用于冷却热颗粒物的方法和系统.pdf

上传人:柴****2 文档编号:2203163 上传时间:2018-08-01 格式:PDF 页数:27 大小:3.99MB
返回 下载 相关 举报
摘要
申请专利号:

CN201380039483.X

申请日:

2013.05.24

公开号:

CN104487551A

公开日:

2015.04.01

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):C10J 3/56申请日:20130524|||公开

IPC分类号:

C10J3/56

主分类号:

C10J3/56

申请人:

凯洛格·布朗及鲁特有限公司

发明人:

I·H·陈; W·E·菲利普斯; Y·李

地址:

美国德克萨斯州

优先权:

13/480265 2012.05.24 US

专利代理机构:

北京泛华伟业知识产权代理有限公司11280

代理人:

谭彦闻; 胡强

PDF下载: PDF下载
内容摘要

提供了用于冷却颗粒物的方法、系统和设备。所述方法可包括将颗粒物引入包含管束的换热器,该管束具有多个管件,包括将冷却剂经冷却剂入口引入多个管件,使所述颗粒物流经换热器的壳体侧,以及使至少一部分颗粒物与管束接触。该方法还可包括从冷却剂出口回收被加热的冷却剂以及从颗粒物出口回收被冷却的颗粒物。所述换热器可包括具有细长壳体的容器,所述壳体具有第一端、第二端、一个或多个侧壁、设置在所述一个或多个侧壁上的用于接收颗粒物的壳体侧颗粒物入口、靠近第二端布置的用于排出被冷却的颗粒物的壳体侧颗粒物出口以及包括设置在该容器中的多个管件的管束。

权利要求书

权利要求书
1.  一种用于冷却热颗粒物的方法,包括:
将颗粒物导入换热器,该换热器包括:
包含细长壳体的容器,该壳体具有第一端、第二端和一个或多个侧壁,
布置在所述一个或多个侧壁上的、用于接收颗粒物的壳体侧颗粒物入 口,
靠近所述第二端布置的、用于排出被冷却的颗粒物的壳体侧颗粒物出 口,
包括布置在所述容器内的多个管件的管束,其中每个所述管件各具有 被固定至第一管板的开口的第一端和封闭的第二端,并且其中每个管件内 各设置有内导管,每个内导管具有被固定至第二管板的开口的第一端和靠 近其相应管件的封闭的第二端布置的开口的第二端,
靠近所述第一端布置的、用于接收冷却剂的冷却剂入口,以及
在第一管板和第二管板之间设置在所述一个或多个侧壁上的、用于排 出被加热的冷却剂的冷却剂出口;
将冷却剂经由冷却剂入口导入所述多个管件;
使颗粒物流经所述容器的壳体侧以及使至少一部分颗粒物与所述管束接 触;
从冷却剂出口回收被加热的冷却剂;以及
从颗粒物出口回收被冷却的颗粒物。

2.  根据权利要求1所述的方法,还包括将颗粒物从气化器导入换热器的颗粒 物入口,其中所述颗粒物包含细灰、粗灰或它们的组合。

3.  根据权利要求1所述的方法,其中进入换热器的颗粒物的温度范围是从约 400℃至约1400℃。

4.  根据权利要求1所述的方法,其中从颗粒物出口回收的被冷却的颗粒物的 温度范围是从约100℃至约240℃。

5.  根据权利要求1所述的方法,其中所述颗粒物在换热器内的滞留时间的范 围是从约10秒至约1800秒。

6.  根据权利要求1所述的方法,其中流经所述容器的壳体侧的颗粒物在该容 器的壳体侧内形成流态化的颗粒物的密相床。

7.  根据权利要求1所述的方法,其中所述容器是基本竖直定向的,并具有在 顶部的所述第一端和在底部的所述第二端,并且其中所述多个管件中的每一个 各相对于该容器的纵轴线轴向定向并且大致是直的。

8.  根据权利要求7所述的方法,还包括将第一充气气体从所述容器的第二端 并且朝向所述多个管件导入该容器,其中第一充气气体在所述多个管件下方被 导入。

9.  根据权利要求8所述的方法,其中第一充气气体在所述多个管件的封闭的 远端下方至少约15厘米的位置被导入所述容器,并且其中所述颗粒物在所述多 个管件的封闭的远端上方至少约30厘米的位置被导入该容器。

