机械压实的薄膜/无纺织物层压材料 【发明领域】
本发明涉及沿纵向取向的薄膜及其在薄膜/无纺织物层压材料中的应用。
薄膜/无纺织物层压材料被广泛地用于,但不仅仅限于作为个人维护用的吸收性物品例如尿布、训练用紧身裤、大小便失禁用服装、女性卫生制品、创伤包扎材料、绷带等等的外覆盖物的各种各样的应用中。薄膜/无纺织物层压材料还被用于与诸如外科用消毒盖布和手术服及其他的清理房间、维护健康和其他相关用途的衣物相结合的个人维护方面。特别在个人维护方面的应用中,现在的重点是开发具有良好的阻挡性,特别是对液体的阻挡性,以及良好的美学性和手感以及触感的低成本的层压材料。为此目的,使用越来越薄的薄膜更加有利。较薄的薄膜成本低并且,由于其较低的厚度之故,它们通常是较软和较轻的。较薄的薄膜还能被制成更适于透气的。
较薄的薄膜有时具有小于25μm(微米)的厚度,强度往往也相当的低。这一点尤其体现在横向上,因为为了获得这样低厚度的薄膜在纵向上常常被高度地拉伸。在纵向上的急剧拉伸往往会使构成薄膜的聚合物分子取向。这样的取向能大大地增加薄膜在纵向的强度,但是这往往也会降低同一薄膜在横向上的强度。通过将诸如纤维无纺织物的支承层层压到薄膜层上,能产生具有附加性能的层压材料。无纺织物层能使整个复合材料强度增加。此外,它能赋予诸如对包括个人维护用的吸收性物品在内的许多应用来说是重要的性能,例如类以布的感觉等等。不幸的是,迄今为止薄膜/无纺织物层压材料还不能总是提供最佳的、特别在强度方面的优点。结果,这样层压材料的薄膜部分往往只能在整个制品中提供低于最佳的性能。当薄膜/无纺织物层压材料被用作阻挡材料,例如个人维护用的吸收性物品的外覆盖层时,这一点已被完全证实。因此,需要薄膜/无纺织物层压材料改进,特别是当薄膜层已在单向上被高度取向和薄膜的整个厚度已被大大地减少的情况中。
本发明企图克服现有技术的薄膜/无纺织物层压材料的上述问题。此目的通过根据所附的独立权利要求1和4的薄膜/无纺织物层压材料、权利要求13的个人维护用的吸收性物品、根据所附的独立权利要求18的服装和所附的独立权利要求19和20的外科用消毒盖布和手术服而得以实现。
本发明的另外的优点、特征、情况和细节从所附的权利要求书、说明书和附图中可以看出。一般地说,权利要求书应被认作为确定本发明的第一种非限制性的手段。
本发明涉及机械压实的薄膜/无纺织物层压材料,其中薄膜在被连接到诸如纤维无纺织物支承层之前已在纵向上被取向。
更具体地说,本发明涉及在层压材料中具有非常低厚度的薄膜和改进的横向完整性的薄膜/无纺织物层压材料。
今天在许多产品中、特别是在一次性使用的产品诸如个人维护用的吸收性物品方面,使用薄膜和纤维无纺织物作为其组分。从成本的观点来看,通常希望所用的各种材料尽可能地薄。就薄膜而言,为了达到这一点的一种办法是使薄膜取向,例如,降低薄膜的纵向厚度。在对薄膜取向时,薄膜通常在纵向(拉伸方向)上会增加强度而同时在横向(垂直于拉伸方向)上会降低强度。于是,支承层例如纤维无纺织物被层压到薄膜层上以增加其强度。
薄膜层、支承层和层压材料均具有纵向和横向。在层压之前,薄膜层在纵向上被取向以使它具有约为13μm(微米)或以下的实际厚度。薄膜在纵向已被取向的事实可以通过将该取向薄膜地纵向强度与横向强度的比较来确定。取向薄膜在第一方向上具有通过下述的条拉伸试验测定的强度,该强度至少为垂直于该第一方向上的强度的二倍。强度较大方向应为纵向而强度较低方向应为横向。薄膜层、纤维无纺织物支承层和层压材料均具有或确定出纵向和横向,而在层压之前薄膜层和无纺织物层的纵向在纵向上相互对齐。
