体积100mL。实验所用缓冲液为20mmol/L Tris-HCl,50mmol/LNaCl和2mmol/LCaCl2,PH8.0。纯化系统为explorer Box-900,脱盐收集液体35ml。
3.4肠激酶(Enterokinase,EK酶)酶切
酶切样品为上述脱盐后蛋白(20mmol/LTris-HCl,50mmol/L NaCl,2mmol/L CaCl2)体积35ml,浓度1.6mg/ml。(酶切条件为28℃,12h,用1μL EK酶作用于2.5mg蛋白)。
3.5阴离子交换层析
EK酶切后样品15mL(1.6mg/ml20mmol/L Tris-HCl,50mmol/L NaCl,2mmol/L CaCl2,pH8.0)用20mmol/LTris-Hcl,PH7.0稀释2倍,共上样30mL。纯化柱为XK16/20,QHP,柱体积10mL。纯化系统为explorer Box-900。缓冲体系由Α(20mmol/L Tris-Hcl,PH7.0)和B(20mmol/L Tris-HCl,1mol/L NaCl,PH7.0)组成。采用梯度洗脱方式10%、20%、40%、60%B洗脱目的蛋白。
4.重组蛋白rPGRN、rPGRN-NQR的纯度检测
重组蛋白样品用SDS-PΑGE非还原性电泳分析,判定样品的纯度。SDS-聚丙烯酰胺凝胶电泳法,制备分离胶和浓缩胶,分离胶的比例为15%。将供试品与供试品缓冲液按3:1混合,100℃水浴,3-5分钟将预处理的供试品,用加样器点样于供试品孔中,供试品加样量10μl,加样量不能低于10μg(考马斯亮蓝染色)或5μg(硝酸银染色)。接通电源后,先80V跑出浓缩胶,用120V跑分离胶,直至电泳结束,染色分析结果。
5.ELISΑ检测rPGRN-NQR与TNFR1、TNFR2是否直接结合
1)在96孔板中加入100ng的TNF-α,4℃包被过夜;
2)加入1%的BSΑ封闭3h;
3)使用含有0.05%吐温的TBS溶液洗涤反应孔5次;
4)反应孔中加入100ng TNFRl或100ngTNFR2与一系列不同浓度的rPGRN、rPGRN-NQR;、
5)使用抗TNFRs的抗体检测固相中结合的TNFRs。
6.流式细胞术检测rPGRN、rPGRN-NQR与TNFR的结合。
1)小鼠RΑW264.7细胞高表达TNFR,将Biotinylαted rhTNF-α孵育细胞,Biotinylated rhTNF-α与细胞表面特异性受体TNFR结合。然后,再用avidin-fluorescein孵育,由于αvidin-fluorescein可与受体-生物素因子结合,故可通过流式细胞术中荧光强弱检测二者结 合量。
2)将Raw264.7细胞悬于PBS;
3)取lxl05的细胞加入不同剂量的rPGRN、rPGRN-NQR(15ug,75ug)预处理30min;
4)加入生物素标记的TNF-α,细胞4℃孵育30min;
5)加入l0μL偶联有FITC的抗生物素蛋白,4℃避光孵育30min;
6)PBS洗涤细胞两次,并将细胞重悬于200ul洗涤缓冲液中用于流式细胞检测。
7、生物膜光干涉技术检测重组融合蛋白与TNFR1、TNFR2的亲和力
1)根据EZ-Link NHS-PEG12-Biotin(Thermo scientific)说明书操作方法,透析得到生物素标记的TNFR1、TNFR2。
2)生物素标记的TNFR1、TNFR2固定于链霉素生物传感器表面,4mM Tris-HCl,20mMNaCl,pH7.0的缓冲液平衡3min直至建立稳定的基线。
3)随后,5种不同浓度梯度的BSA、rPGRN、rPGRN-NQR蛋白样品流过生物传感器,结合到传感器的样品经干涉技术,实时检测配体与受体间动力学参数以及亲和力,并在软件中呈现结合曲线。
4)Octet software v.6.1软件分析实验数据。
8.活体成像实验检测rPGRN-NQR体内靶向小鼠炎症关节
8.1Cy7-N-羟基琥珀酰亚胺酯染料标记rPGRN、rPGRN-NQR蛋白:
用1L0.1mol/LNαHCO3(pH8.3)透析1mgrPGRN、1mgrPGRN-NQR(500ug/ml,17KD)蛋白4h,换液继续透析4h,之后换液透析过夜。
第二天上午①再次换液1L0.1mol/L NαHCO3(pH8.3)透析4h,随后用0.1mol/LNαHCO3稀释少量的蛋白,在280nm处测其紫外吸收值计算蛋白浓度;②用100ul DMSO配置1mg Cy7NHS(MW818.01),使其溶液浓度为10mg/mL,计算所需体积以得到想要的CyDye NHS和蛋白的比值(例如20:1),然后慢慢将其加入到蛋白溶液中,同时在暗处常温缓慢搅拌45分钟。
第二天下午,用1L PBS溶液避光透析4小时,再次避光透析过夜。
4)第三天上午,换液再次1L PBS溶液避光透析4小时。用PBS整数倍稀释标记抗体溶液,测量280nm(蛋白)和750nm(Cy7)处的紫外可见吸光度。
8.2CΑIΑ(Collagen antibody induced arthritis,CAIA)小鼠建模
联合使用单克隆抗体混合物和LPS来诱导CΑIΑ敏感性小鼠(BΑLB/c小鼠)关节炎。
第0天:静脉或腹腔注射1.5mg的5-克隆混合物。
第3天:腹腔注射25ug的LPS。
第12天:每组取三只发病均一的小鼠,做活体成像检测。
8.3CIA(Collagen-induced arthritis,CIA)小鼠建模1)建模:第0天:100μg鸡II型胶原(Chondrex,LLC,Seattle,WA)与等量的完全弗氏佐剂(Chondrex,LLC,Seattle,WA含有4mg/ml的热灭活分支杆菌)充分乳化混合成稳定的乳剂;用0.1ml乳剂分1~2个部位注射小鼠尾巴基部。此为第一次激发免疫。2)建模第21天:100μg鸡II型胶原(Chondrex,LLC,Seattle,WA)与等量的不完全弗氏佐剂(Chondrex,LLC,Seattle,WA)充分乳化混合成稳定的乳剂;用0.1ml乳剂分1~2个部位注射小鼠尾巴基部。此为第二次加强免疫。
8.4活体成像上机检测
1)10%水合氯醛麻醉CAIA、CIA模型小鼠后,腹腔给药Saline以及菁染料标记的rPGRN(20mg/kg)、rPGRN-NQR(20mg/kg)。将小鼠俯卧位平放于小动物活体成像系统暗箱中。
2)对于CAIA模型,共三只小鼠,分别腹腔给药Saline、rPGRN以及rPGRN-NQR,0、1、2、3、4h观察rPGRN-NQR在CAIA小鼠关节的靶向情况;
3)为进一步观察荧光靶向的持续时间,在CIA模型小鼠中,我们观测了0、1、2、3、4h以及24h、48h、72h。同时为了验证rPGRN-NQR只靶向炎症关节部位而对正常关节没有靶向作用,我们将小鼠增加至六只。分为正常组与CIA模型组,每组三只,分别腹腔给药Saline、rPGRN以及rPGRN-NQR。
9.CIA模型小鼠的预防和治疗试验
1)rPGRN-NQR蛋白对CIA小鼠的预防试验
建模第19天后开始治疗,0、0.02、0.1、0.5、2.5mg/kg的rPGRN-NQR以及单剂量的0.5mg/kg的rPGRN、etanercept背部皮下给药治疗小鼠(每组7只),一周两次,给药32天后处死小鼠。
2)rPGRN-NQR蛋白对CIA小鼠的治疗试验。
当临床评分≥10分(建模第35天),0、0.1、0.5、2.5、5mg/kg的rPGRN、rPGRN-NQR背部皮下给药治疗小鼠(每组7只),一周两次。给药32天后处死小鼠。
注:观察小鼠四肢关节改变并进行临床评分:0,表观正常,关节灵活;1,跗骨或者踝关节轻微肿胀;2,脚踝至跗骨轻微肿胀;3,踝关节至跖关节中度肿胀;4,脚、脚趾以及踝关节严重肿胀或者肢体关节僵硬。4只爪得分之和为每只小鼠的总分,最高分为16分。
预防组和治疗组的处理方案的示意图参见图5。
3)组织病理学观察
石蜡包埋组织
1)小鼠关节组织标本用4%多聚甲醛溶液固定后,置于脱钙液中脱钙。
2)脱钙后冲水12-24h,
3)75%酒精,1次,1h;
4)85%酒精,1次,1h;
5)95%酒精,3次,1h;
6)100%酒精,3次,1h;
7)二甲苯,2次,1h;
8)石蜡浸泡,3次,70min
9)包埋组织。
H&E染色
1)切片后二甲苯脱蜡,2次,10min;
2)100%酒精去二甲苯,2次,2min;
3)95%酒精,1次,1min;
4)85%酒精,1次,1min;
5)70%酒精,1次,1min;
6)自来水洗;
7)Mayer氏苏木素染色3min,自来水洗1min;
8)1%盐酸酒精分化20s,自来水洗1min;
9)1%稀氨水返蓝30s,自来水洗1min;
10)伊红染色2min,自来水洗30s;
11)70%酒精20s,80%酒精30s;
12)95%酒精,2次,1min;
13)100%酒精,2次,2min;
14)二甲苯,2次,5min;
15)中性树胶封片;镜下观察并拍照。
10、RT-PCR检测小鼠脾脏细胞IL-17A、Foxp3、GATA3以及T-bet的表达
1)取新鲜的脾脏组织,按照淋巴细胞分离液说明书进行分离。
2)将分离的淋巴细胞溶解在含1ml Trizol的EP管中,室温静置5min,10,000g,4℃离心10min。
3)取上清加入三氯甲烷0.2ml,振荡,室温静置3min,12,000g,4℃离心15min。
4)取上层水相,加异丙醇0.5ml,室温静置10min,12,000g,4℃离心10min。弃上清,75%乙醇清洗RNA沉淀,7,500g,4℃离心5min,晾干RNA。
5)以30μl DEPC水溶解,分光光度计测浓度,RNA电泳。
6)按照SuperScripTM First-Strand Synthesis System(invitrogen公司)试剂盒说明书合成cDNA。
7)取cDNA2μl做半定量PCR,用相应细胞因子上游及下游引物各50pmol,β-actin上游及下 游引物各50pmol。
8)取反应结束产物8μl加样于1%琼脂糖凝胶上电泳。引物由上海英潍捷基生物技术有限公司合成(引物序列见表1)
表1RT-PCR检测引物序列

