通过表面处理改善半导体纳米晶体的发光效率.pdf

上传人:小** 文档编号:227551 上传时间:2018-02-04 格式:PDF 页数:14 大小:717.65KB
返回 下载 相关 举报
摘要
申请专利号:

CN200410078547.X

申请日:

2004.09.09

公开号:

CN1595673A

公开日:

2005.03.16

当前法律状态:

驳回

有效性:

无权

法律详情:

发明专利申请公布后的驳回IPC(主分类):H01L 33/00公开日:20050316|||实质审查的生效|||公开

IPC分类号:

H01L33/00; H01L21/02; H05B33/00

主分类号:

H01L33/00; H01L21/02; H05B33/00

申请人:

三星电子株式会社;

发明人:

张银珠; 田信爱; 成响淑

地址:

韩国京畿道

优先权:

2003.09.09 KR 63229/2003

专利代理机构:

北京市柳沈律师事务所

代理人:

张平元;赵仁临

PDF下载: PDF下载
内容摘要

一种改善半导体纳米晶体发光效率的方法,通过用还原剂表面处理改善发光效率和量子效率,不改变纳米晶体的发光特性例如发光波长和其分布。

权利要求书

1.  一种改善半导体纳米晶体发光效率的方法,包括用还原剂表面处理半导体纳米晶体。

2.
  权利要求1的方法,其中通过湿法化学方法合成半导体纳米晶体。

3.
  权利要求1的方法,其中半导体纳米晶体为核-壳、合金或梯度结构,由至少一种材料制成,材料选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、GaN、GaP、GaAs、InP和InAs。

4.
  权利要求1的方法,其中还原剂为氢阴离子-产生盐、有机还原剂、还原性气体或包含该气体的溶液例如氢化硼钠、硼氢化锂、氢化锂铝、肼、氢气、硫化氢或氨气。

5.
  权利要求1的方法,其中纳米晶体的表面被还原或氧化成一种状态,其中用有机分散剂配位纳米晶体并在与该分散剂具有亲和力的溶剂中分散纳米晶体。

6.
  权利要求4的方法,其中分散剂至少为一种选自C2-18烷基羧酸、C2-18链烯基羧酸、C2-18烷基磺酸、C2-18链烯基磺酸、C2-18膦酸、C2-18烷基胺、C2-18链烯基胺的化合物和其盐。