10.  根据权利要求7所述的方法,其中所述容器还包括位于所述容器的第二 端和颗粒物出口之间的渐窄件。

11.  根据权利要求10所述的方法,还包括将第二充气气体经设置在所述渐窄 件侧壁上的一个或多个充气嘴导入所述容器,其中所述第二充气气体被引导朝 向颗粒物出口。

12.  根据权利要求8所述的方法,还包括将所述第一充气气体经在所述一个 或多个侧壁上的、在颗粒物入口上方布置的充气气体排放管路排放,其中所述 充气气体排放管路包括控制阀,该控制阀被接合至在充气气体排放管路的高度 上设置在所述一个或多个侧壁上的第一压力传感器并被接合至在颗粒物入口的 高度上设置在所述一个或多个侧壁上的第二压力传感器。

13.  根据权利要求12所述的方法,其中颗粒物的密相流化床形成在所述容器 的第二端和所述多个管件的远端之间,而颗粒物的稀相床形成在密相流化床的 表面和所述容器的第一端之间。

14.  根据权利要求13所述的方法,还包括通过控制第一充气气体的流速、调 节控制阀的位置或它们的组合的方式来调节颗粒物的密相流化床的表面高度。

15.  一种用于冷却热颗粒物的方法,包括:
使碳质材料在有一种或多种氧化剂的情况下气化以提供包含氢气、一氧化 碳和颗粒物的粗制合成气;
将所述粗制合成气导入颗粒物去除系统以从所述粗制合成气中分离出颗粒 物;
将至少一部分分离出的颗粒物导入颗粒物冷却器,该颗粒物冷却器包括容 器,该容器包括具有第一端、第二端和一个或多个侧壁的细长壳体,其中所述 颗粒物经设置在所述一个或多个侧壁上的颗粒物入口被引入,被冷却的颗粒物 经设置在所述第二端上的颗粒物出口离开颗粒物冷却器;
将冷却剂引导至设置在该容器内的管束,其中该管束包括多个管件,其中 每个所述管件各具有被固定至第一管板的开口的第一端和封闭的第二端,其中 内导管同心地置于每个管件内,其中所述内导管具有被固定至第二管板的开口 的第一端和靠近所述封闭的第二端布置的开口的第二端,其中所述冷却剂经邻 近所述第一端的冷却剂入口进入管束;
从在第一管板和第二管板之间布置在所述一个或多个侧壁上的、用于排出 被加热的冷却剂的冷却剂出口回收被加热的冷却剂;
使颗粒物流经所述容器的壳体侧以形成颗粒物的密相床以及使所述颗粒物 的密相床与所述管束接触;
从位于所述容器内的、在所述第二端和管束之间的一个或多个充气嘴将充 气气体导入所述容器,其中所述充气气体被引导朝向管束;
经由在颗粒物入口和第一管板之间的位置处设置在所述一个或多个侧壁上 的充气气体排放管路排放至少一部分充气气体;以及
从设置在所述容器的第二端的颗粒物出口回收被冷却的颗粒物。

16.  根据权利要求15所述的方法,其中所述容器大致竖直定向并且颗粒物的 密相床位于所述颗粒物入口和所述容器的第二端之间的高度上。

17.  根据权利要求15所述的方法,其中进入换热器的颗粒物的温度范围为从 约400℃至约1400℃,并且其中离开换热器的被冷却的颗粒物的温度范围为从 约100℃至约240℃。

18.  根据权利要求15所述的方法,其中颗粒物的密相床的高度通过调节进入 所述容器的充气气体的流速、通过调节从所述容器排出的充气气体的流速或者 它们的组合来调节。

19.  一种用于冷却热颗粒物的系统,包括:
与粗制合成气管路流体连通的气化器;
与粗制合成气管路和颗粒物管路流体连通的颗粒物去除系统;以及
与颗粒物管路流体连通的颗粒物冷却器,该颗粒物冷却器包括:
具有第一端、第二端和一个或多个侧壁的细长壳体;
与颗粒物管路流体连通并且设置在所述一个或多个侧壁上的、用于接 收颗粒物的壳体侧颗粒物入口;
设置在所述第二端附近的、用于排出被冷却的颗粒物的壳体侧颗粒物 出口,其中渐窄件位于所述第二端和所述颗粒物出口之间;
靠近所述第一端布置的、用于接收冷却剂的管侧流体入口;
包括多个管件的管束,其中每个管件各具有被固定至第一管板的开口 的第一端和封闭的第二端,并且其中内导管同心地置于每个管件内,所述 内导管具有被固定至第二管板的开口的第一端和靠近所述封闭的第二端布 置的开口的第二端;
在第一管板和第二管板之间设置在所述一个或多个侧壁上的、用于排 出被加热的冷却剂的冷却剂出口,靠近所述第一端布置的、用于接收冷却 剂的冷却剂入口;
设置在所述容器的第二端和管束之间的、用于将第一充气流体引向管 束的一个或多个第一充气嘴;以及
设置在渐窄件的侧壁上的、用于将第二充气气体引向颗粒物出口的一 个或多个第二充气嘴。