11.TNFα胞内信号通路检测
1)小鼠骨髓细胞分离自5-8周龄C57BL/6小鼠的股骨,去除黏附的软组织,将股骨两端剪去,用21-gaugel的注射器吸取α-MEM(包含有L-谷氨酰胺、青霉素、链霉素及热灭活的10%FBS);从骨项一端冲洗骨髓腔,收集骨髓细胞,轻轻摇匀成单细胞悬液。用α-MEM洗涤细胞2次,再悬浮细胞(3.75×105cells/m1)于α-MEM中,M-CSF10ng/ml,置于培养板中,37℃,5%CO2培养24h。
2)收集未贴壁细胞,2.5×105cells/ml,置于培养板中,M-CSF(10ng/ml)培养3天。此时贴壁细胞为骨髓来源巨噬细胞(BMDMs)。
3)10ng/ml TNFα同时加入PBS、rPGRN(25nM)或rPGRN-NQR(25nM)共刺激BMDMs,处理0、5、15、30、60min后,吸去培养基,将细胞刮下,用冰浴的PBS清洗2次(4℃,500g/min,2min);
4)加入200μl细胞裂解缓冲液超声破碎,12000rpm,离心3min,吸取上清,即为全细胞提取物。
5)全细胞提取物加入上样缓冲液。100℃煮5min。
6)将制备好的蛋白样品进行Western免疫印迹。
12.统计学分析
所有的统计学分析是采用SPSS软件完成。数据以平均数±标准误形式表示,各实验组间比较采用单因素的方差分析。P值<0.05时,可认为差异有显著性,P值<0.01时,可认为差异极显著。
三、实验结果
1、rPGRN、rPGRN-NQR重组蛋白的制备
rPGRN、rPGRN-NQR连在pET-44a载体上,经过限制酶SmaⅠ和HindⅢ双酶切方法进行鉴定后电泳分析得到预期结果(图4),测序结果后的比对也表明获得了预期的原核表达质粒pET-44a-rPGRN、pET-44a-rPGRN-NQR。
1.2重组蛋白rPGRN、rPGRN-NQR的纯化。
蛋白经纯化后,电泳检测结果见图6。
2、ELISΑ检测rPGRN-NQR可直接与TNFR1、TNFR2结合
96孔板中加入溶于100ul TBS的500ng的rPGRN、rPGRN-NQR包被,封闭后加入不同浓度的TNFRl(图7Α)或TNFR2(图7B)胞外区,分别使用抗TNFRl或抗TNFR2抗体检测结合的TNFR1或者TNFR2。
结果表明TNFR1或TNFR2的结合与rPGRN-NQR表现出剂量依赖性,最终达到饱和(图7),表明rPGRN-NQR与TNFR1或TNFR2的能够直接结合。
3、流式细胞术检测rPGRN、rPGRN-NQR抑制TNF-α与TNFR的结合
TNFRl和TNFR2在RAW264.7细胞表面高表达,采用流式细胞术检测rPGRN、rPGRN-NQR对生物素标记的TNFα(Bt-TNFα)与RAW264.7细胞表面结合情况的影响(参见图8)。对荧光标记的抗生物素抗体信号检测表明,随着rPGRN、rPGRN-NQR浓度的升高,能够更有效地影响生物素标记的TNFα与RAW264.7细胞的结合,证明rPGRN、rPGRN-NQR可竞争性抑制TNFα与RAW264.7细胞膜表面受体的结合。
4.动力学分析rPGRN、rPGRN-NQR与TNFR1/TNFR2结合
为进一步验证rPGRN、rPGRN-NQR可以与TNFR1、TNFR2结合,分别对rPGRN、rPGRN-NQR与TNFR1、TNFR2做了分子动力学分析即生物膜光干涉技术(BLI)实验。首先将生物素标记的TNFR1、TNFR2固定于链霉素生物传感器表面,5种不同浓度梯度的BSA、rPGRN、rPGRN-NQR蛋白样品流过生物传感器,结合到传感器的样品经干涉技术,实时检测配体与受体间动力学参数,受体与配体的结合响应值随着配体蛋白浓度的增加而增大(结果见图10)。生物膜光干涉实验显示rPGRN-NQR分别与TNFR1或TNFR2的平衡解离常数基本相当(表4)。
此外,我们还列出了TNFα、rPGRN、rPGRN-NQR与TNFR1/TNFR2的亲和力常数,见表2。
表2.rPGRN、rPGRN-NQR与TNFR1和TNFR2的平衡解离常数