在纵向上取向和层压后确定在横向上测定的断裂伸长值。由于在事实上很难将试样的材料分层,如以下所述,薄膜材料的各别部分被取向并与隔离纸一起通过连接设备以便获得压缩的薄膜(nipped film),所得的压缩薄膜能被用来测定已被取向和层压的薄膜的薄膜断裂伸长率。然后,将此值与纤维无纺织物在最大负荷时的断裂横向伸长率相比,薄膜横向断裂伸长率必须大于无纺织物的最大负荷时的伸长率。
薄膜层、支承层和层压材料均规定出各自的最大负荷值。在横向上,无纺织物的最大负荷值大于在横向上的薄膜的最大负荷值。此外,薄膜的最大负荷值还小于在横向上的层压材料的最大负荷,而在横向上的层压材料的最大负荷至少为300克。
支承层可由包括不同的纤维无纺织物的各种各样材料制造。这样的例子包括,并不限于,纺粘的无纺织物和诸如纺粘/熔喷和纺粘/熔喷/纺粘那样的层压材料。就纺粘/熔喷无纺织物而言,通常更理想的是将熔喷部分连接到层压材料的薄膜层。此外,在某些应用中,可能希望将另外一些层添加到薄膜/无纺织物层压材料上诸如,将第二无纺织物或其他支承层加到与其他无纺织物层的表面相对的薄膜层表面。这里的第二支承层又可以是,例如,单一的层或是诸如纺粘/熔喷/纺粘层压材料那样的层压材料。
本发明的薄膜/无纺织物层压材料具有广泛的应用,包括用于个人维护用的吸收性物品例如尿布、训练用紧身裤、大小便失禁用服装、月经带、创伤包扎材料、绷带等等。一般地说,这样的物品应具有液体可渗透的顶层和背层以及被置于顶层与背层之间的吸收性芯层。如果薄膜/无纺织物层压材料的薄膜层被制成液体可渗透的话,它可被用作顶层。如果它基本上是液体不能渗透的话,它可被用作背层。其他的应用包括,但并不限于,使用本发明的薄膜/无纺织物层压材料作为诸如外科用消毒盖布和手术服的一部分或全部以及一般的衣服。在许多的这些应用中,透气性的层压材料可能是合乎理想的,在这样的情况中,层压材料应具有至少为300克/平方米的水蒸汽透过率。
通过结合附图参照本发明的以下说明书将会对本发明有更好的理解,在这些附图中:
图1为本发明的薄膜/无纺织物层压材料剖面侧视图;
图2为供各实施例用的用于将薄膜层与支承层结合在一起的婴儿物品连接图案的近似比例的顶平面图;
图3为供各实施例用的用于将薄膜层与支承层结合在一起的织造织物连接图案的近似比例的顶平面图。
本发明涉及一种具有作为其改进的设计和薄膜层与无纺织物中各性能相配合结果的横向(CD)完整性的增强的薄膜/无纺织物层压材料。用于本发明的薄膜通常已在纵向(MD)被充分取向而产生的具有实际厚度小于13μm的薄膜。这样的取向通常要求将薄膜拉伸到至少为其原始长度或未拉伸长度的二倍。一旦薄膜被取向,然后使用热和压力诸如用加热的磨光辊或通过超声粘合工艺将它层压到纤维无纺织物上。另外,这二层也可使用粘合剂而被层压在一起。
本发明的薄膜/无纺织物层压材料设计的关键是薄膜、无纺织物和层压材料的每一种的应力(负荷)与应变(伸长率)性能之比,其包括这三种材料的断裂伸长性和断裂时的最大负荷。迄今,使用MD取向的薄膜的薄膜/无纺织物层压材料有时是不成功的,其原因在于层压材料的薄膜部分已被撕裂或过早地破裂。本发明由于考虑到每一组分的性质以及包括薄膜厚度、薄膜的MD取向度和薄膜的某些最小的应变要求而生产出改进的薄膜/无纺织物层压材料。
现参考附图1,本发明的薄膜/无纺织物层压材料10包括薄膜12和支承层14,支承层14可由包括许多材料,例如,薄膜、无纺织物、稀松窗帘用布织物、织造织物和上述形成支承层14的材料的结合物制成,并且整个的层压材料具有此处所规定的性能。从经济、美学性和强度考虑,已发现纤维无纺织物特别适用。选择支承层14用的聚合物并不是关键,只要被选中的聚合物具有合适的粘性和强度均可。适用的聚合物包括但并不限于聚烯烃和其他的热塑性聚合物。适用的纤维无纺织物的成形方法包括,例如,纺粘法和熔喷法。
