CIGS系化合物太阳能电池.pdf

上传人:1****2 文档编号:268401 上传时间:2018-02-07 格式:PDF 页数:11 大小:843.59KB
返回 下载 相关 举报
摘要
申请专利号:

CN201380010209.X

申请日:

2013.02.25

公开号:

CN104137272A

公开日:

2014.11.05

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H01L 31/04申请日:20130225|||公开

IPC分类号:

H01L31/04(2014.01)I

主分类号:

H01L31/04

申请人:

日东电工株式会社

发明人:

寺地诚喜; 河村和典; 西井洸人; 渡边太一

地址:

日本大阪府

优先权:

2012.02.27 JP 2012-040152; 2012.12.26 JP 2012-283071

专利代理机构:

北京林达刘知识产权代理事务所(普通合伙) 11277

代理人:

刘新宇;李茂家

PDF下载: PDF下载
内容摘要

一种CIGS化合物太阳能电池,其为了提供具有高转换效率的CIGS系化合物太阳能电池而在基板(1)上依次具备背面电极层(2)、CIGS光吸收层(3)、缓冲层(4)和透明电极层(5),其中,上述缓冲层(4)由IIa族金属与Zn氧化物的混晶形成,上述混晶的由X射线衍射所显示的特性满足下述式(1)。0.5≤A/(A+B+C)<1···(1)(其中,A、B、C均不为0)A:(002)面的峰强度B:(100)面的峰强度C:(101)面的峰强度。

权利要求书

1.  一种CIGS系化合物太阳能电池,其特征在于,其在基板上至少依次具备I-III-VI族化合物半导体层、缓冲层和透明电极层,上述缓冲层为IIa族金属与Zn氧化物的混晶,上述混晶的由X射线衍射所显示的特性满足下述式(1),

0.
  5≤A/(A+B+C)<1···(1)
其中,A、B、C均不为0,
A:(002)面的峰强度,
B:(100)面的峰强度,
C:(101)面的峰强度。

2.
  根据权利要求1所述的CIGS系化合物太阳能电池,其中,混晶的由X射线衍射所显示的特性满足下述式(2),
0<B/(A+B+C)<0.2···(2)
其中,A、B、C均不为0,
A:(002)面的峰强度,
B:(100)面的峰强度,
C:(101)面的峰强度。

3.
  根据权利要求1或2所述的CIGS系化合物太阳能电池,其中,混晶的由X射线衍射所显示的特性满足下述式(3),
0<C/(A+B+C)<0.3···(3)
其中,A、B、C均不为0,
A:(002)面的峰强度,
B:(100)面的峰强度,
C:(101)面的峰强度。

4.
  根据权利要求1~3中的任一项所述的CIGS系化合物太阳能电池,其中,混晶的由X射线衍射所显示的特性满足下述式(4),

0.
  7<(A+C)/(A+B+C)<1···(4)
其中,A、B、C均不为0,
A:(002)面的峰强度,
B:(100)面的峰强度,
C:(101)面的峰强度。