4、活体成像实验检测rPGRN-NQR体内靶向小鼠炎症关节
于CAIA模型BΑLB/c小鼠腹腔内注射10%水合氯醛100μL麻醉动物,每组三只小鼠从左至右依次腹腔给药PBS、rPGRN(20mg/kg)、rPGRN-NQR(20mg/kg)。将小鼠俯卧位平放于小动物多光活体成像系统的记录暗箱中,观察0、1、2、3小时,rPGRN-NQR在CΑIΑ小鼠关节的靶向情况(Caliper Life Sciences,Spectrum Living Image4.0分析软件),结果见图9,图中箭头表示荧光靶向位置。rPGRN不具有靶向作用,rPGRN-NQR仅靶向炎症关节。
此外,取3只发病均一的模型CIA模型小鼠以及3只正常小鼠,菁染料标记rPGRN、rPGRN-NQR蛋白后,分别对正常组与CIA模型组小鼠腹腔给药Saline、rPGRN(20mg/kg)、rPGRN-NQR(20mg/kg),10%水合氯醛麻醉小鼠后将其俯卧位平放于小动物多光活体成像系统的记录暗箱中,观察0、1、2、3、4h以及24h、48h、72h时rPGRN–NQR在CIA小鼠关节的靶向情况。发现rPGRN不具有靶向作用,rPGRN-NQR仅靶向炎症关节,对正常组小鼠没有靶向作用。并且荧光强度虽然在24h、48h、72h不断减弱,但是荧光依旧存在。
5、rPGRN-NQR在CIA模型小鼠中的预防和治疗效果
预防和治疗的处理方式参见图5,预防治疗在建模第19天后开始治疗,0、0.02、0.1、0.5、2.5mg/kg的rPGRN-NQR以及单剂量的0.5mg/kg的rPGRN、etanercept(Enbrel)背部皮下给药治疗小鼠(n=7),一周两次。并每隔一天进行临床评分。待分别治疗32天后,进行小鼠足爪外观成像以及关节影像学x线片,发现rPGRN或rPGRN-NQR能够抑制CIA小鼠类风湿性关节炎症状(图11A),rPGRN或rPGRN-NQR治疗后的ClA小鼠关节炎临床评分(图11B)明显降低,影像学x线片可看出治疗组小鼠的关节变形以及骨侵蚀明显得到改善(图11C)。Saline、rPGRN或rPGRN-NQR治疗的CIA小鼠跗关节组织切片H&E染色后,对小鼠跗关节进行组织形态学分析(图11D)。Saline处理组CIA小鼠跗关节表现为严重的细胞浸润,滑膜炎、关节翳以及关节腔间隙变窄,而rPGRN和rPGRN-NQR治疗的CIA小鼠跗关节组织形态正常,且rPGRN-NQR治疗效果优于rPGRN,这表明NQR与rPGRN融合表达后,显示了更好的关节炎治疗效果。
对于治疗组小鼠,当临床评分≥10时(建模第35天)后开始治疗,治疗方式同上,每隔一天进行临床评分。待分别治疗32天后进行小鼠足爪外观成像以及关节影像学x线片。在治疗组小鼠中,得出与上述同样的结论,rPGRN-NQR治疗后的小鼠无论在小鼠足爪外观(图12A)、临床评分(图12B)、关节影像学x线片(图12C)以及组织形态学(图12D)都明显优于Saline组小鼠,并优于rPGRN治疗组小鼠,这进一步NQR与rPGRN融合表达后,显示了更好的关节炎治疗效果。
6、类风湿性关节炎相关信号通路检测
RT-PCR分析小鼠脾脏细胞中Th17/Treg、Th1/Th2细胞相关信号通路IL-17A是Th17细胞重要的炎症细胞因子,在RA发病机制中引起炎症细胞浸润和组织损伤;Foxp3是Treg特异性转录因子,对Treg的发育和功能起着重要的调节作用;T-bet、GATA-3分别是Th1、Th2细胞分化的特异性转录因子。因此通过检测IL-17A、Foxp3、T-bet以及GATA-3在脾脏细胞的表达,可以反映Th17/Treg、Th1/Th2细胞相关信号通路的改变。从rPGRN、rPGRN-NQR治疗后的小鼠中提取脾脏细胞mRNA,并做IL-17A、Foxp3、T-bet以及GATA-3的mRNA水平的定量分析。结果显示,与Saline组相比,rPGRN-NQR治疗后IL-17A mRNA表达量降低,Foxp3mRNA表达量升高(图13A、B),而GATA3以及T-bet mRNA表达量没有变化(图13C、D)。
7、rPGRN-NQR抑制TNFα诱导的p38、ERK1/2、JNK的磷酸化水平实验结果
TNFα结合TNFRs并活化受体,TNFRs胞内区活化后随即募集各类转接蛋白,并通过一系列级联反应活化多种信号途径,其中MAPK途径是TNFα诱导的一条重要炎性信号途径。本实验中我们对TNFα单独或与rPGRN、rPGRN-NQR共处理的BMDMs中MAPK途径信号分子,包括ERK1/2、p38和JNK的活化进行了检测。rPGRN、rPGRN-NQR与TNFα共处理的BMDMs,可检测到rPGRN、rPGRN-NQR对p38和ERK1/2磷酸化的抑制作用。rPGRN在15min中时对p38的磷酸化水平瞬间上调,不过随后在30min、60min时又呈现下调趋势。而无论是p38或ERK1/2,rPGRN-NQR对其磷酸化水平均有抑制作用,并且这种抑制作用较rPGRN明显。此外,二者对JNK的磷酸化抑制作用不是很明显(图14)。
上述实验主要制备得到了纯度达到95%以上的重组融合蛋白rPGRN-NQR,验证了其rPGRN-NQR对类风湿性关节炎小鼠的治疗作用。NQR多肽与rPGRN融合表达后,发挥了优于rPGRN的关节炎治疗效果。在机制研究方面发现,重组融合蛋白rPGRN-NQR抑制Th17、激活Treg信号通路;抑制TNFα诱导的p38、ERK1/2、JNK的磷酸化水平。实验表明,本发明rPGRN-NQR既能靶向类风湿性关节炎小鼠的关节部位,又能特异性地拮抗TNFα/TNFR的生物学功能,具有协同作用,是类风湿性关节炎良好的候选生物药物。
参考文献:
[1]PAPPAS D A,GERALDINO‐PARDILLA L,BATHON J M.Immune modulation of rheumatoid arthritis[J].Best Pract Res Clin Rheumatol,2011,25(6):873‐89.
[2]HIDAKA T.[The mechanism of the efficiency of leukocytapheresis on rheumatoid arthritis][J].Nihon Rinsho Meneki Gakkai Kaishi,2011,34(6):447‐55.
[3]KANG X Z,WU Q F,WANG K H.[Efficacy of integrative medicine for the treatment of rheumatoid arthritis and its effect on glucocorticoid receptor expression][J].Zhongguo Zhong Xi Yi Jie He Za Zhi,2010,30(12):1261‐4.
[4]ZAVADA J,LUNT M,DAVIES R,et al.The risk of gastrointestinal perforations in patients with rheumatoid arthritis treated with anti‐TNF therapy:results from the BSRBR‐RA[J].Ann Rheum Dis,2013,
[5]Certolizumab pegol and rheumatoid arthritis.Just another TNF alpha antagonist,no therapeutic advantage[J].Prescrire Int,2010,19(111):279.
[6]FONSECA J E,BERNARDES M,CANHAO H,et al.Portuguese guidelines for the use of biological agents in rheumatoid arthritis‐October2011update[J].Acta Reumatol Port,2011,36(4):385‐8.
[7]MALEMBA J J,MBUYI MUAMBA J M,MUKAYA J,et al.Treatment of rheumatoid arthritis with methotrexate in Congolese patients[J].Clin Rheumatol,2013,
[8]ARVANITAKIS Z.Update on frontotemporal dementia[J].Neurologist,2010,16(1):16‐22.
[9]KIEVIT W,FRANSEN J,DE WAAL MALEFIJT M C,et al.Treatment changes and improved outcomes in RA:an overview of a large inception cohort from1989to2009[J].Rheumatology(Oxford),2013,
[10]MOELANTS E A,MORTIER A,VAN DAMME J,et al.Regulation of TNF‐alpha with a focus on rheumatoid arthritis[J].Immunol Cell Biol,2013,
[11]LIU C J.Progranulin:a promising therapeutic target for rheumatoid arthritis[J].FEBS Lett,2011,585(23):3675‐80.
[12]YANG Y H,RAJAIAH R,RUOSLAHTI E,et al.Peptides targeting inflamed synovial vasculature attenuate autoimmune arthritis[J].Proc Natl Acad Sci U S A,2011,108(31):12857‐62.