7.
  权利要求5的方法,其中分散剂为至少一种选自油酸、硬脂酸、棕榈酸、己基膦酸、正辛基膦酸、十四烷基膦酸、十八烷基膦酸、正辛胺和十六烷基胺的化合物。

8.
  权利要求1的方法,其中纳米晶体和还原剂以1∶10-10∶1的重量比混合。

9.
  权利要求1的方法,其中纳米晶体的表面处理在0-100℃进行。

10.
  权利要求1的方法,其中纳米晶体的表面处理进行1秒至2天。

11.
  权利要求1的方法,其中纳米晶体具有球形、棒形、三角形、四角锥形、立方形、盒形或星形中的一种形状或混合形状。

12.
  权利要求1的方法,其中纳米晶体尺寸为1-50nm。

13.
  一种通过权利要求1的方法制备的半导体纳米晶体。

14.
  一种有机电致发光器件,包括含有发光层的多个有机和无机层,其中发光层包括权利要求12的半导体纳米晶体。

15.
  一种半导体纳米晶体,其具有化学还原或氧化的表面。

说明书

通过表面处理改善半导体纳米晶体的发光效率
发明背景
该非临时申请根据35 U.S.C.§119(a)要求2003年9月9日提交的韩国专利申请No.2003-63229的优先权,该专利申请在此引入作为参考。
技术领域
本发明涉及通过表面处理改善半导体纳米晶体的发光效率,更具体地涉及一种改善由湿法化学方法制备的半导体纳米晶体发光效率,不改变纳米晶体的发光特性例如发光波长和其分布的方法。
现有技术的说明
当把半导体化合物材料制成纳米尺寸晶体(纳米晶体)时,量子限制效应在比化合物半导体材料体积激发子玻尔半径更短的范围中显现出来。由于量子限制效应,改变了与半导体材料各自带隙相应的特征能量。当能够发射可见光的半导体化合物被制成纳米晶体时,半导体纳米晶体化合物的频带隙能量开始增加,从而蓝移,可以观察到随纳米晶体尺寸降低至特定尺寸,发光区域向蓝色区域转移。因为控制半导体纳米晶体的特性、结构、形状和尺寸能够控制相应的带隙,可以得到范围很广的能级。
近年来,已有许多努力尝试通过湿法化学方法生长尺寸不同的纳米晶体,其中用在热配位有机溶剂中的表面活性剂沉积前体材料。根据湿法化学方法,随着纳米晶体生长,有机溶剂自然配位至纳米晶体表面作为分散剂。因此,有机溶剂允许初始晶核生长至纳米尺寸水平。此外,湿法化学方法的优点在于可以通过改变前体的浓度、有机溶剂的种类、合成温度和时间等来控制纳米晶体的尺寸。然而,要合成的纳米晶体的尺寸非常小,纳米晶体的表面积与体积之比增加,产生表面上的缺陷。因为这些缺陷相当于能带间隙间的能量陷阱(energy trap),它们降低了纳米晶体的发光效率。此外,纳米晶体越小,问题越严重。
迄今为止报导的改善纳米晶体发光效率的方法主要分为下列两种方法。
第一种方法是表面钝化方法,其中在纳米晶体的表面上涂布稳定的有机或无机材料以在其上形成保护膜。纳米晶体的发光效率取决于包围纳米晶体表面的有机分散剂的种类而不同。在这一点上,据报导当在CdSe纳米晶体表面上的烯丙胺或十二烷胺已被三辛基膦酸代替时,纳米晶体的发光效率显示出40-50%的改善(Nano letters,2001,1,207-211)。基于与有机保护膜相比无机保护膜显示出优异的稳定性和明显效果的事实,已经对无机保护膜进行了许多研究。纳米晶体通常具有一种结构,由作为主体纳米晶体的核部分和作为无机保护膜的壳部分组成。核-壳结构的纳米晶体显示出改善的发光效率,制备该纳米晶体的方法公开于美国专利号6,322,901和6,207,229中。报导了核-壳结构的纳米晶体显示出30-50%的改善的发光效率。然而,因为该制备方法包含令人讨厌的涂布步骤,并且因为涂布时纳米晶体的发光波长和粒径分布可能改变,该制备方法具有使发光波长分布变宽的缺点。此外,由于核和壳部分间晶格失配以及由壳变厚所引起的界面张力,纳米晶体的发光效率可能降低。此外,难以进行涂布步骤,重复生产性能较差。此外,构成核和壳部分的材料特性限制了材料的选择。