说明书

CIGS系化合物太阳能电池
技术领域
本发明涉及CIGS系化合物太阳能电池。
背景技术
已知,将由Ib族、IIIb族及VIb族的元素形成的CuInSe2(CIS)或者固溶了Ga而得的Cu(In,Ga)Se2(CIGS)化合物半导体(I-III-VI族化合物半导体)用于光吸收层的化合物太阳能电池具有如下优点:具有高的光转换效率(以下称为“转换效率”)且能够形成薄膜,并且由光照射等引起的转换效率的劣化少。
这种将CIS或CIGS(以下称为“CIGS系”)化合物半导体用于光吸收层的CIGS系太阳能电池的缓冲层中,通常使用由化学沉积法形成的CdS、Zn(O,S)等(例如,参照专利文献1)。但是,由化学析出法形成缓冲层时,在真空下利用蒸镀或硒化法形成CIGS系化合物半导体层后,需要暂时取出到大气下而形成缓冲层,并再次在真空下形成透明电极层,存在生产率差之类的问题。
因此,为了解决该问题,提出了不取出到大气下,而是在真空下利用溅射法来连续进行缓冲层的形成(例如,参照专利文献2)。
现有技术文献
专利文献
专利文献1:日本特开2002-343987号公报
专利文献2:日本特开2002-124688号公报
发明内容
发明要解决的问题
然而,虽然如专利文献2所述,使用通用的磁控溅射装置作为溅射装置在真空下连续形成缓冲层时,虽然生产效率得以改善,但不能期待转换效率的改善。因此,强烈期望能够提高生产率并且实现更高的转换效率。
本发明是鉴于上述问题而作出的,其目的在于,提供能够不在大气下取出而是在真空下形成缓冲层的、且前所未有的高转换效率的CIGS系化合物太阳能电池。
用于解决问题的方案
为了实现上述目的,本发明的要旨为一种CIGS系化合物太阳能电池,其在基板上至少依次具备I-III-VI族化合物半导体层、缓冲层和透明电极层,上述缓冲层为IIa族金属与Zn氧化物的混晶,上述混晶的由X射线衍射所显示的特性满足下述式(1)。
0.5≤A/(A+B+C)<1···(1)
(其中,A、B、C均不为0)
A:(002)面的峰强度
B:(100)面的峰强度
C:(101)面的峰强度
发明的效果
本发明的CIGS系化合物太阳能电池具备具有黄铜矿结构的I-III-VI族化合物半导体作为光吸收层,并且其缓冲层由IIa族金属与Zn氧化物的混晶形成。因此,可在I-III-VI族的化合物半导体层与缓冲层的边界产生高转换效率的电流。另外,上述混晶的由X射线衍射所显示的特性满足上述式(1),因此在CIGS系化合物太阳能电池中,能够实现前所未有的高转换效率。
另外,混晶的由X射线衍射所显示的特性满足下述式(2)时,裂纹难以进入缓冲层,并且能够减少由于电子难以流向透明电极层侧而导致的电流的 损失。
0<B/(A+B+C)<0.2···(2)
(其中,A、B、C均不为0)
A:(002)面的峰强度
B:(100)面的峰强度
C:(101)面的峰强度
进而,混晶的由X射线衍射所显示的特性满足下述式(3)时,裂纹难以进入缓冲层,并且能够更加减少由于电子难以流向透明电极层侧而导致的电流的损失。
0<C/(A+B+C)<0.3···(3)
(其中,A、B、C均不为0)
A:(002)面的峰强度
B:(100)面的峰强度
C:(101)面的峰强度
而且,混晶的由X射线衍射所显示的特性满足下述式(4)时,裂纹难以进入缓冲层,并且缓冲层与CIGS层的界面能够更加无缺陷地结合,能够进一步减少由于界面电子难以流向透明电极层侧而导致的电流的损失。
0.7<(A+C)/(A+B+C)<1···(4)
(其中,A、B、C均不为0)
A:(002)面的峰强度
B:(100)面的峰强度
C:(101)面的峰强度
附图说明
图1是本发明的一个实施方式的CIGS太阳能电池的截面图。
图2是示出形成上述CIGS太阳能电池的缓冲层的装置中的靶材的配置状态的说明图。
具体实施方式
接着,对用于实施本发明的方式进行说明。
图1是本发明的一个实施方式中的CIGS太阳能电池的截面图。该CIGS太阳能电池依次具备基板1、背面电极层2、CIGS光吸收层(化合物半导体层)3、缓冲层4和透明电极层5,上述缓冲层4由IIa族金属及Zn氧化物的混晶形成,该混晶的由X射线衍射所显示的特性满足下述式(1)(下述A、B、C与以下相同)。
0.5≤A/(A+B+C)<1···(1)
(其中,A、B、C均不为0)
A:(002)面的峰强度
B:(100)面的峰强度
C:(101)面的峰强度