关节靶向的特异性拮抗TNFΑ信号通路的重组蛋白及其用途.pdf_第1页
第1页 / 共27页
关节靶向的特异性拮抗TNFΑ信号通路的重组蛋白及其用途.pdf_第2页
第2页 / 共27页
关节靶向的特异性拮抗TNFΑ信号通路的重组蛋白及其用途.pdf_第3页
第3页 / 共27页
点击查看更多>>
资源描述

《关节靶向的特异性拮抗TNFΑ信号通路的重组蛋白及其用途.pdf》由会员分享,可在线阅读,更多相关《关节靶向的特异性拮抗TNFΑ信号通路的重组蛋白及其用途.pdf(27页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104163870A43申请公布日20141126CN104163870A21申请号201410219033522申请日20140522201310192190720130522CNC07K19/00200601C12N15/62200601A61K38/18200601A61K47/48200601A61P19/02200601A61P29/0020060171申请人四川大学地址610065四川省成都市武侯区一环路南一段24号72发明人李炯魏于全关婷黄浓郁邬雪萍沈国波周西坤74专利代理机构成都虹桥专利事务所普通合伙51124代理人梁鑫54发明名称关节靶向的特异性拮抗TNF信。

2、号通路的重组蛋白及其用途57摘要本发明属于基因工程技术领域,特别涉及一种关节靶向的特异拮抗TNF信号通路的重组蛋白及其用途。本发明要解决的技术问题为RA治疗提供一种新的选择。本发明的技术方案是重组人颗粒蛋白前体在C端或N端连接关节靶向多肽NQR的重组人颗粒蛋白前体RPGRNNQR。本发明还提供了表达上述重组人颗粒蛋白前体RPGRNNQR的载体。本发明还提供了含有所述载体的宿主细胞。本发明还提供了TNF拮抗剂。本发明还提供了治疗类风湿关节炎的药物。本发明重组人颗粒蛋白前体RPGRNNQR是一种非常优秀的RA治疗候选药物。66本国优先权数据51INTCL权利要求书1页说明书13页序列表6页附图6页。

3、19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书13页序列表6页附图6页10申请公布号CN104163870ACN104163870A1/1页21RPGRNNQR重组蛋白,其特征在于所述的RPGRNNQR重组蛋白是在重组人颗粒蛋白前体RPGRN的C端或N端还连接有NQR多肽。2根据权利要求1所述的RPGRNNQR重组蛋白,其特征在于所述的重组人颗粒蛋白前体RPGRN与NQR多肽通过连接肽连接。3根据权利要求1或2任一项所述的RPGRNNQR重组蛋白,其特征在于所述的重组人颗粒蛋白前体RPGRN的氨基酸序列如SEQIDNO1所示。4根据权利要求13任一项所述的RPGRNNQR。

4、重组蛋白,其特征在于所述的NQR多肽的氨基酸序列如SEQIDNO3所示。5根据权利要求14任一项所述的RPGRNNQR重组蛋白,其特征在于其氨基酸序列如SEQIDNO5所示。6根据权利要求15任一项所述的RPGRNNQR重组蛋白,其特征在于所述的连接肽为GGGGS。7编码权利要求16任一项所述的RPGRNNQR重组蛋白的基因。8根据权利要求7所述的基因,其核苷酸序列如SEQIDNO6所示。9表达权利要求16任一项所述的RPGRNNQR重组蛋白的载体。10含有权利要求9所述载体的宿主细胞。11权利要求16任一项所述的RPGRNNQR重组蛋白在制备TNF拮抗剂中的用途。12权利要求16任一项所述的。

5、RPGRNNQR重组蛋白在制备治疗类风湿关节炎的药物中的用途。13TNF拮抗剂,其特征在于其主要活性成分为权利要求16任一项所述的RPGRNNQR重组蛋白。14治疗类风湿关节炎的药物,其特征在于其主要活性成分为权利要求16任一项所述的RPGRNNQR重组蛋白。权利要求书CN104163870A1/13页3关节靶向的特异性拮抗TNF信号通路的重组蛋白及其用途技术领域0001本发明属于基因工程技术领域,特别涉及一种关节靶向的特异性拮抗TNF信号通路的重组蛋白及其用途。背景技术0002类风湿关节炎RHEUMTOIDRTHRITIS,R是以关节组织慢性炎症性病变为主要表现的自身免疫疾病1。R的特征性表。

6、现是滑膜增生,在滑膜与软骨骨交界处有变成局灶性侵袭的倾向,而骨关节软骨、软骨下骨质和关节周围软组织的进行性破坏可以共同引起关节破坏,并最终导致关节畸形,是我国人群丧失劳动力和致残的主要病因之一2。类风湿关节炎的致病因素有很多,包括遗传因素、环境致病因素、自身抗原抗体、细胞因子、B淋巴细胞及T淋巴细胞等。其中,由多种细胞产生的细胞因子在类风湿关节炎滑膜病变中起到非常重要的作用3。0003在R的发生发展过程中,肿瘤坏死因子TUMORNECROSISFCTOR,TNF有重要作用,占中心地位。TNF是一种重要的免疫调节因子,参与了R多种致病机制,包括内皮细胞的激活、细胞因子的诱导、白细胞的聚集、破骨细。

7、胞的活化与软骨的破坏等,导致炎性反应的持续发生和软骨与骨渐进性破坏4,在关节滑膜炎性变及软骨基质的降解过程中起重要作用,尤其是滑液中异常升高的TNF,对R的发病起主导作用。TNF可以诱导内皮细胞表达黏附分子和血管内皮生长因子VEGF,促进白细胞与血管内皮黏附、渗透,导致局部的炎症反应和血管翳生成;TNF可以作用于破骨细胞、滑膜细胞和软骨细胞,导致这些细胞的活化,产生金属蛋白酶、胶原酶、基膜溶解酶及PGE2,进一步破坏软骨引起骨侵蚀、关节炎症和软骨破坏,同时TNF还可促使滑膜细胞、巨噬细胞、纤维母细胞和软骨细胞产生IL1、IL8及TNF本身而加重组织损伤。因此,抑制TNF的作用对控制R的病情和改。

8、善预后非常重要5。0004传统药物只能暂时缓解炎症,不能控制疾病的进展,治疗时间长,毒副作用大。目前临床应用良好的R治疗药物是生物制剂,包括单克隆抗体、可溶性细胞因子受体等6,在改善R患者症状、物理功能、生活质量以及减缓影像学进展等方面均具有良好的效果7。TNF抑制剂在类风湿性关节炎患者中应用的日益广泛,其机体广泛性免疫抑制所带来的风险也逐渐引起了人们的重视。已报道的TNF抑制剂常见的不良反应有恶性肿瘤,细菌、病毒和真菌引发的感染9,同时其昂贵的费用是主要缺点之一。因此找到一种经济实惠、靶向性高的生物制剂,是类风湿关节炎治疗亟待解决的难题。0005颗粒蛋白前体PROGRANULIN,PGRN是。