第二种方法是合成新的纳米晶体。本发明人已经开发了具有改善发光效率的纳米晶体,推测为合金形式,其可以用简单的方法合成,并提交了专利申请(韩国专利申请号2003-0049547)。通过下面方法制备纳米晶体:混合至少两种属于相同类的前体和一种属于不同类的前体,并将该混合物加入至有机溶剂中。前体之间的反应导致三组分纳米晶体的合成。与如上讨论的具有核-壳结构的纳米晶体相比,由此合成的纳米晶体显示出改善的发光效率,制备简单并且容易。类似地,曾有报道说可以均质合金形式制备三组分纳米晶体,或者根据前体的混合比例,三组分纳米晶体可以具有梯度的组合物。此外,曾有另一个报告,其中纳米晶体为合金形式并具有改善的发光效率,其是通过在高温下退火核-壳结构纳米晶体合成(J.Am.Chem.Soc.,2003,125,8589-8594)。
尽管上述讨论的纳米晶体显示出改善的发光效率,但很少有关于可发光的纳米晶体发光效率的报导,特别是,在蓝色区域(具有较高的能量)。该事实说明由小尺寸晶体表面上形成的能量陷阱引起的问题仍然没有解决。
发明概述
从以下给出的详细说明,本发明的其它适应范围将变得明显。然而,应当理解该详细说明和具体实例,虽然表明了本发明的优选实施方式,但仅仅是举例说明,因为对于本领域一般技术人员来说,根据该详细说明,在本发明本质和范围内地多种改变和变化将变得显而易见。
因此,考虑到上述问题产生了本发明,由此本发明的一个特征是提供一种改善发光纳米晶体在整个发光光谱范围,特别是蓝色区域的发光效率,在表面处理后不改变纳米晶体的发光性能的方法。
本发明的另一个特征是提供一种通过表面处理显示出改善的发光效率的化合物半导体纳米晶体。
本发明的又一个特征是提供一种包含该纳米晶体的有机场致发光器件。
根据本发明的一个特征,提供了一种改善由湿法化学方法合成的半导体纳米晶体发光效率的方法,该方法包括合成后用还原剂表面处理半导体纳米晶体的步骤。
根据本发明的另一个特征,提供了一种已经用还原剂表面处理的半导体纳米晶体。
根据本发明的又一个特征,提供了一种有机场致发光器件,其含有包括发光层的多个有机和无机层,其中发光层包含用还原剂表面处理的半导体纳米晶体。
附图说明
根据下文给出的详细说明和附图将更加充分地理解本发明,附图仅是举例说明,不是限制本发明,其中:
图1是本申请实施例1中制备的CdS纳米晶体在表面处理前和表面处理后的光致发光光谱;
图2是本申请实施例1中制备的CdS纳米晶体在表面处理前和表面处理后的紫外线吸收光谱;
图3是本申请实施例1中制备的CdS纳米晶体的高分辨透射电子显微镜(HRTEM)图像;
图4是本申请实施例1中制备的CdS纳米晶体的透射电子显微镜图像;和
图5是本申请实施例5中制造的有机场致发光器件的光致发光光谱。
发明详述
以下,将更加详细地解释本发明。
本发明中,半导体纳米晶体的制备是通过本领域普通已知的湿法化学方法进行的,在下文详细描写。然而,本发明不局限于如下所述方法。
为了通过湿法化学方法制备半导体纳米晶体,纳米晶体分散在其中的分散溶剂的选择是重要的。本发明中使用的溶剂应该能配位至化合物半导体纳米晶体的表面,体积足够大至可以控制半导体纳米晶体的生长速度。此外,溶剂在晶体生长温度下应该是稳定的,能够分散纳米晶体使之处于溶剂配位至纳米晶体表面的状态。溶剂的实例包括,但是不局限于烷基膦、烷基氧膦、烷基胺等。优选,单独或结合使用膦(phosphine)、氧化膦、或具有高沸点的大体积烷基胺,其中烷基具有约8-16个碳原子,并且氮原子配位至纳米晶体表面。
这些溶剂在空气中是相对稳定的,但是在高温下可被氧化。因此,合成过程中溶剂保持在惰性气氛下,例如氮气或氩气。如有必要,溶剂可以保持在压力下。
如有必要,进一步加入分散剂并配位至纳米晶体以实现纳米晶体在溶剂中的良好分散。
分散剂的具体实例包括,但是不局限于C2-18烷基羧酸、C2-18链烯基羧酸、C2-18烷基磺酸、C2-18链烯基磺酸、C2-18膦酸、C2-18烷基胺、C2-18链烯基胺等。可以使用更加优选的油酸、硬脂酸、棕榈酸、己基膦酸、正辛基膦酸、十四烷基膦酸、十八烷基膦酸、正辛胺、十六烷基胺等。