熔喷纤维是通过从许多细小的、通常为圆形的毛细管孔模挤出热塑性材料熔融细丝或长丝到高速度通常为热的气流诸如空气流中,使熔融的热塑性材料减少其直径而形成的。此后,熔喷纤维被高速度的、通常为热气流所携带并被堆积在收集面而形成无规分散的熔喷纤维。熔喷法是人们所熟知的并且被公开在各种专利和出版物中,它们包括NRL报告4364,B.A.Wendt,E.L.Boone和C.D.Fluharty的“超细有机纤维的制造”;NRL报告5265,K.D.Lawrence,R.T.Lukas和J.A.Young的“形成超细热塑性纤维的改进装置”;1972年7月11日授予Prentice的U.S.专利3676242号;1974年11月19日授予Brentice等人的U.S.专利3849241号。在此处引入上述全部参考文献作参考。
纺粘纤维是通过从在喷丝板中的许多具有被挤出长丝直径大小的细小的、通常为圆形的毛细管孔模挤出热塑性材料的长丝,然后例如通过非喷射或喷射的液体拉伸或其他熟知的织粘机减少其直径而形成的。纺粘无纺织物的生产被介绍于例如Appel等人的美国专利第4340563号;Matsuki等人的美国专利第3802917号;Dorschner等人的美国专利第3692618号;Kinney的美国专利第3338992和3341394号中,Levy的美国专利第3276944号,Peterson的美国专利3502538号,Hartman的美国专利3502763号,Dobo等的美国专利3542615号和Harmon的加拿大专利803714号中。在此处引入上述全部参考文献作参考。
由多成分和多组分纤维,例如,双组分纤维制成的纤维无纺织物还可被用于形成支承层14。参见例如Strack等人的美国专利第5336552号,该文献介绍如何制造双组分纺粘无纺织物。在此处引入Strack等人的全文作参考。
还可能根据,例如,Brock等人的U.S.专利4041203号中的教导形成用作支承层14的层压材料例如纺粘/熔喷层压材料和纺粘/熔喷/纺粘层压材料。在此处引入其全文作参考。
薄膜层12可以是单层或是例如使用混和挤压法形成的多层薄膜。薄膜的形成对成膜领域中的普通技术人员来说是熟知的,因此在此处无需作详细的说明。许多工厂能完全按照规定制造这样的薄膜。适用的成膜聚合物包括,但并不限于,均聚物,共聚物聚烯烃的混合物以及乙烯/乙酸乙烯共聚物(EVA)、乙烯/丙烯酸乙酯共聚物(EEA)、乙烯/丙烯酸共聚物(EAA)、乙烯/丙烯酸甲酯共聚物(EMA)、乙烯/丙烯酸丁酯共聚物(EBA)、聚酯(PET)、锦纶(PA)、乙烯/聚乙烯醇(EVOH)、聚苯乙烯(PS)、聚氨酯(PU)和烯属热塑性弹性体。烯属热塑性弹性体是多级反应产物,其中无定形的乙烯/丙烯共聚物以分子形式分散在大部分为半晶体的高聚丙烯单体/低聚乙烯单体连续的基质中。如果需要的说,还可以将填料,例如,碳酸钙和二氧化钛,添加到薄膜层12以增加不透明性,降低成本和/或产生透气性的薄膜(如果薄膜随后被拉伸或压缩的话)。
如果薄膜层20不是足够薄,一般为少于13μm的话,那么它可能必须在类似于纵向取向机(MDO)的、诸如从Marshall andWilliams Company of Providence,Rhode Island购得的装置中通过拉伸而进行一步被减薄。MDO装置具有许多在输送薄膜穿过机器的纵向上逐渐拉伸和使薄膜变薄用的辊子。
