改进的带钎焊板的热交换器 本发明涉及带钎焊板和具有主要沿纵向的流体循环的热交换器,该类型的交换器包括一堆平行板和位于这些平行板之间的波纹形隔板,每一对平行板构成一个大体呈平的流体通道。它们特别适用在蒸馏空气的装置中所用的低温热交换器中。
在工业流程中当使用带钎焊板的热交换器时,必须使流体在一部分交换器长度上循环,而当流程中交换器的互补温度范围内不必涉及另一种液体的循环时,人们就面临下列选择:或者是相应通道长度的互补部分构成交换器中的会降低总性能的热滞止空间,或者是在这种隔板中循环另一种流体,后者在由流体影响的温度范围内返回到一个较小的流动区段。该第二种解决办法从热量观点看是较为满意的,但在本技术中,它涉及交换器结构的明显复杂化。特别是增加许多个流体入口/出口用的侧向箱筒。
本发明地目的是允许选用上述第二解决方案,但费用较低。
为此,根据第一实施例,本发明有一个上述类型的带钎焊板和具有大致流体呈纵向循环的热交换器,其特征在于,至少一个第一通道在交换器长度的中间的第一位置处是封闭的,而且刚巧在该位置的旁边与至少有一个第二通道与之直接连通。
上述第二通道可以在位于相对于第一和第二通道之间的连通点越过第一中间位置的交换器长度中间的第二位置处呈封闭,然后第一和第二通道刚巧在越过该第二中间位置处也相互连通。
在第一改型中,上述第一和第二通道是邻接的并通过一系列开孔相互连通。
在第二改型中,则相反,上述第一和第二通道由一个用于另一种流体循环的第三通道所隔开,并通过一组穿过该第三通道的管子而彼此连通。
根据本发明的第二实施例,上述类型的带钎焊板和具有大致流体呈纵向循环的热交换器其特征在于,至少一个通道沿其厚度在其长度的两个中间位置之间被一个中间板分为两个分通道,第一分通道在上述第一中间位置处封闭并在上述第二中间位置处自由地打开进入上述通道,而第二分通道在上述第二中间位置处封闭并在上述第一中间位置处自由地打开进入上述通道。
根据本发明的第三实施例,上述类型的带钎焊板和具有大致流体呈纵向循环的热交换器其特征在于,至少一个通道沿其长度分为两个分通道,其中一个分通道在沿交换器长度的第一中间位置处是封闭的。
在这种情况下,另一分通道在沿交换器长度相对于第一中间位置偏置的第二中间位置处是封闭的,使得上述通道在其长度的中间区域包括一个总的成S形的分隔壁。
下面参照附图说明本发明的实施例,其中
图1示意表示应用本发明的空气蒸馏装置;
图2示意表示该装置根据常规构造的主要热交换器的一部分;
图3示意表示该交换器的同一部分,但按照本发明的第一实施例配置;
图4是一种改型的类似视图;
图5是根据本发明第二实施例的类似视图;
图6是相应的透视示意图;
图7表示本发明的第三实施例;
图8是与热交换器的另一部分有关的与图3类似的视图。
图1中示出的装置基本上是FR—A—2688052的图1中说明的装置。这种装置适合于在高压(例如40巴的数量级)下生产气体氧。它主要包括一个由顶上装有在稍大于1巴的绝对压力下操作的低压柱塔3和在约6巴的绝对压力下操作的中压柱塔2构成的双蒸馏塔1、一个热交换管线4、一个低温冷却器5、一个液氧泵6、一个冷鼓风机7、一个其转子与冷鼓风机同轴安装的第一涡轮8和一个由合适的制动器10如交流发电机制动的第二涡轮9。
热交换管线4是由钎焊板型的单一热交换器所组成。
众所周知,带钎焊板的热交换器由一堆通常为矩形的完全相同的平行板组成,它们两个两个地形成多个平面通道。板的尺寸可以是大的,例如,对于蒸馏空气用的装置的热交换器,对应约1.40m的宽度它们可以具有长达约6m的长度。另一方面,通道的厚度非常小,通常为5至10mm的数量级。通道的数目可以为120至150的数量级。
板的相互间隔是由波纹形的隔板来保证的,隔板同时起散热片的作用。这些波纹板可以用穿孔的波纹金属板或通过在其侧面开切口来构成(后者是所谓“锯齿状”波纹板),并波纹板具有正方形的、矩形的、正弦波形状的截面。
通道的周边全部利用纵向杆和横向杆密封,除了有限的向外开放区域外,所有厚度都相同且等于波纹板的高度。这些开放区域形成流体的垂直对准的入口/出口窗系列,每一系列窗口用一个流体的入口/出口箱筒密封盖上,箱筒通常为半圆筒形的,设有一个引入或流回流体用的导管。与一个一定的箱筒相联接的窗口自然准备用于相对应的流体只包含一定数目的通道,对于沿轴向从交换器的一端到另一端循环的流体,箱筒则邻接交换器的两端,而沿交换器还设有补充的箱筒,在本实例中用于中间温度的流体的入口/出口。