20.  根据权利要求19所述的系统,还包括:
在颗粒物入口和所述容器的第一端之间的位置处设置在所述一个或多个侧 壁上的充气气体排放管路;
设置在充气气体排放管路上并被接合至在所述充气气体排放管路的高度上 设置在所述一个或多个侧壁上的第一压力传感器的控制阀;以及
靠近所述颗粒物入口布置在所述一个或多个侧壁上的第二压力传感器。

说明书

说明书用于冷却热颗粒物的方法和系统
技术领域
本文描述的实施例总体涉及烃的气化。确切的说,这些实施例涉及冷却从 气化过程中回收的颗粒物。
背景技术
气化器流出的粗制合成气包含在进一步处理之前需要被去除的颗粒物如粗 灰、细灰和/或渣。使用颗粒物去除系统如过滤器和/或旋流器可以除去大部分的 颗粒物。去除的颗粒物通常从系统被回收到气化器中或作为副产品从系统中被 清除掉,流出颗粒物去除系统的合成气被进一步处理和/或净化。但是,去除的 颗粒物在从系统中回收或清除之前通常需要进行冷却。
一种用于冷却去除的颗粒物的方法是使热的颗粒物落到盛水容器中,然后 冷却的颗粒物被从“脏”水中分离出来。该方法的效率不高并且只能在低压条件下 进行。另一种方法是将热的颗粒物供应到大型的水平定位的流化床上,该流化 床具有设置在其中的冷却盘管。但是,大型流化床不易于膨胀或收缩来满足系 统的一般冷却要求。还需要输入高能量以保持颗粒物流经流化床。并且,如果 流化床的一部分发生故障,整个气化过程就不得不减缓或停止,直到流化床冷 却器能被修好。再一种方法是将热颗粒物供应到包含盘绕的冷却管的容器中。 但是这些管可毁于由热颗粒物的高温引起的热应力。此外,在颗粒物温度因变 化的热负荷而变化时,可发生管膨胀或收缩。所述管膨胀或收缩可导致引起冷 却管破裂或其它损伤的热应力,这可能需要停止整个气化过程以修复冷却器。
因此,需要用于冷却从气化过程中回收的颗粒物的新设备、新系统和新方 法。
附图说明
图1示出了根据一个或多个所述实施例的示例性换热器的侧剖视图。
图2示出了在图1中示出的换热器的沿线2-2剖开的剖视图。
图3示出了根据所述一个或多个实施例的示例性换热系统的侧剖视图。
图4示出了根据所述一个或多个实施例的具有支承件的示例性换热系统的 侧剖视图。
图5示出了在图4中示出的换热器的沿线5-5剖开的剖视图。
图6示出了在图4中示出的换热器的沿线6-6剖开的剖视图。
图7示出了根据所述一个或多个实施例的、结合了图4中示出的换热系统 的示例性气化系统的示意图。
具体实施方式
提供了用于冷却颗粒物的方法、系统和设备。用于冷却颗粒物的方法可包 括将颗粒物引入包含具有多个管件的管束的换热器,将冷却剂通过冷却剂入口 引入所述多个管件,使所述颗粒物流经换热器的壳体侧,以及使至少一部分颗 粒物与所述管束接触。该方法还可包括从冷却剂出口回收被加热的冷却剂以及 从颗粒物出口回收被冷却的颗粒物。所述换热器可包括具有细长壳体的容器, 所述细长壳体具有第一端、第二端、一个或多个侧壁、布置在所述一个或多个 侧壁上的用于接收颗粒物的壳体侧颗粒物入口、靠近第二端布置的用于排出被 冷却的颗粒物的壳体侧颗粒物出口、以及包括布置在该容器内的多个管件的管 束。每个所述管件可各具有固定至第一管板的开口的第一端和封闭的第二端, 其中在每个管件内均布置有内导管。每个内导管可具有被固定至第二管板的开 口的第一端和靠近其相应管件的封闭的第二端布置的开口的第二端。冷却剂入 口可靠近所述第一端布置,以用于接收冷却剂。冷却剂出口可在第一管板和第 二管板之间设置在所述一个或多个侧壁上,以用于排出被加热的冷却剂。