以下,详细说明该CIGS太阳能电池。需要说明的是,图1中示意性地示出厚度、大小、外观等,与实际的CIGS太阳能电池有差别(图2中同样)。
上述基板1可以使用玻璃基板、金属基板、树脂基板等。作为上述玻璃基板,可列举出碱金属元素含量极低的低碱玻璃(高应变点玻璃)、不含碱金属元素的无碱玻璃、青板玻璃等。其中,使用低碱玻璃、无碱玻璃、金属基板、树脂基板时,理想的是在CIGS光吸收层3的形成中或形成后添加微量Na。
另外,上述基板1的形状为具有可挠性的长条状时,可以按照辊对辊方式或步进辊方式制造CIGS化合物太阳能电池,故为优选。上述“长条状”是指长度方向为宽度方向的10倍以上的形状,更优选使用为30倍以上的形状。 进而,基板1的厚度优选处于5~200μm的范围,更优选处于10~100μm的范围。即,这是因为,厚度过厚时,会有失去CIGS化合物太阳能电池的弯曲性,在使CIGS化合物太阳能电池时弯曲所施加的应力变大,对CIGS光吸收层3等层叠结构造成破坏之虞;反之过薄时,制造CIGS化合物太阳能电池时,会有基板1发生纵曲、且CIGS化合物太阳能电池的制品不良率上升的倾向。
接着,形成于上述基板1上的背面电极层2可以通过溅射法、蒸镀法、喷墨法等来形成,且可形成单层或多层的钼(Mo)、钨(W)、铬(Cr)、钛(Ti)等。另外,其厚度(多层时,为各层厚度的总和)优选处于10~1000μm的范围。需要说明的是,基板1具有背面电极层2的功能时(具有导电性时),也可以不设置该背面电极层2。另外,来自基板1的杂质发生热扩散时,CIGS化合物太阳能电池的性能会受到不良影响,以防止这种情况为目的,也可以在基板1或背面电极层2上设置隔离层(未图示)。这样的隔离层例如可以使用Cr等,通过溅射法、蒸镀法、CVD法、溶胶·凝胶法、液相沉积法等来形成。
而且,形成于背面电极层2上的CIGS光吸收层(化合物半导体层)3由包含铜(Cu)、铟(In)、镓(Ga)、硒(Se)4种元素的化合物半导体形成。而且,其厚度优选处于1.0~3.0μm的范围,更优选处于1.5~2.5μm的范围。这是因为,厚度过薄时,会有用作光吸收层时的光吸收量变少、太阳能电池的性能下降的倾向;反之过厚时,会有形成CIGS光吸收层3所用的时间增加,生产率差的倾向。作为这种CIGS光吸收层3的形成方法,可列举出真空蒸镀法、硒化/硫化法、溅射法等。
另外,上述CIGS光吸收层3中的Cu、In、Ga的组成比优选满足0.7<Cu/(Ga+In)<0.95(摩尔比)的式子。这是因为,满足该式时,能够进一步阻止Cu(2-x)Se被过量吸入到上述CIGS光吸收层3内,且层整体可呈Cu略微不足的状态。另外,同族元素即Ga与In之比优选处于0.10<Ga/(Ga+In)<0.40(摩 尔比)的范围。
而且,形成于上述CIGS光吸收层3上的缓冲层4由IIa族金属与Zn氧化物的混晶形成,如上所述,该混晶的由X射线衍射所显示的特性满足下述式(1)。这是本发明的最大特征。上述混晶的特性满足上述式(1)是表示其A峰强度与B、C相比非常强,且A/(A+B+C)=1时表示(002)的完全取向。即,满足上述式(1)是表示在(002)取向、即C轴(由CIGS光吸收层3朝向透明电极层5的方位)上,上述混晶取向的比例高。其结果可推测:在CIGS光吸收层3中产生的电子在晶界等中不进行再结合而到达透明电极层的比例高,因此转换效率提高。需要说明的是,A/(A+B+C)<0.5时,转换效率显著降低,无法得到发明效果。另外,A/(A+B+C)=1时,会有缓冲层4变得容易产生裂纹,CIGS太阳能电池的电池特性的下降以及处理性变差的倾向。
而且,如果上述混晶的特性不仅满足上述式(1),而且还满足上述式(2)~(4),则不仅能可以降低转换效率的损失,而且即使在使用挠性基板作为基板1时,裂纹也难以进入缓冲层4,能够维持高转换效率,故为适宜。即,通过使缓冲层4不仅具有(002)取向的晶体,而且具有少量(100)(101)取向的晶体,会变得难以产生裂纹,并且转换效率提高。
上述缓冲层4优选高电阻的n型半导体,以便能够与上述CIGS光吸收层3进行pn接合,不仅可以为单层,也可以为层叠多层而成的半导体。使用层叠多层而成的半导体作为缓冲层4时,能够更良好地与上述CIGS光吸收层3进行pn接合。作为这种缓冲层4的形成材料,除了Mg与ZnO的混晶之外,可列举出CdS、ZnMgO、ZnCaO、ZnMgCaO、ZnMgSrO、ZnSrO、ZnO、ZnS、Zn(OH)2、In2O3、In2S3及它们的混晶即Zn(O,S,OH)、Zn(O,S)等。另外,其厚度优选处于50~200nm的范围。