板、波纹板和密封杆通常都用铝或铝合金制造,并在钎焊炉中进行钎焊并在一次操作中装配成密封关系。而后通过焊接与入口/出口箱筒相连。除了下文在与图5有关情况下指明以外,每个通道在其整个长度上具有相同的厚度。
从图上可以看到双柱塔的常规导管,即:收集在柱塔2底部的“富液”(富氧的空气)用的导管11在低温冷却器5中低温冷却和在膨胀阀12中膨胀成低压后升至柱塔3的中点;从柱塔2头部流回的“贫液”(相当纯的氮)用的导管13在低温冷却器5中进行低温冷却和在膨胀阀14中膨胀到低压后升至柱塔3的头部;以及用于生产构成装置残余气体的不纯氮的导管15,该导管通过低温冷却器5而后连接到通道16上,用于在热交换管路4中重新加热氮气。这样重新加热到环境温度的不纯氮气通过导管17从装置中移出。
泵6从柱塔3底部抽取绝对压力约1巴的液态氧,使其达到所要的生产压力并将其引至热交换管线的氧蒸发—再热通道18。
待蒸馏的空气在通常为12至17巴的绝对压力下通过导管19到达并进入两个系列的通道20、20′,用于在热交换管线中冷却空气。
在小于环境温度而接近氧的蒸发温度TV(如果氧的生产压力为超临界,则为假蒸发温度),该空气的一部分即由通道20载带的那一部分由导管21从热交换管线流出,并引入冷鼓风机7的入口。冷鼓风机使这部分空气达到19至25巴的绝对压力,这样压缩的空气通过导管22以大于T1的温度T2返回到热交换管线,并在该冷鼓风机的增压空气通道23中继续冷却。由通道23输送的一部分空气以小于T1的第二中间温度T3从热交换管线再一次流回,并在涡轮8中膨胀到中压(绝对压力5至6巴)。而离开该涡轮的空气进入相分离器24,然后,部分送入柱2的底部。从相分离器24来的蒸汽相的一部分在热交换管线的冷段通道25中受到局部再加热到比T3低的中间温度T4,于是在涡轮9中膨胀到低压,并在中间点处通过导管26引入柱塔3。
由导管20′输送的空气继续其冷却过程到热交换管线的冷端,并液化再低温冷却。然后在膨胀阀27中膨胀至中等压力并引入柱塔2底部上方的几块板中。同样,由通道23输送而未受涡轮膨胀的空气则冷却在热交换管线28的冷端,然后在膨胀阀28中膨胀到中等压力并引入柱塔2底部上方的几块板中。
这样,从接近氧液化阶段的中间温度T1压缩至少一部分进入空气到温度T2,将大体上补偿由这种蒸发产生的过冷的热量引入这两个温度之间的热交换管线中。应当注意到,在T2和T1之间,氧与所有处于12至17巴的空气和被增压到19至25巴的空气交换热量。因此可以获得一个在热交换管线热端非常有利的热交换图(纵坐标上为热焓,横坐标上为温度),只有2至3℃数量级的小的温度差。
这种压缩的鼓风机7由涡轮8驱动,因而不需要外加能量。如果机械损失一定,由该涡轮产生的致冷量稍大于压缩热量,多余的热量用于保持装置的致冷。由涡轮9供给这种保持致冷所需的热平衡。
可以看出,在图1的实施例中,仅为交换器长度一小部分的流体循环问题出现两次:一方面,对于在沿交换器4长度的分别对应于温度T2和T1的两个中间位置之间的增压空气用的通道23,而另一方面,对于仅仅从交换器的冷端沿对应于温度T4的长度延伸到中间位置的再热中压空气的通道25。
让我们首先考虑与图2—7有关的通道23。
为了避免因在温度T2和T1之间存在通道23而在交换器中存在热滞止的空间,根据先有技术,如图2中所示地引导一个通道向前。
一个通道通过一或两个入口箱筒28将一小部分待增压的高压空气引入两组通道20—1和20—2内。通道20—1和20—2在两个分别对应于温度T2和T1的中间点处被横向杆29和30中断。
在温度T2处,空气通过侧向箱筒31离开,并通过侧向箱筒32仅引入通道20—1,箱筒31和32位于杆29的相对两侧。通道20—2被杆29挡住而成为通道23。刚巧在杆30(温度T1)前面,高压空气通过侧向箱筒33离开通道20—1,并受鼓风机7增压而通过邻近杆29的侧向箱筒34引入通道23。刚巧在杆30前面,该增压空气通过侧向箱筒35离开,并正好在杆30之后通过侧向箱筒36重新引入延长通道20—1的通道23—1和延长通道20—2和23的通道23—2内。
可以看到,热滞止空间的过压要求存在六个侧向入口/出口箱筒31至36。