在薄膜被形成并被减薄到小于13μm的实际厚度的情况下,将它层压到支承层14上。适用的层压方法包括,但并不限于,粘合,超声连接和利用热的砑光辊的热机械连接。这样的砑光辊通常包括一个带图案的辊和一个光滑的砧辊,虽然二个辊均可都带有图案或都是光滑的以及辊组中的一、二个辊可以是热辊或者辊组中可以没有热辊。
如被本发明人等发现的,与先前的薄膜/无纺织物层压材料有关的问题在于,当层压材料被用作尿布的外覆盖层时,层压材料的薄膜部分被撕裂。于是,对每一种材料的应力与应变性进行了研究。材料的应变是与断裂前材料所能承受的伸长量有关的。基于此研究的结果,确定出薄膜横向的断裂应变或伸长的量必须大于无纺织物或整个层压材料的在最大负荷下的横向伸长。还确定出在横向上薄膜的应力或负荷必须小于无纺织物或层压材料的应力或负荷。此外,还确定出,为了使整个层压材料很好地发挥作用,层压材料必须能经受某一最小负荷而未被破坏,即,使用2.54cm(1英寸)的切条经受在至少300克下的如下所述的拉伸试验。
鉴于上述情况,准备的薄膜具有小于、大致等于或大于无纺织物的最大负荷下断裂伸长率的层压材料。准备这些薄膜(纵向取向的)、无纺织物和层压材料的最大负荷下的伸长率数据。在所有的情况下,在横向上薄膜具有比无纺织物或层压材料的最大负荷或强度低的固有的最大负荷或强度。在最大负荷下测定无纺织物和层压材料的与其断裂时相对比的伸长率。然而,在肉眼观察被拉伸的试样层压材料时,看到薄膜仍被过早地破坏。被过早地破坏意指在无纺织物开始撕裂之前和开始断裂时薄膜在横向逐渐出现撕裂或形成小孔。然后在假定由于层压过程之故而使薄膜在横向被进一步减弱的条件下,对后粘接的或“压实的薄膜”进行另外的试验。
分离层压制品以获得试验用的薄膜试样是困难的。因此,设计一种与无纺织物无关的压轧薄膜的方法。为此,使薄膜试样通过相同的连接过程但是没有无纺织物。代之以使薄膜与硅酮涂覆的、基重为125gsm(克/米
2)的隔离纸一起通过连接设备。试样通过与用于制造层压材料一样的带图案的连接辊与光滑的砧辊。有图案的辊的连接区域为辊的单位面积的15%~24%。两层薄膜通过连接设备,薄膜邻接于砧辊而隔离纸毗邻带图案的辊。连接过程的线速度为61米/分。沿着二连接辊之间接触线的连接压力为4218公斤/米(kg/m)。一旦连接过程完成后,让薄膜冷却,然后用手剥去硅酮隔离纸并且随后进行横向上性能的应力/应变分析。
通过试验证实,层压过程使薄膜在横向上减弱。在层压材料中薄膜破坏出现在与观察到的压紧的薄膜的断裂伸长率相同的伸长率时。因此,得到证实的是,如果压紧薄膜的横向断裂伸长率比无纺织物的最大负荷下的伸长率至少大百分之十而补偿由于层压引起此性能的减少的话,薄膜和层压材料均将具有更好的抗撕裂和破坏性。
鉴于上述情况,准备一系列的试样并按上述的理论进行试验。试样和试验步骤如下所述。
下列的试验步骤被用来有助于分析下述的各实施例。伸长和应变试验步骤包括在断时和在最大负荷时的伸长率以及断裂负荷和最大负荷。其他试验包括薄膜厚度或实际厚度试验。对薄膜、无纺织物和层压材料而言,所有值均是在横向上测定的。此外,在制造层压材料时,在层压前将薄膜层与无纺织物层相对齐,以致使每一层的纵向取向相互平行。
实际厚度
材料的实际厚度是通过将薄膜层的基重除以形成薄膜的聚合物和填料的密度计算得到的。
薄膜层的实际厚度是用0.001334(米对英制的转换系数)乘薄膜试样的单位面积重量(盎司/平方英尺)并将结果除以聚合物配方的密度(克/立方厘米)这样计算而得到的实际厚度(英寸)。