反应于溶剂中在适当反应条件下,例如大气压力和温度下进行。此时,优选反应系统中的温度分布较窄。反应温度取决于纳米晶体的生长速度,可以随要合成的材料的种类而变化。反应温度通常为25-500℃,优选为25-350℃。当反应温度保持为恒定值时,将半导体前体材料加料到反应体系中。此时,重要的是控制进料速率使得全部前体材料可以同时加料到反应体系中。至于半导体前体,分别加入金属前体和硫属化物前体并使它们反应的方法是本领域普遍已知的[J.Am.Chem.Soc.,115,8706-8715(1993)]。此外,存在加入单组分前体并使其热分解的已知方法[J.Mater.Chem.,9,2433-2437(1999)]。在这种情况下,使用可以容易地分散该前体的溶剂。溶剂应该具有足够低的粘度以控制前体溶液的进料速率,并且在反应系统中是稳定的。至于溶剂,优选吡啶、烷基胺、烷基膦等。加入前体后,需要快速分散反应溶液中前体的搅拌器以及排出反应时产生气体的排气口作为反应器的组成部分。在混合物保持预定时间使得量子点(quantum dots)生长为晶体形式后,结束反应。另一方面,在量子点为核-壳结构情况下,进一步加入无机前体来涂布核表面。当注入用于涂布核的前体时,前体慢慢地在预先确定的浓度范围内扩散,使其可以沉积在核表面上,不形成另外的核。
然后突然降低反应温度结束纳米晶体的晶体生长。为此目的,进一步加入具有相对低沸点的有机溶剂。反应溶液的热量通过溶剂的蒸发被吸收。可以结束晶体生长。因此,控制溶剂的加入量使得反应温度降低至预先确定的温度,由此结束晶体生长。由此制备的纳米晶体以胶体状态分散在溶剂中。它们可以通过离心作用与溶剂分离。
取决于反应条件,半导体纳米晶体可以具有多种形状,例如球形、棒形、三角形(tripods)、四角锥形(tetrapods)、立方形、盒形、星形等,可以用高分辨透射电子显微镜(HRTEM)测定纳米晶体的形状和晶体表面。
本发明中,用还原剂处理通过湿法化学方法制备的化合物半导体纳米晶体。该还原改善了半导体纳米晶体的发光效率。
本发明方法可以应用于全部半导体纳米晶体,与其种类无关。具体地,可以使用由CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、GaN、GaP、GaAs、InP、InAs或其混合物制成的半导体纳米晶体。另一方面,本发明方法可以不受限制地应用于核-壳、梯度(gradient)和合金型的纳米晶体。半导体纳米晶体的发光光谱范围通常为300-1300nm。
至于本发明中使用的还原剂,可以使用所有类型能够产生氢阴离子的盐例如氢化硼钠、硼氢化锂、氢化锂铝、有机还原剂例如肼、所有能够形成还原气氛的气体例如氢气、硫化氢、氨气等,以及溶解该气体的溶液等。
纳米晶体与加入进行还原的还原剂的重量比优选为1∶10-10∶1。当重量比超出该范围时,通过还原剂的氧化-还原反应不足以处理纳米晶体表面,或纳米晶体表面被还原剂污染。
可用于还原的溶剂实例包括,但是不局限于芳香族溶剂例如甲苯、氯苯等,正烷烃溶剂例如己烷、辛烷等,非极性溶剂例如二氯甲烷、氯仿等,醇例如乙醇、丙醇、丁醇等,极性溶剂例如二甲基甲酰胺、四氢呋喃等。
还原在0-100℃的温度下进行,优选10-50℃。当还原温度超过100℃时,出现纳米晶体结块。当还原温度低于0℃时,反应速率太低。显现处理效果所需的处理时间随纳米晶体的种类而变化,例如1秒至2天。如果处理时间不在该范围内,反应可能不充分或可能出现沉淀。
根据本发明方法,半导体纳米晶体的发光效率优选改善大于30%,更加优选改善60%。
用本发明方法表面处理的纳米晶体可以用于多种应用例如显示器、传感器、能源领域,特别可以用于形成场致发光器件的发光层。可以采用湿法例如印刷、涂布、喷墨等来形成使用半导体纳米晶体的发光层。由此形成的发光层优选厚度为50-100nm。