9、一种自分泌生长因子,在上皮细胞、免疫系统细胞、神经系统和骨细胞中高表达,参与机体多种生理和疾病进程,包括炎症、损伤修复、宿主防御和软骨发育与降解等8。PGRN能够与肿瘤坏死因子受体TNFRECEPTORS,TNFRS结合,阻断TNF结合TNFRS,从而具有拮抗TNF的生物学功能,同时该分子也能维持骨骼完整性和修复软骨,对软骨完整性具有保护作用,是类风湿性关节炎治疗良好说明书CN104163870A2/13页4的候选药物分子。0006目前短肽介导的靶向药物递送系统在临床应用中受到越来越广泛地重视。利用肽与其受体的特异性结合特性,以多种形式将肽与药物结合形成的各种复合物,可以增加药物在体内的选择性。

10、,减少药物的毒副作用,为提高药物的治疗指数提供了可能性,显示了良好的研究价值和应用前景。发明内容0007本发明要解决的技术问题为RA治疗提供一种新的选择。0008本发明的技术方案是RPGRNNQR重组蛋白,所述的RPGRNNQR重组蛋白是在重组人颗粒蛋白前体RPGRN的C端或N端还连接有NQR多肽。0009其中,所述的重组人颗粒蛋白前体RPGRN的氨基酸序列如SEQIDNO1所示。0010其中,编码所述重组人颗粒蛋白前体RPGRN的核苷酸序列如SEQIDNO2所示。0011其中,所述的NQR多肽的氨基酸序列如SEQIDNO3所示。0012其中,编码NQR多肽的核苷酸序列如SEQIDNO4所示。。

11、0013进一步的,所述的重组人颗粒蛋白前体RPGRN与NQR多肽通过连接肽连接。0014优选的,所述的连接肽为GGGGS。0015其中,所述的RPGRNNQR重组蛋白的氨基酸序列如SEQIDNO5所示。0016其中,所述的RPGRNNQR重组蛋白的编码基因的核苷酸序列如SEQIDNO6所示。0017本发明还提供了编码所述的RPGRNNQR重组蛋白的基因。0018其中,所述的基因的核苷酸序列如SEQIDNO6所示。0019本发明还提供了表达所述的RPGRNNQR重组蛋白的载体。0020本发明还提供了含有所述载体的宿主细胞。0021本发明还提供了所述的RPGRNNQR重组蛋白在制备TNF拮抗剂中的。

12、用途。0022本发明还提供了所述的RPGRNNQR重组蛋白在制备治疗类风湿关节炎的药物中的用途。0023本发明还提供了TNF拮抗剂,其主要活性成分为所述的RPGRNNQR重组蛋白。0024本发明还提供了治疗类风湿关节炎的药物,其主要活性成分为所述的RPGRNNQR重组蛋白。0025本发明创造性地将RPGRN和NQR连接使用。其中的RPGRN分子量仅为17KD,易于穿透;具有与REMICADE、ENBREL和HUMIRA等TNF抑制剂相同的作用靶位即TNF/TNFR信号通路。不同于目前临床使用的TNF抑制剂结合TNF的治疗原理,该分子其本身选择性结合TNF受体,抑制RA疾病相关信号通路,具有值得。

13、期待的临床效果。特异靶向炎症关节的多肽NQRCLDNQRPKC,特异性地结合在关节来源的内皮细胞,递送治疗药物到炎症关节部位。0026本发明的有益效果在于本发明中使用的RPGRN与NQR的重组工程蛋白,本发明RPGRNNQR分子量仅约17KD,易于穿透,同时因其来源于人类重组蛋白,尽可能地减少了免疫原性;RPGRNNQR的生产使用细菌表达体系,降低了生产成本,将最大程度上节省患者的治疗开支,而且实验证明其中的RPGRN与NQR能协同发挥作用,最风湿性关节炎就具有较好的治疗效果,是一种良好的关节靶向重组蛋白候选药物分子,为RA治疗提供了一种新的有说明书CN104163870A3/13页5效选择。。

14、附图说明0027图1、PET44A的结构示意图0028图2、PET44ARPGRN的结构示意图,G4S为柔性连接肽0029图3、PET44ARPGRNNQR的结构示意图0030图4、重组质粒和酶切鉴定0031左,1PET44A空载体;2PET44ARPGRN重组载体;3PET44ARPGRN重组载体用限制酶SMA和HIND双酶切;MDNMARKER。0032右,1PET44ARPGRNNQR重组载体;2PET44A空载体;3PET44ARPGRNNQR重组载体用限制酶SMA和HIND双酶切;MDNMARKER。0033图5、预防组及治疗组的实验方案示意图。0034图6、RPGRN、RPGRNN。

15、QR纯化的电泳分析图考染0035左1还原性RPGRN重组蛋白;2非还原性RPGRN重组蛋白。0036右1还原性RPGRNNQR重组蛋白;2非还原性RPGRNNQR重组蛋白。0037图7、RPGRN、RPGRNNQR直接结合TNFRL和TNFR20038图8、RPGRN、RPGRNNQR拮抗TNF与TNFRL和TNFR2的结合0039图9、RPGRNNQR可特异性靶向CI小鼠关节部位每组三只小鼠,从左至右依次为PBS、RPGRN、RPGRNNQR组;第一排前三只为处理0H,第一排后三只为处理1H,第二排前三只为处理2H,第二排后三只为处理3H,图中箭头表示荧光靶向位置。0040图10、不同浓度的。

16、RPGRN、RPGRNNQR与TNFR1和TNFR2的结合响应值。0041图11、RPGRNNQR在CIA模型小鼠中的预防治疗效果。A小鼠足爪外观成像;B小鼠关节临床评分每组7只小鼠,P005,P001,P0001,各组均与SALINE组比较;C小鼠影像学分析X线片;D小鼠关节HE染色,比例尺为100M。E小鼠关节临床评分的剂量依赖性。0042图12、RPGRNNQR在CIA模型小鼠中的治疗效果。A小鼠足爪外观成像;B小鼠关节临床评分每组7只小鼠,P005,P001,P0001,各组均与SALINE组比较;C小鼠影像学分析X线片;D小鼠关节HE染色,比例尺为100M;E小鼠关节临床评分的剂量依。

17、赖性。0043图13、RPGRNNQR激活了TREG,抑制了TH17信号通路。ARPGRNNQR下调IL17AMRNA的表达;BRPGRNNQR上调FOXP3MRNA的表达;CRPGRNNQR对GATA3MRNA表达量没有变化;DRPGRNNQR对TBETMRNA表达量没有变化各组均与SALINE相比,P005,P0010044图14、分别用TNF、TNFRPGRN、TNFRPGRNNQR处理BMDMS细胞,检测如图所示时间点的P38、ERK1/2、JNK磷酸化水平。具体实施方式0045一、实验材料00461质粒载体、菌种、细胞株说明书CN104163870A4/13页60047质粒载体PET。

18、44原核表达载体,购自NOVAGEN公司,包含T7启动子和6个组氨酸标签,其结构示意图见图1。0048ECOLIDH5、ECOLIBL21DE3购买于TIGEN公司存。0049RW2647细胞株购自TCCMERICNTYPECULTURECOLLECTION。0050BLB/C小鼠56周购自上海斯莱克实验动物有限责任公司。00512主要试剂、材料及试剂盒0052各种限制性核酸内切酶、蛋白分子量标准购自FERMENTS公司。0053PCR所用TQ酶购自TKR公司。0054蛋白胨TRYPTONE、酵母提取物YESTEXTRCT购自OXOID公司。0055丙烯酰胺、甲叉双丙烯酰胺购自BIORD公司0。