1英寸切条拉伸试验
按照方法5102联邦试验标准191A号(Method 5102 FederalMethod Standaed Number 191A)测定薄膜和压紧薄膜的最大负荷和断裂伸长率以及无纺织物和层压材料的最大负荷和断裂伸长率。试样尺寸为2.54cm×15.24cm(1英寸×6英寸)而试样的横向与试样的15.24cm(6英寸)长度大致平行。每种材料测定三个试样并取平均值。拉伸试验机的夹具为2.54cm(1英寸)宽,初始间隙或标距为7.62cm(3英寸)和十字头速度为305mm/min.(12英寸/分)。
抓样拉伸试验(grab tensile test)
按照方法5102联邦试验标准191A号(Method 5102 FederalMethod Standaed Number 191A)测定层压材料的Grab拉伸试验性能。试样尺寸为10.16cm×15.24cm(4英寸×6英寸)而试样的横向与试样的15.24cm(6英寸)长度大致平行。每种材料测定多个试样。拉伸试验机的夹具为7.62cm(3英寸)宽,初始间隙或标距为7.62cm(3英寸)和十字头速度为100毫米/分。
在测试期间,观察试样的破坏型式。就本发明的各材料而言,除了必须具有此处所规定伸长率和负荷性外,在层压或无纺织物破坏之前在百分之八十的试样(基于十个试样)中未出现撕裂。所谓破坏意指在薄膜层显示出撕裂或针孔之前无纺织物已开始撕裂。此外,这样的破坏也发生在高于300克的负荷时。
以下提供一系列的实施例来说明和显示本发明的特性。
实施例1
在实施例1中提供一种薄膜/无纺织物层压材料。薄膜层含有,按薄膜重量的总百分比计为,65%的具有1μm的平均粒径和7μm的顶部截槽的China SupercoatTM碳酸钙。此碳酸钙是从Sylacauga,Alabama的ECCA碳产品公司购到的。将此碳酸钙与20%重量的、由Dowlex
2517线型低密度聚乙烯与Dowlex
2532线型低密度聚乙烯的掺合物制成的线型低密度聚乙烯相掺合,Dowlex
2517线型低密度聚乙烯与Dowlex
2532线型低密度聚乙烯掺合时的重量比为1∶4以致该掺合物的熔体指数为10M.I.(10分钟,87.8℃(华氏190度))。Dowlex
聚合物可由Dow Chemical U.S.A. of Midland,Michigan得到。该配方的余下的15%为得自Himont,USA ofWilmington,Delawarer的Himont KSO51P聚丙烯基聚合物。KSO51P聚合物是烯属热塑性弹性体或TPO多级反应产物,其中无定形的乙烯/丙烯无规共聚物以分子形式分布在占优势的半结晶高聚丙烯单体/低聚乙烯单体连续基质中。
该薄膜具有初始厚度为38.1μm和使用购自Marshall andWilliams Company of Providence,Rhode Island的7200型纵向取向机(MOD)将其初始长度拉伸3.75倍而达到10.7μm的减薄的实际厚度。所说的将薄膜拉伸3.75倍这意指,例如,薄膜的初始长度为1米,如果被拉伸3.75倍的话薄膜将具有3.75米的最后长度。将薄膜加热到温度77℃并以61米/分的线速度经过MDO以拉伸薄膜。然后在温度102℃下进行薄膜退火。薄膜具有的最后基重为20克/平方米(gsm)。
该纤维无纺织物是由约0.22至0.28特(2.0至2.5旦)聚丙烯纤维制成的17gsm纺粘织物。被用来制造纺粘织物的聚合物是来自ExxonCheminal Company of Houston Texas的Exxon 3445聚丙烯。该织物是使用分立点预粘合的,具有总粘合面积约为织物单位面积的17%。选用的粘合图案包括那些例如Brock等人的上述参考专利。