关于上述缓冲层4,例如在对向靶材溅射法中,使用高频(RF)电源、或组合使用高频(RF)电源和直流(DC)电源对一对靶材施加电压,由此 可以形成。上述对向靶材溅射法是如下方法:与通常的磁控溅射法不同,将2张阴极靶材相对配置,并垂直于靶材表面从一张靶材朝向另一张靶材施加磁场,进行溅射。该对向靶材溅射法中,基板1与靶材垂直地设置于靶材侧面。
另外,对向靶材溅射法中,对于上述1对靶材,如图2所示,使用假定由基板1的CIGS吸收层3垂直状延伸的假想中心轴X并在夹持该假想中心轴X的两侧相对配置这2张靶材6、6’而成的靶材时,更易于得到具有上述式(1)所示特性的缓冲层4,故为适宜。此时,将靶材6、6’中的至少一张靶材相对于假想中心轴X的角度θ设定在5~15°的范围内时,更加容易得到具有上述式(1)所示特性的缓冲层4,故为优选。需要说明的是,图2中省略了形成在基板1上的背面电极层2及CIGS光吸收层3的图示。
获得的缓冲层4是否满足上述式(1)例如可以通过使用Bruker CO.,LTD制造的XRD D8 DISCOVER with GADTS的装置,在入射角5°固定、检测器扫描3°/min的条件下进行测定而确认。需要说明的是,上述缓冲层4为多层时,至少与CIGS光吸收层3相接的层满足上述式(1)即可。另外,关于缓冲层4是否满足上述式(2)~(4),也可以通过按照上述同样条件进行测定而确认。
接着,形成在上述缓冲层4上的透明电极层5优选由具有高透过率的材料来形成,可以使用ITO、IZO、含铝的氧化锌(Al:ZnO)等来形成。另外,其厚度优选处于50~300nm的范围。而且,该透明电极层5的透光率优选为超过80%。需要说明的是,这样的透明电极层5可以通过例如溅射法、蒸镀法、有机金属气相沉积法(MOCVD法)等来形成。
根据此结构,可以利用溅射连续得到缓冲层4,而且CIGS光吸收层3具有黄铜矿结构,因此转换效率良好。因此,CIGS光吸收层3能够形成为薄膜,且能够将CIGS太阳能电池整体构成为薄膜。另外,由于CIGS太阳能电池能够构成为薄膜,因此可以使未利用的波长的光以高概率透过,可以增加电池 的使用用途、能够配置电池的对象物。进而,缓冲层4由IIa族金属与Zn氧化物的混晶形成,如上所述,该混晶的由X射线衍射所显示的特性满足下述式(1),因此转换效率更加良好。进而,由X射线衍射所显示的缓冲层4的特性满足上述(2)~(4)时,即使使用挠性基板作为基板1的情况下,裂纹也难以进入缓冲层4,处理性优异。
实施例
接着,对实施例与比较例一并进行说明。但是,本发明不受以下实施例的限定。
〔实施例1〕
(背面电极层的形成)
首先,在由经脱脂的钙钠玻璃(厚度0.55mm、大小20mm)形成的基板的表面上,使用磁控溅射装置(ULVAC,Inc.制造、型号SH-450),且放电气体使用氩,以溅射压力达到1Pa的方式使用直流(DC)电源,并在溅射速度60m/min下,形成厚度0.8mm的由Mo构成的背面电极层。
(CIGS光吸收层的形成)
接着,在上述形成的背面电极层上形成CIGS光吸收层。即,在真空蒸镀装置的腔室内分别配置Ga、In、Cu、Se作为蒸镀源,使腔室内为真空度1×10-4Pa,以升温速度550℃/h将基板加热至550℃。此时,加热上述蒸镀源,使其分别成为Ga(950℃)、In(780℃)、Cu(1100℃)、Se(140℃),使这些元素同时蒸发,由此在上述背面电极层上形成CIGS光吸收层。获得的CIGS光吸收层的组成(原子数%)为Cu/III族=0.89、Ga/III族=0.31,膜厚为2.1μm。
(缓冲层的形成)
继而,在上述形成的CIGS光吸收层上形成缓冲层。使用图2所示的一对靶材6、6’配置成大致V字的对向靶材溅射装置(靶材6、6’相对于中心线的角度θ分别为10°)来形成缓冲层。此时,溅射靶材使用包含Zn0.85Mg0.15O的 组成的靶材,将靶材6’的边缘6’设置于距离基板1表面160mm的位置,将基板1的温度设定为25℃。分析本靶材6、6’的组成的结果,相对于Mg混杂了约3原子数%的Ca。溅射时的放电气体使用氩气,使用高频(RF)电源,在功率密度0.7W/cm2、溅射压力0.3Pa下,调整功率和形成时间以使膜厚为70nm。需要说明的是,靶材6’的边缘6’a表示离基板1距离最短的位置。
(透明电极层的形成)