19、056质粒提取试剂盒购自道普公司。0057DMEM培养基、胎牛血清FBS购自美国GIBCO公司。0058TNF,TNFR1,TNFR2,BIOTINYLTEDHUMNTNF均购自美国RD公司。0059RTHRITOGENICMONOCLONLNTIBODY购自美国CHONDREX公司。0060CY7N羟基琥珀酰亚胺酯购自北京泛博生物化学有限公司。0061购自肠激酶重庆科润生物医药研发有限公司。0062TNFR1NTIBODY、TNFR2NTIBODY购自北京义翘神州生物技术有限公司。0063二、实验方法00641RPGRN、RPGRNNQR基因的扩增及克隆的构建006511RPGRN、RPGR。

20、NNQR基因的扩增0066根据RPGRN基因序列设计并合成PCR引物,构建PETRPGRN、PET44ARPGRNNQR质粒。同时引入肠激酶ENTEROKINASE,EK酶序列,便于重组蛋白组氨酸标签的切除。为了能将PCR产物插入原核表达载体PET44A,我们在5引物引入SMA位点和3引物设计入HIND位点。0067首先构建了PET44ARPGRN质粒。在其基础上,引入LINKER与NQR多肽,我们分别设计了两条前引物PRIMERFOR1、PRIMERFOR2与两条后引物PRIMERBACK1、PRIMERBACK2,首轮PCR反应使用PRIMERFOR1与PRIMERBACK1,第二轮PCR。

21、反应使用PRIMERFOR2与PRIMERBACK2,经过两次PCR反应即可得到完整的RPGRNNQR序列,酶切后插入PET44A表达载体。0068RPGRNNQR引物序列0069PRIMERFOR1SEQIDNO170070GATTGATGACGACGACAAGCCGCAGGCGAGCTGTTGTGAAGACCGTGTCC;0071PRIMERFOR2SEQIDNO180072ATTATCCCCCGGGGCAGCGCGGGTTCTGGTACGATTGATGACGACGACAAG;0073PRIMERBACK1SEQIDNO190074AATATATTATCCAGGCAGCTGCCACCACC。

22、GCCCGGAATCGGACAGCAGCCCCAT;0075PRIMERBACK2SEQIDNO20说明书CN104163870A5/13页70076AATACCCAAGCTTTCAGCATTTCGGACGCTGGTTATCCAGGCAGCTGCCACCAC。0077使用TKR公司的PYROBESTDN聚合酶扩增RPGRN片段,按照说明进行操作,PCR反应条件如下00785L10扩增缓冲液00794LDNTP各25MM00801L5引物10M00811L3引物10M00821L模板DN1NG0083025LPYROBESTDNPOLYMERSE5U/L0084UPTO50LDDH2O0085P。

23、CR反应混合物在94变性4分钟后,按下列条件进行反应008694变性30秒;55退火30秒;72延伸45秒。反应30个循环。然后72再延伸10分钟。00871GROSE电泳检测PCR产物大小。008812将PCR产物构建入原核表达载体PET44A。0089使用道普生物胶回收试剂盒,按试剂盒的方法回收PCR片段;0090PCR产物和PET44分别用SMA/HIND双酶切,37孵育过夜;0091回收片段,T4DN连接酶连接,16孵育过夜;0092转化大肠杆菌DH5感受态细胞,涂平板MPR,挑取单克隆鉴定。009313重组克隆PET44ARPGRN、PET44ARPGRNNQR的序列测定。0094酶。

24、切验证重组成功的阳性克隆送上海英俊生物技术有限公司自动测序仪测序,并验证载体构建成功。00952重组质粒PET44RPGRN、PET44RPGRNNQR进行表达以及可溶性鉴定。0096测序正确的载体,转化ECOLIBL21DE3表达菌株。将包含有PET44RPGRN、PET44RPGRNNQR表达质粒的ECOLIBL21DE3大肠杆菌置于5ML的LB培养基中,于37培养,转速220RPM/MIN。细胞密度达到可诱导范围内OD0608时,取出1ML菌液备用,再加入终浓度为01MMOL/L的IPTG进行诱导,继续培养4小时。于4下12000RPM/MIN离心5MIN收集诱导前和诱导后的细菌,以PB。

25、S重悬菌体,置于冰上进行超声波裂解200W,10SEC6次,间隔10秒。于4下15000RPM/MIN离心30分钟,保留上清液沉淀部分作进一步的SDSPGE分析。00973重组蛋白RPGRN、RPGRNNQR的表达、纯化。009831样品制备0099将IPTG诱导后的菌体2301MMOL/L,37,5HG,用230ML破菌缓冲液重悬,破菌缓冲液为120MMOL/L咪唑的PBS,PH80,然后高压均质破碎,4离心,收集上清。010032镍柱亲和层析0101样品为RPGRN、RPGRNNQR破菌上清液15ML,用1液稀释2倍,取30ML上样。纯化柱为XK16/20NICHELTINGFSTFLOW。

26、,体积16ML。结合缓冲液和洗脱缓冲液分别为1和B1500MMOL/L咪唑的PBS,PH80。实验采用EXPLORERBOX900,5ML/MIN的纯化系统,洗脱液分别为50MMOL/L,250MMOL/L和500MMOL/L的B1,收集的液体对应为10ML,说明书CN104163870A6/13页822ML和5ML。010233脱盐0103所用样品为250MMOL/L咪唑洗脱蛋白,体积30ML,浓度20MG/ML,纯化柱为XK26/20SEPHDEXG25,柱体积100ML。实验所用缓冲液为20MMOL/LTRISHCL,50MMOL/LNACL和2MMOL/LCACL2,PH80。纯化系统。

27、为EXPLORERBOX900,脱盐收集液体35ML。010434肠激酶ENTEROKINASE,EK酶酶切0105酶切样品为上述脱盐后蛋白20MMOL/LTRISHCL,50MMOL/LNACL,2MMOL/LCACL2体积35ML,浓度16MG/ML。酶切条件为28,12H,用1LEK酶作用于25MG蛋白。010635阴离子交换层析0107EK酶切后样品15ML16MG/ML20MMOL/LTRISHCL,50MMOL/LNACL,2MMOL/LCACL2,PH80用20MMOL/LTRISHCL,PH70稀释2倍,共上样30ML。纯化柱为XK16/20,QHP,柱体积10ML。纯化系统为。

28、EXPLORERBOX900。缓冲体系由20MMOL/LTRISHCL,PH70和B20MMOL/LTRISHCL,1MOL/LNACL,PH70组成。采用梯度洗脱方式10、20、40、60B洗脱目的蛋白。01084重组蛋白RPGRN、RPGRNNQR的纯度检测0109重组蛋白样品用SDSPGE非还原性电泳分析,判定样品的纯度。SDS聚丙烯酰胺凝胶电泳法,制备分离胶和浓缩胶,分离胶的比例为15。将供试品与供试品缓冲液按31混合,100水浴,35分钟将预处理的供试品,用加样器点样于供试品孔中,供试品加样量10L,加样量不能低于10G考马斯亮蓝染色或5G硝酸银染色。接通电源后,先80V跑出浓缩胶,。

29、用120V跑分离胶,直至电泳结束,染色分析结果。01105ELIS检测RPGRNNQR与TNFR1、TNFR2是否直接结合01111在96孔板中加入100NG的TNF,4包被过夜;01122加入1的BS封闭3H;01133使用含有005吐温的TBS溶液洗涤反应孔5次;01144反应孔中加入100NGTNFRL或100NGTNFR2与一系列不同浓度的RPGRN、RPGRNNQR;、01155使用抗TNFRS的抗体检测固相中结合的TNFRS。01166流式细胞术检测RPGRN、RPGRNNQR与TNFR的结合。01171小鼠RW2647细胞高表达TNFR,将BIOTINYLTEDRHTNF孵育细胞。