场致发光器件可以具有通用结构例如阳极/发光层/阴极、阳极/缓冲层/发光层/阴极、阳极/空穴传输层/发光层/阴极、阳极/缓冲层/空穴传输层/发光层/阴极、阳极/缓冲层/空穴传输层/发光层/电子传输层/阴极、阳极/缓冲层/空穴传输层/发光层/空穴阻挡层/阴极结构等,但是不具体限于这些结构。
至于构成缓冲层的材料,可以使用本领域为此目的通常使用的化合物。优选实例包括,但是不具体限于铜酞菁、聚噻吩、聚苯胺、聚乙炔、聚吡咯、聚亚苯基亚乙烯基和其衍生物。
至于构成整个传输层的材料可以使用本领域中为此目通常使用的化合物,优选使用聚三苯基胺,但是本发明不具体限于该化合物。
至于构成电子传递层的材料,可以使用本领域中为此目的通常使用的化合物,优选使用聚噁二唑,但是本发明不具体限于该化合物。
至于构成空穴阻挡层的材料,可以使用本领域为此目的通常使用的化合物。优选实例包括,但是不具体限于LiF、BaF2、MgF2等。
本发明包含多个有机和无机层的有机场致发光器件不需要特殊的制造装置和方法。可以根据使用普通发光材料的传统方法制造有机场致发光器件。
在下文中,将参考下列实施例更详细地描述本发明。然而,这些实施例是为了举例说明,不应认为是对本发明范围的限制。
实施例1:合成CdS纳米晶体并表面处理
将16g三辛胺(在下文中,称为′TOA′)、1.9g油酸和1.6mmol氧化镉同时装入具有回流冷凝器的125ml烧瓶中。混合物搅拌加热至300℃。另外,将硫(S)粉末溶解在三辛基膦phpsphine(在下文中,称为′TOP′)中形成S-TOP络合物溶液,硫浓度大约0.1M。将1.0ml S-TOP溶液快速送入到上述混合物中,然后搅拌反应2分钟。反应完成后立即冷却反应混合物至室温。将乙醇作为非溶剂加入反应混合物中,然后离心得到的混合物。通过倾注溶液分离沉淀物,并分散在8ml甲苯中以得到在甲苯中的CdS纳米晶体溶液。抽样1ml CdS溶液,并向其中加入大约0.02g NaBH4。在室温下搅拌得到的混合物大约30分钟以还原CdS纳米晶体。
CdS纳米晶体表面处理前和表面处理后的光致发光光谱和UV吸收光谱分别显示在图1和2中。如图1所示,在490nm观察到发光峰值、FWHM(半最大值处的全宽)大约为25nm。此外,可以观察到表面处理没有引起纳米晶体中发光波长和其分布的任何改变,但是增加了峰值的强度。处理后发光效率从10%增加到85%。如图2所示,表面处理几乎没有或没有影响到UV吸收,两种光谱显示出彼此类似的轮廓。图3为用还原剂表面处理后的CdS纳米晶体的高分辨透射电子显微镜(HR-TEM,刻度条(bar)=5mm)图像。HR-TEM证实CdS纳米晶体具有均匀的晶体结构。图4为用还原剂表面处理后的干燥CdS纳米晶体粉末的透射电子显微镜(TEM,刻度条=20mm)图像。TEM图像证实纳米晶体具有均匀的粒径分布,因此以六方堆积结构排列。
实施例2:合成CdTe纳米晶体并表面处理
将16g TOA、0.5g油酸和0.2mmol乙酸镉同时装入具有回流冷凝器的125ml烧瓶中。混合物搅拌加热至180℃。另外,在TOP中溶解Te粉末形成Te-TOP络合物溶液,Te浓度大约0.2M。将0.5ml Te-TOP溶液快速地送入上述混合物中,然后搅拌反应30秒。反应完成后立即冷却反应混合物至室温。将乙醇作为非溶剂加入反应混合物,然后离心得到的混合物。通过倾注溶液分离沉淀物,并将其分散在5ml甲苯中以得到在甲苯中的CdTe纳米晶体溶液。抽样1ml CdTe溶液,并向其中加入大约0.02g NaBH4。在室温下搅拌得到的混合物大约10分钟以还原CdTe纳米晶体。记录CdTe纳米晶体表面处理前和表面处理后的光致发光光谱。光致发光光谱证实在622nm观察到发光峰值,FWHM为60nm。此外,可以观察到表面处理后发光效率增加大约5倍。
实施例3:合成CdSeS纳米晶体并表面处理