进而,在上述形成的缓冲层上形成透明电极层。透明电极层使用磁控溅射装置(ULVAC,Inc.制造、型号SH-450)来形成。此时,溅射靶材使用包含ITO(In2O3:90〔原子数%〕、SnO2:10〔原子数%〕)组成的靶材。溅射时的放电气体组合使用氩气和为氩气流量1/10的O2气体,使用高频(RF)电源,在功率密度1.6W/cm2、溅射压力0.3Pa、溅射速度20nm/min下形成厚度200nm的ITO膜(透明电极层),得到实施例1的CIGS太阳能电池。实施例1的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.6。
〔实施例2〕
将缓冲层形成的条件设为使用高频(RF)电源,并在功率密度6.0W/cm2下进行,除此之外,与实施例1同样操作,得到实施例2的CIGS太阳能电池。实施例2的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.8。
〔实施例3〕
将缓冲层形成的条件设为组合使用直流(DC)电源(功率密度6.0W/cm2)+高频(RF)电源(功率密度6.0W/cm2),除此之外,与实施例1同样操作,得到实施例3的CIGS太阳能电池。实施例3的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.7。
〔实施例4〕
将缓冲层形成的条件设为组合使用直流(DC)电源(功率密度2.5W/cm2)+高频(RF)电源(功率密度0.5W/cm2),在溅射压力0.1Pa下将靶材6’的边 缘6’a设置在距离基板1表面40mm的位置(Y=40mm),将基板1的温度设定为200℃,来进行缓冲层的形成,除此之外,与实施例1同样操作,得到实施例4的CIGS太阳能电池。实施例4的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.6。
〔实施例5〕
将缓冲层形成的条件设为组合使用直流(DC)电源(功率密度2.5W/cm2)+高频(RF)电源(功率密度1.5W/cm2),在溅射压力0.1Pa下将靶材6’的边缘6’a设置在距离基板1表面160mm的位置(Y=160mm)、将基板1的温度设定为200℃,除此之外,与实施例1同样操作,得到实施例5的CIGS太阳能电池。实施例5的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.7。
〔比较例1〕
用通常的磁控溅射装置(ULVAC,Inc.制造、型号SH-450)进行缓冲层的形成,除此之外,与实施例1同样操作,得到比较例1的CIGS太阳能电池。其中,磁控溅射使用直流(DC)电源(功率密度0.5W/cm2)。比较例1的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.2。
〔比较例2〕
将缓冲层形成条件设为使用直流(DC)电源(功率密度1.5W/cm2),除此之外,与比较例1同样操作,得到比较例2的CIGS太阳能电池。比较例2的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.1。
〔比较例3〕
将缓冲层形成条件设为使用高频(RF)电源(功率密度0.5W/cm2)来进行,除此之外,与比较例1同样操作,得到比较例3的CIGS太阳能电池。比较例3的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.3。
〔比较例4〕
将缓冲层形成条件设为使用高频(RF)电源(功率密度2.5W/cm2)来 进行,除此之外,与比较例1同样操作,得到比较例4的CIGS太阳能电池。比较例4的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.2。
〔比较例5〕
在用于形成缓冲层的对向靶材溅射装置中使用直流(DC)电源(功率密度0.7W/cm2),除此之外,与实施例1同样操作,得到比较例5的CIGS太阳能电池。比较例5的缓冲层的由X射线衍射所显示的特性示为A/(A+B+C)=0.2。
<转换效率的测定>
分别准备20个上述实施例1~5、比较例1~5的CIGS太阳能电池,对它们照射模拟太阳光(AM1.5),使用IV测量系统(山下电装株式会社制造、YSS-150),测定各自的转换效率。将获得的结果(平均)示于下述〔表1〕。
[表1]