30、,BIOTINYLATEDRHTNF与细胞表面特异性受体TNFR结合。然后,再用AVIDINFLUORESCEIN孵育,由于VIDINFLUORESCEIN可与受体生物素因子结合,故可通过流式细胞术中荧光强弱检测二者结合量。01182将RAW2647细胞悬于PBS;01193取LXL05的细胞加入不同剂量的RPGRN、RPGRNNQR15UG,75UG预处理30MIN;01204加入生物素标记的TNF,细胞4孵育30MIN;01215加入L0L偶联有FITC的抗生物素蛋白,4避光孵育30MIN;01226PBS洗涤细胞两次,并将细胞重悬于200UL洗涤缓冲液中用于流式细胞检测。01237、生物。

31、膜光干涉技术检测重组融合蛋白与TNFR1、TNFR2的亲和力01241根据EZLINKNHSPEG12BIOTINTHERMOSCIENTIC说明书操作方法,透析得说明书CN104163870A7/13页9到生物素标记的TNFR1、TNFR2。01252生物素标记的TNFR1、TNFR2固定于链霉素生物传感器表面,4MMTRISHCL,20MMNACL,PH70的缓冲液平衡3MIN直至建立稳定的基线。01263随后,5种不同浓度梯度的BSA、RPGRN、RPGRNNQR蛋白样品流过生物传感器,结合到传感器的样品经干涉技术,实时检测配体与受体间动力学参数以及亲和力,并在软件中呈现结合曲线。012。

32、74OCTETSOFTWAREV61软件分析实验数据。01288活体成像实验检测RPGRNNQR体内靶向小鼠炎症关节012981CY7N羟基琥珀酰亚胺酯染料标记RPGRN、RPGRNNQR蛋白0130用1L01MOL/LNHCO3PH83透析1MGRPGRN、1MGRPGRNNQR500UG/ML,17KD蛋白4H,换液继续透析4H,之后换液透析过夜。0131第二天上午再次换液1L01MOL/LNHCO3PH83透析4H,随后用01MOL/LNHCO3稀释少量的蛋白,在280NM处测其紫外吸收值计算蛋白浓度;用100ULDMSO配置1MGCY7NHSMW81801,使其溶液浓度为10MG/ML。

33、,计算所需体积以得到想要的CYDYENHS和蛋白的比值例如201,然后慢慢将其加入到蛋白溶液中,同时在暗处常温缓慢搅拌45分钟。0132第二天下午,用1LPBS溶液避光透析4小时,再次避光透析过夜。01334第三天上午,换液再次1LPBS溶液避光透析4小时。用PBS整数倍稀释标记抗体溶液,测量280NM蛋白和750NMCY7处的紫外可见吸光度。013482CICOLLAGENANTIBODYINDUCEDARTHRITIS,CAIA小鼠建模0135联合使用单克隆抗体混合物和LPS来诱导CI敏感性小鼠BLB/C小鼠关节炎。0136第0天静脉或腹腔注射15MG的5克隆混合物。0137第3天腹腔注射。

34、25UG的LPS。0138第12天每组取三只发病均一的小鼠,做活体成像检测。013983CIACOLLAGENINDUCEDARTHRITIS,CIA小鼠建模1建模第0天100G鸡II型胶原CHONDREX,LLC,SEATTLE,WA与等量的完全弗氏佐剂CHONDREX,LLC,SEATTLE,WA含有4MG/ML的热灭活分支杆菌充分乳化混合成稳定的乳剂;用01ML乳剂分12个部位注射小鼠尾巴基部。此为第一次激发免疫。2建模第21天100G鸡II型胶原CHONDREX,LLC,SEATTLE,WA与等量的不完全弗氏佐剂CHONDREX,LLC,SEATTLE,WA充分乳化混合成稳定的乳剂;用。

35、01ML乳剂分12个部位注射小鼠尾巴基部。此为第二次加强免疫。014084活体成像上机检测0141110水合氯醛麻醉CAIA、CIA模型小鼠后,腹腔给药SALINE以及菁染料标记的RPGRN20MG/KG、RPGRNNQR20MG/KG。将小鼠俯卧位平放于小动物活体成像系统暗箱中。01422对于CAIA模型,共三只小鼠,分别腹腔给药SALINE、RPGRN以及RPGRNNQR,0、1、2、3、4H观察RPGRNNQR在CAIA小鼠关节的靶向情况;01433为进一步观察荧光靶向的持续时间,在CIA模型小鼠中,我们观测了0、1、2、3、4H以及24H、48H、72H。同时为了验证RPGRNNQR只。

36、靶向炎症关节部位而对正常关节没说明书CN104163870A8/13页10有靶向作用,我们将小鼠增加至六只。分为正常组与CIA模型组,每组三只,分别腹腔给药SALINE、RPGRN以及RPGRNNQR。01449CIA模型小鼠的预防和治疗试验01451RPGRNNQR蛋白对CIA小鼠的预防试验0146建模第19天后开始治疗,0、002、01、05、25MG/KG的RPGRNNQR以及单剂量的05MG/KG的RPGRN、ETANERCEPT背部皮下给药治疗小鼠每组7只,一周两次,给药32天后处死小鼠。01472RPGRNNQR蛋白对CIA小鼠的治疗试验。0148当临床评分10分建模第35天,0、。

37、01、05、25、5MG/KG的RPGRN、RPGRNNQR背部皮下给药治疗小鼠每组7只,一周两次。给药32天后处死小鼠。0149注观察小鼠四肢关节改变并进行临床评分0,表观正常,关节灵活;1,跗骨或者踝关节轻微肿胀;2,脚踝至跗骨轻微肿胀;3,踝关节至跖关节中度肿胀;4,脚、脚趾以及踝关节严重肿胀或者肢体关节僵硬。4只爪得分之和为每只小鼠的总分,最高分为16分。0150预防组和治疗组的处理方案的示意图参见图5。01513组织病理学观察0152石蜡包埋组织01531小鼠关节组织标本用4多聚甲醛溶液固定后,置于脱钙液中脱钙。01542脱钙后冲水1224H,0155375酒精,1次,1H;0156。

38、485酒精,1次,1H;0157595酒精,3次,1H;01586100酒精,3次,1H;01597二甲苯,2次,1H;01608石蜡浸泡,3次,70MIN01619包埋组织。0162HE染色01631切片后二甲苯脱蜡,2次,10MIN;01642100酒精去二甲苯,2次,2MIN;0165395酒精,1次,1MIN;0166485酒精,1次,1MIN;0167570酒精,1次,1MIN;01686自来水洗;01697MAYER氏苏木素染色3MIN,自来水洗1MIN;017081盐酸酒精分化20S,自来水洗1MIN;017191稀氨水返蓝30S,自来水洗1MIN;017210伊红染色2MIN,。

39、自来水洗30S;01731170酒精20S,80酒精30S;01741295酒精,2次,1MIN;017513100酒精,2次,2MIN;说明书CN104163870A109/13页11017614二甲苯,2次,5MIN;017715中性树胶封片;镜下观察并拍照。017810、RTPCR检测小鼠脾脏细胞IL17A、FOXP3、GATA3以及TBET的表达01791取新鲜的脾脏组织,按照淋巴细胞分离液说明书进行分离。01802将分离的淋巴细胞溶解在含1MLTRIZOL的EP管中,室温静置5MIN,10,000G,4离心10MIN。01813取上清加入三氯甲烷02ML,振荡,室温静置3MIN,12。