图3表示,根据本发明,限止交换器的通道20—1和20—2,通过仅仅利用两个侧向入口/出口箱筒可达到同样结果。
杆21仅仅挡住通道20—1,而杆30仅仅挡住通道20—2。通道20—1的延伸部包括一个刚好在杆29之后由侧向入口箱筒37盖住的侧向入口窗口,而通道20—2包括一个刚好在杆30之前由侧向入口箱筒38盖住的侧向出口窗口。鼓风机连接在箱筒38的上游和箱筒37的下游。通道20—1通过一系列刚好位于杆29前面的开孔39与通道20—2连通,而通道20—1通过一系列刚好位于杆30后面的开孔40与通道20—2连通。
比较图2和3,将会看到,通道23是位于杆29和30之间的通道20—1的延伸部中的通道,而在杆30后设置了增压空气用的通道23—1和23—2。
图3中也示意地表示一个与箱筒37联结的分配波纹板41和一个与箱筒38联结的相似的收集波纹板41。这些波纹板具有钎焊板热交换器技术中常见的部分倾斜结构,该结构使交换器的整个宽度可分配沿横向引入的流体,或者甚至向着横向出口窗口收集在所述通道的整个宽度上流动的流体。类似的分配/收集波纹板自然也出现在与图2的入口/出口箱筒28和31至36相联结的情况中。
如在图3中看到的,因为通道20—1和20—2是邻接的,所以在通道20—1和20—2或23—1和23—2之间产生由开孔39保证的直接连通。这就有一个缺点,就是这些通道除了通过其两个表面之一以外在再过热过程中并不与流体交换热量。
为了避免这个缺点,可以使用图4中所示的装置,其中每个通道20—1或20—2以夹层形式配置在两个通道42之间,从双柱塔1来的在加热过程中的流体就在通道42中循环。然后利用管子39A、40A在一方面使通道20—1和20—2连通而在另一方面使23—1和23—2连通,管子39A、40A开有开孔39、40,并在每一端装有围绕相应开孔钎焊的外套管43。
图5和6表示另一种装置,允许在同一用途中只使用两个侧向箱筒37和38。在这种情况下,只有一组通道20。从温度T2到温度T1,这些每个通道通过一个中间板44沿其厚度分为两个分通道。横杆29A只封闭一个分通道的热端(对应于温度T2),而另一个横杆30A只封闭另一分通道的冷端(对应于温度T1)。第一分通道刚好在杆29A之后通过一个被侧向入口箱筒37盖住的入口窗口而沿侧向打开,而第二分通道刚好在杆30A之前通过一个被侧向出口箱筒38盖住的出口窗口而沿侧向打开。每个分通道包含一个相应厚度的波纹隔板,通过分配(或收集)波纹板41A完成各分通道面对箱筒37、38的配置。
这样,在图5和6的实施例中,通道20具有从T2到T1减少的厚度,其厚度的其余部分由通道23所占。这些通道23具有通道20越过下游杆30A之后的全厚度。
在图7的实施例中,再一次利用通道20在温度T2和T1之间的分层,但这种分层利用三个连续杆横穿这些通道的宽度,这三个连续杆在一起构成一个通常为S形的分隔壁:杆45从交换器的一个侧边延伸到其宽度的中点;纵向杆46;杆47平行于杆45,从杆46的冷端延伸到交换器的另一侧边。
一个连到杆45上游侧的倾斜三角形波纹板48将通道20中包含的空气从杆46的单独侧(在图中该杆下方)引导到与侧向出口箱筒38相联结的收集波纹板41B,出口箱筒38刚巧安置在杆47的前面。同样,侧向入口箱筒37与其分配波纹板41B一起刚好位于在杆45之后。由鼓风机7增压的空气首先在余下的半个通道(在图中杆46的上方)中循环,然后由连接到杆47下游侧的第二个三角形倾斜波纹板49重新分配到交换器的整个长度上。
相对于图5和6的实施例,图7的实施例都具有结构简化、成本降低与在温度T2和T1之间压力降较小的优点。
图8例示将本发明的图3实施例用于再热从图1中来自涡轮8的中压空气,从热交换器4的冷端到温度T4:再热通道25在该温度T4由横向杆50所封闭,横向杆50则通过收集波纹板51和侧向出口箱筒52与冷侧相接,侧向出口箱筒52连接在图1的涡轮9的入口上。在再热过程中的另一流体(最好来自双柱塔1的低压流体)在与通道25邻接的通道53中循环,并通过刚好安置在杆50之后(相对于该流体的流动方向)的开孔54与通道25的延伸部55在热侧上连通。所以在交换器中没有产生热滞止空间的中等压空气的中间温度出口能利用一个单一的侧向箱筒52而实现,而常规的钎焊板热交换器装置需要三个侧向箱筒。
当然,在图8的应用中也可以使用图4的变改型和图5、6、7的实施例。