将16g TOA、0.5g油酸和0.4mmol氧化镉同时装入具有回流冷凝器的125ml烧瓶中。混合物搅拌加热至300℃。另外,将Se粉末溶解在TOP中形成Se-TOP络合物溶液,Se浓度大约为0.25M,然后在TOP中溶解S粉末形成S-TOP络合物溶液,S浓度大约为1.0M。将0.9ml S-TOP溶液和0.1ml Se-TOP溶液快速注入到上述混合物中,然后搅拌反应4分钟。反应完成后立即冷却反应混合物至室温。将乙醇作为非溶剂加入反应混合物,然后离心得到的混合物。通过倾注溶液分离沉淀物,并分散在10ml甲苯中以得到在甲苯中的CdSeS纳米晶体溶液。抽样1ml CdSeS溶液,并向其中加入大约0.02g NaBH4。在室温下搅拌得到的混合物大约30分钟以还原CdSeS纳米晶体。记录CdSeS纳米晶体表面处理前和表面处理后的光致发光光谱。光致发光光谱证实在552nm观察到发光峰值,FWHM大约为40nm。此外,可以观察到表面处理后发光效率增加大约5倍。
实施例4:合成CdSe纳米晶体并表面处理
将16g TOA、0.5g油酸和0.4mmol氧化镉同时装入装有回流冷凝器的125ml烧瓶中。混合物搅拌加热至300℃。另外,在TOP中溶解Se粉末形成Se-TOP络合物溶液,Se浓度大约1M。将1ml Se-TOP溶液快速地注入上述混合物中,然后搅拌反应1分钟。反应完成后立即冷却反应混合物至室温。将乙醇作为非溶剂加入反应混合物中,然后离心得到的混合物。通过倾注溶液分离沉淀物,并分散在10ml甲苯中以得到在甲苯中的CdSe纳米晶体溶液。抽样1ml CdSe溶液,并向其中加入大约0.02g NaBH4。在室温下搅拌得到的混合物大约30分钟。记录CdSe纳米晶体表面处理前和表面处理后的光致发光光谱。光致发光光谱证实在520nm观察到发光峰值,FWHM大约为35nm。此外,可以观察到表面处理后发光效率增加大约7倍。
实施例5:使用表面处理的CdSe纳米晶体制造场致发光器件
用PEDOT(聚3,4-亚乙二氧基噻吩ethylenedioxythiophene)作为整个传输层旋转涂布在制图的ITO基底上至厚度为50nm,然后在110℃烘干10分钟。在得到的结构上,旋转涂布在氯苯中1重量%的表面处理的CdSe纳米晶体溶液,干燥形成厚度10nm的发光层。在发光层上沉积Alq3(三(8-羟基喹啉)铝)形成厚度大约40nm的电子传递层。在电子传递层上依次分别沉积LiF和铝至厚度1nm和200nm,以制造场致发光器件。由此制造的有机场致发光器件的发光光谱示于图5。可以看出发光峰值在520nm附近,FWHM大约为40nm。此外,器件的亮度为10Cd/m2,器件的效率大约为0.1%。
尽管为了举例说明已经公开了本发明的优选实施方式,本领域一般技术人员可以在不脱离所附权利要求书公开的本发明范围和本质内作出多种改变,添加和替换。
由此描述的本发明,很明显在许多方面可以改变。这种变化不被认为是脱离本发明的本质和范围,所有这类的改变对于本领域一般技术人员来说是显而易见的,确定为包括在权利要求范围内。

通过表面处理改善半导体纳米晶体的发光效率.pdf_第1页
第1页 / 共14页
通过表面处理改善半导体纳米晶体的发光效率.pdf_第2页
第2页 / 共14页
通过表面处理改善半导体纳米晶体的发光效率.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《通过表面处理改善半导体纳米晶体的发光效率.pdf》由会员分享,可在线阅读,更多相关《通过表面处理改善半导体纳米晶体的发光效率.pdf(14页珍藏版)》请在专利查询网上搜索。

一种改善半导体纳米晶体发光效率的方法,通过用还原剂表面处理改善发光效率和量子效率,不改变纳米晶体的发光特性例如发光波长和其分布。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1