上述转换效率的测定的结果显示:实施例1~5的CIGS太阳能电池的平均转换效率均为3.3%以上,具有优异的转换效率。特别显示:对于由X射线衍射所显示的缓冲层的特性满足全部式(1)~(4)的实施例1~3的CIGS太阳能电池,其平均转换效率均超过4%,具有极其优异的转换效率。另一方面显示:对于由X射线衍射所显示的缓冲层的特性不满足式(1)的比较例1~5 的CIGS太阳能电池,其转换效率均低于平均值。
上述实施例中示出了本发明中的具体实施方式,但上述实施例仅仅是单纯的例示,并非限定性的解释。本领域技术人员所了解的各种变形均为本发明的范围内。
产业上的可利用性
本发明的CIGS系化合物太阳能电池为薄型,并且转换效率非常高,因此能够在各种各样的领域中使用。
附图标记说明
1  基板
2  背面电极层
3  CIGS光吸收层
4  缓冲层
5  透明电极层

CIGS系化合物太阳能电池.pdf_第1页
第1页 / 共11页
CIGS系化合物太阳能电池.pdf_第2页
第2页 / 共11页
CIGS系化合物太阳能电池.pdf_第3页
第3页 / 共11页
点击查看更多>>
资源描述

《CIGS系化合物太阳能电池.pdf》由会员分享,可在线阅读,更多相关《CIGS系化合物太阳能电池.pdf(11页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104137272A43申请公布日20141105CN104137272A21申请号201380010209X22申请日20130225201204015220120227JP201228307120121226JPH01L31/0420140171申请人日东电工株式会社地址日本大阪府72发明人寺地诚喜河村和典西井洸人渡边太一74专利代理机构北京林达刘知识产权代理事务所普通合伙11277代理人刘新宇李茂家54发明名称CIGS系化合物太阳能电池57摘要一种CIGS化合物太阳能电池,其为了提供具有高转换效率的CIGS系化合物太阳能电池而在基板1上依次具备背面电极层2、CIGS光吸。

2、收层3、缓冲层4和透明电极层5,其中,上述缓冲层4由IIA族金属与ZN氧化物的混晶形成,上述混晶的由X射线衍射所显示的特性满足下述式1。05A/ABC0092分别准备20个上述实施例15、比较例15的CIGS太阳能电池,对它们照射说明书CN104137272A7/7页9模拟太阳光AM15,使用IV测量系统山下电装株式会社制造、YSS150,测定各自的转换效率。将获得的结果平均示于下述表1。0093表100940095上述转换效率的测定的结果显示实施例15的CIGS太阳能电池的平均转换效率均为33以上,具有优异的转换效率。特别显示对于由X射线衍射所显示的缓冲层的特性满足全部式14的实施例13的C。

3、IGS太阳能电池,其平均转换效率均超过4,具有极其优异的转换效率。另一方面显示对于由X射线衍射所显示的缓冲层的特性不满足式1的比较例15的CIGS太阳能电池,其转换效率均低于平均值。0096上述实施例中示出了本发明中的具体实施方式,但上述实施例仅仅是单纯的例示,并非限定性的解释。本领域技术人员所了解的各种变形均为本发明的范围内。0097产业上的可利用性0098本发明的CIGS系化合物太阳能电池为薄型,并且转换效率非常高,因此能够在各种各样的领域中使用。0099附图标记说明01001基板01012背面电极层01023CIGS光吸收层01034缓冲层01045透明电极层说明书CN104137272A1/2页10图1说明书附图CN104137272A102/2页11图2说明书附图CN104137272A11。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1