40、,000G,4离心15MIN。01824取上层水相,加异丙醇05ML,室温静置10MIN,12,000G,4离心10MIN。弃上清,75乙醇清洗RNA沉淀,7,500G,4离心5MIN,晾干RNA。01835以30LDEPC水溶解,分光光度计测浓度,RNA电泳。01846按照SUPERSCRIPTMFIRSTSTRANDSYNTHESISSYSTEMINVITROGEN公司试剂盒说明书合成CDNA。01857取CDNA2L做半定量PCR,用相应细胞因子上游及下游引物各50PMOL,ACTIN上游及下游引物各50PMOL。01868取反应结束产物8L加样于1琼脂糖凝胶上电泳。引物由上海英潍捷基生。

41、物技术有限公司合成引物序列见表10187表1RTPCR检测引物序列0188018911TNF胞内信号通路检测01901小鼠骨髓细胞分离自58周龄C57BL/6小鼠的股骨,去除黏附的软组织,将股骨两端剪去,用21GAUGEL的注射器吸取MEM包含有L谷氨酰胺、青霉素、链霉素及热灭活的10FBS;从骨项一端冲洗骨髓腔,收集骨髓细胞,轻轻摇匀成单细胞悬液。用MEM洗涤细胞2次,再悬浮细胞375105CELLS/M1于MEM中,MCSF10NG/ML,置于培养板中,37,5CO2培养24H。01912收集未贴壁细胞,25105CELLS/ML,置于培养板中,MCSF10NG/ML培养3说明书CN104。

42、163870A1110/13页12天。此时贴壁细胞为骨髓来源巨噬细胞BMDMS。0192310NG/MLTNF同时加入PBS、RPGRN25NM或RPGRNNQR25NM共刺激BMDMS,处理0、5、15、30、60MIN后,吸去培养基,将细胞刮下,用冰浴的PBS清洗2次4,500G/MIN,2MIN;01934加入200L细胞裂解缓冲液超声破碎,12000RPM,离心3MIN,吸取上清,即为全细胞提取物。01945全细胞提取物加入上样缓冲液。100煮5MIN。01956将制备好的蛋白样品进行WESTERN免疫印迹。019612统计学分析0197所有的统计学分析是采用SPSS软件完成。数据以平。

43、均数标准误形式表示,各实验组间比较采用单因素的方差分析。P值005时,可认为差异有显著性,P值001时,可认为差异极显著。0198三、实验结果01991、RPGRN、RPGRNNQR重组蛋白的制备0200RPGRN、RPGRNNQR连在PET44A载体上,经过限制酶SMA和HIND双酶切方法进行鉴定后电泳分析得到预期结果图4,测序结果后的比对也表明获得了预期的原核表达质粒PET44ARPGRN、PET44ARPGRNNQR。020112重组蛋白RPGRN、RPGRNNQR的纯化。0202蛋白经纯化后,电泳检测结果见图6。02032、ELIS检测RPGRNNQR可直接与TNFR1、TNFR2结合。

44、020496孔板中加入溶于100ULTBS的500NG的RPGRN、RPGRNNQR包被,封闭后加入不同浓度的TNFRL图7或TNFR2图7B胞外区,分别使用抗TNFRL或抗TNFR2抗体检测结合的TNFR1或者TNFR2。0205结果表明TNFR1或TNFR2的结合与RPGRNNQR表现出剂量依赖性,最终达到饱和图7,表明RPGRNNQR与TNFR1或TNFR2的能够直接结合。02063、流式细胞术检测RPGRN、RPGRNNQR抑制TNF与TNFR的结合0207TNFRL和TNFR2在RAW2647细胞表面高表达,采用流式细胞术检测RPGRN、RPGRNNQR对生物素标记的TNFBTTNF。

45、与RAW2647细胞表面结合情况的影响参见图8。对荧光标记的抗生物素抗体信号检测表明,随着RPGRN、RPGRNNQR浓度的升高,能够更有效地影响生物素标记的TNF与RAW2647细胞的结合,证明RPGRN、RPGRNNQR可竞争性抑制TNF与RAW2647细胞膜表面受体的结合。02084动力学分析RPGRN、RPGRNNQR与TNFR1/TNFR2结合0209为进一步验证RPGRN、RPGRNNQR可以与TNFR1、TNFR2结合,分别对RPGRN、RPGRNNQR与TNFR1、TNFR2做了分子动力学分析即生物膜光干涉技术BLI实验。首先将生物素标记的TNFR1、TNFR2固定于链霉素生物。

46、传感器表面,5种不同浓度梯度的BSA、RPGRN、RPGRNNQR蛋白样品流过生物传感器,结合到传感器的样品经干涉技术,实时检测配体与受体间动力学参数,受体与配体的结合响应值随着配体蛋白浓度的增加而增大结果见图10。生物膜光干涉实验显示RPGRNNQR分别与TNFR1或TNFR2的平衡解离常数基本相当表4。说明书CN104163870A1211/13页130210此外,我们还列出了TNF、RPGRN、RPGRNNQR与TNFR1/TNFR2的亲和力常数,见表2。0211表2RPGRN、RPGRNNQR与TNFR1和TNFR2的平衡解离常数021202134、活体成像实验检测RPGRNNQR体内。

47、靶向小鼠炎症关节0214于CAIA模型BLB/C小鼠腹腔内注射10水合氯醛100L麻醉动物,每组三只小鼠从左至右依次腹腔给药PBS、RPGRN20MG/KG、RPGRNNQR20MG/KG。将小鼠俯卧位平放于小动物多光活体成像系统的记录暗箱中,观察0、1、2、3小时,RPGRNNQR在CI小鼠关节的靶向情况CALIPERLIFESCIENCES,SPECTRUMLIVINGIMAGE40分析软件,结果见图9,图中箭头表示荧光靶向位置。RPGRN不具有靶向作用,RPGRNNQR仅靶向炎症关节。0215此外,取3只发病均一的模型CIA模型小鼠以及3只正常小鼠,菁染料标记RPGRN、RPGRNNQR。

48、蛋白后,分别对正常组与CIA模型组小鼠腹腔给药SALINE、RPGRN20MG/KG、RPGRNNQR20MG/KG,10水合氯醛麻醉小鼠后将其俯卧位平放于小动物多光活体成像系统的记录暗箱中,观察0、1、2、3、4H以及24H、48H、72H时RPGRNNQR在CIA小鼠关节的靶向情况。发现RPGRN不具有靶向作用,RPGRNNQR仅靶向炎症关节,对正常组小鼠没有靶向作用。并且荧光强度虽然在24H、48H、72H不断减弱,但是荧光依旧存在。02165、RPGRNNQR在CIA模型小鼠中的预防和治疗效果0217预防和治疗的处理方式参见图5,预防治疗在建模第19天后开始治疗,0、002、01、05。

49、、25MG/KG的RPGRNNQR以及单剂量的05MG/KG的RPGRN、ETANERCEPTENBREL背部皮下给药治疗小鼠N7,一周两次。并每隔一天进行临床评分。待分别治疗32天后,进行小鼠足爪外观成像以及关节影像学X线片,发现RPGRN或RPGRNNQR能够抑制CIA小鼠类风湿性关节炎症状图11A,RPGRN或RPGRNNQR治疗后的CLA小鼠关节炎临床评分图11B明显降低,影像学X线片可看出治疗组小鼠的关节变形以及骨侵蚀明显得到改善图11C。SALINE、RPGRN或RPGRNNQR治疗的CIA小鼠跗关节组织切片HE染色后,对小鼠跗关节进行组织形态学分析图11D。SALINE处理组CIA小鼠跗关节表现为严重的细胞浸润,滑膜炎、关节翳以及关节腔间隙变窄,而RPGRN和RPGRNNQR治疗。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 有机化学〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1