使用一个温度为74℃的、带有如图2中所示的图案的连接辊和一个温度为52℃的光滑的砧辊进行此二层的层压。薄膜被处于靠砧辊侧,压力被设定为4218公斤/米(kg/m)。得到的层压材料具有总粘合面积约为单位面积的17%和总基重为36.7gsm。
薄膜(被压紧前和后)、无纺织物和层压材料的试验得到下列的性能(所有的数值均在横向上测定):
薄膜CD最大负荷:129.3克(g)
薄膜CD断裂伸长率:111.5%
压紧薄膜CD最大负荷:79g
压紧薄膜CD断裂伸长率:28%
无纺织物CD最大负荷:890.4g
无纺织物CD最大负荷伸长率:35.4%
层压材料CD最大负荷:1008.4g
层压材料CD最大负荷伸长率:43.9%
当应用抓样拉伸试验在横向测定层压材料时,在层压材料破坏之前观察到薄膜的破坏和撕裂。这说明,如果压紧薄膜的断裂伸长率(28%)小于无纺织物的最大负荷伸长率(35.4%)的话,那么薄膜会过早地撕裂因而影响薄膜/无纺织物层压材料的完整性和所希望的阻挡性。
实施例2
在实施例2中提供另一种薄膜/无纺织物层压材料。该薄膜层与实施例1中所用的薄膜层相同。该纤维无纺织物是29.1gsm的聚丙烯纺粘织物/熔喷织物/纺粘织物层压材料诸如Brock等人的上述参考专利中所述。该织物是使用分立的粘合点预粘的,具有总粘合面积约为织物单位面积的15~17%。
此二层的层压是按与实施例1的相同方式和相同的条件下进行的。此层压材料具有约为49.1gsm的基重。
薄膜(被压紧前和后)、无纺织物和层压材料的试验得到下列的性能(所有的数值均在横向上测定):
薄膜CD最大负荷:129.3克(g)
薄膜CD断裂伸长率:111.5%
压紧薄膜CD最大负荷:79g
压紧薄膜CD断裂伸长率:28%
无纺织物CD最大负荷:2196.7g
无纺织物CD断裂伸长率:30.7%
层压材料CD最大负荷:5720.7g
层压材料CD断裂伸长率:39.4%
当应用抓样拉伸试验在横向测定层压材料时,在此情况下,在层压材料破坏时观察到薄膜的破坏和撕裂。这说明,如果压紧薄膜的断裂伸长率(28%)相似于无纺织物的最大负荷断裂伸长率(30.7%)的值,薄膜和无纺织物会大致在同时撕裂。此实施例说明薄膜的最低限度性能,然而,更希望的是有失效保护性和将压紧薄膜的薄膜断裂伸长率设计为比无纺织物的横向最大负荷伸长率大至少10%以保证使用时的阻挡性能。
实施例3
在实施例3中提供一种薄膜/无纺织物层压材料。该薄膜层与实施例1中所用的薄膜层相同。该纤维无纺织物基料是13.4gsm的、由具有约0.22至0.28特(约2.0~2.5旦)的50/50重量百分比的聚丙烯/线型低密度聚乙烯解卷的并列的双组分纤维制成的纺粘织物。被用制造纺粘织物的聚合物是Exxon 3445聚丙烯和Dow 6811A线型低密度聚乙烯。该织物是使用分立的粘合点预粘的,具有总粘合面积约为织物单位面积的15~17%。
此二层的层压是按与实施例1的相同方式和相同的条件下进行的。此层压材料具有约为33.4gsm的基重。
薄膜(被压紧前和后)、无纺织物和层压材料的试验得到下列的性能(所有的数值均系在横向上测定):
薄膜CD最大负荷:129.3克(g)
薄膜CD断裂伸长率:111.5%
压紧薄膜CD最大负荷:79g
压紧薄膜CD断裂伸长率:28%
无纺织物CD最大负荷:381.3g
无纺织物CD最大负荷伸长率:65.2%
层压材料CD最大负荷:415.6g
层压材料CD最大负荷伸长率:71.1%
当应用抓样拉伸试验在横向测定层压材料时,在层压材料破坏之前观察到类似于实施例1方式的薄膜的破坏和撕裂。这说明,如果压紧薄膜的断裂伸长率(28%)小于无纺织物的最大负荷伸长率(65.2%)的话,薄膜会再次过早地撕裂因而破坏薄膜/无纺织物层压材料的完整性和所希望的阻挡性。
实施例4
在实施例4中提供一种薄膜/无纺织物层压材料。薄膜层含有,按薄膜重量的总百分比计为,62%的具有1μm的平均粒径和7μm的顶部截槽的China SupercoatTM碳酸钙。此碳酸钙是从Sylacauga,Alabama的ECCA碳产品公司购到的。将此碳酸钙与5%重量的Dow640 I低密度聚乙烯和13%重量的Shell 6D81聚乙烯/聚丙烯无规则共聚物相掺合。Dow聚合物可由Dow Chemical U.S.A. ofMidland,Michigan得到和Shell聚合物可由Shell ChemicalCompany of Houston,Texas得到。该配方的余下的20%为得自Himont,USA of Wilmington,Delawarer的Himont KSO50(熔体流动被改性到5熔体流动速率)聚丙烯基聚合物。KSO50聚合物是烯属热塑性弹性体或TPO多级反应产物,其中无定形的乙烯/丙烯无规则共聚物以分子形式分布在占优势的半结晶高聚丙烯单体/低聚乙烯单体连续基质中。
该薄膜具有初始厚度为38.1μm和使用购自Marshall andWilliams Company of Providence,Rhode Island的7200型纵向取向机(MOD)将其初始长度拉伸到4倍而达到10.7μm的减薄的实际厚度。将薄膜加热到71℃并以61米/分的线速度经过MDO以拉伸薄膜。然后在温度85℃下进行薄膜退火。薄膜具有的最后基重为20克/平方米(gsm)。
纤维无纺织物是与实施例1中相同的。
使用一个温度为110℃的、带有如图3中所示的织造织物连接图案的层压辊和一个温度为66℃的光滑的砧辊进行此二层的层压。薄膜被处于靠砧辊侧和压力被设定为4570公斤/米(kg/m)。得到的层压材料具有总粘合面积约为层压材料单位面积的15%和总基重为36.7gsm。
薄膜(被压紧前和后)、无纺织物和层压材料的试验得到下列的性能(所有的数值均系在横向上测定):
薄膜CD最大负荷:160.2克(g)
薄膜CD断裂伸长率:237.7%
压紧薄膜CD最大负荷:127.8g
压紧薄膜CD断裂伸长率:266.9%
无纺织物CD最大负荷:890.4g
无纺织物CD最大负荷伸长率:35.4%
层压材料CD最大负荷:1194.3g
层压材料CD最大负荷伸长率:47.9%
当应用抓样拉伸试验在横向测定层压材料时,在层压材料破坏之前没有观察到薄膜的破坏和撕裂。事实上,无纺织物在薄膜破坏之前已明显地破坏,这是所希望的。这说明,如果压紧薄膜的断裂伸长率(266.8%)大于无纺织物的最大负荷伸长率(35.4%)的话,在超过层压材料的最大负荷后压紧薄膜将完全保持完整无损并且只有达到其断裂伸长率时才被破坏。会再次过早地撕裂因而破坏薄膜/无纺织物层压材料的完整性和所希望的阻挡性。在超过30克负荷时层压材料的完整性被很好地保持。
实施例1和3说明具有在使用中可能过早出现薄膜破坏的层压材料。实施例2和4说明由于薄膜在或超过层压材料最大负荷的本发明的层压材料。
由此已对本发明作了详细的介绍,当然,在不背离下面权利要求书的实质和范围的前提下对本发明还可以作出种种的改进和变化。