图1示出了根据一个或多个实施例的示例性换热器100的剖视图。该换热 器100包括壳体110、一个或多个入口总管125、一个或多个出口总管135和一 个或多个换热件或管件149。该换热器100可包括多个管件149以形成或提供管 束150。所述入口总管125、出口总管135和管束150可至少部分是或形成该换 热器100的“管侧”,而剩余的内部容积或壳体内部104可至少部分是或形成该换 热器100的“壳体侧”。所述壳体110可具有第一端或“顶”端102和第二端或“底” 端101。该壳体110可包括颗粒物入口105、颗粒物出口115和排出气出口170。 所述颗粒物入口105可在第一端102和第二端101之间被布置在壳体110上。 例如,所述颗粒物入口105可在管束150的下半部附近与内部容积104流体连 通,以使得颗粒物的密相床可在第二端101和颗粒物入口105之间形成在内部 容积104之内,而颗粒物的稀相可在密相床表面和换热器100的第二端102之 间形成。底端101和颗粒物出口115可通过渐缩部段或渐窄件113连接在一起。 所述的另一种方式,渐窄件113可具有内表面,该内表面从在底端101处的第 一截面区域向颗粒物出口115渐缩或变窄。例如,渐窄件113可具有截头圆锥 形或圆锥形的内表面或壁190。一个或多个充气嘴114可被设置在壳体110的底 端101处或附近,以将任意方向的空气引向管束150。
所述壳体110还可包括一个或多个入口120和一个或多个出口130,它们贯 穿壳体110的一个或多个侧壁(示出了一个侧壁111)和/或顶端102布置。在一个 或多个实施例中,可将出口130配置为穿过侧壁111、而将入口120配置为穿过 置于或位于壳体110顶端上的顶部区段。所述入口或“冷却剂入口”120可连接至 冷却剂供给装置(未示出)并且构造为或适配成接收流过其中的冷却剂。例如,可 以将冷水从冷水源、另一换热器或它们的组合供应到入口120。合适的冷却剂可 包括但不限于水、空气、液态烃、气态烃或它们的任意组合。被加热的冷却剂 可通过出口或“冷却剂出口”130回收。例如,被加热的水可经出口130流入一个 或多个蒸汽锅筒、节热器或类似的装置(未示出)。在一个或多个实施例中, 冷却剂可进入入口120、分配给管束150并离开出口130而不需要泵或其它输送 设备。例如,冷却剂可仅凭借重力进入入口120、分配给管束150和离开出口 130。冷却剂可以是或用作冷却介质和/或加热介质。同样地,换热器100可作为 颗粒物冷却器和/或颗粒物加热器运行。
壳体110可具有任何期望形状。例如,壳体110可呈立方体、矩形箱、圆 筒形、三棱柱、双曲面结构或其它形状或它们的各种组合的形式。在一个或多 个实施例中,壳体110可以是圆筒形。在一个或多个实施例中,壳体110可以 是竖直定向的或基本上竖直定向的。例如,基本竖直的壳体110可相对于竖向 呈如下度数的角,即约-20°至约20°,约-15°至约15°,约-10°至约10°,约-5°至 约5°,约-3°至约3°,约-2°至约2°,约-1°至约1°,约-0.1°至约0.1°,约-0.01° 至约0.01°,约-0.001°至约0.001°或约-0.0001°至约0.0001°。
入口总管125可以至少部分地设置在壳体110中并且与入口120流体连通。 例如,入口总管125可通过入口管或入口管道123与入口120连接或流体连通。 出口总管135也可以至少部分地设置在壳体110中并且与出口130流体连通。 例如,出口总管135可通过出口管或出口管道133与出口130连接。入口总管 125和出口总管135可各自被布置在一个或多个换热件或管件149的上方。如所 示出的,入口总管125可被置于出口总管135的上方。或者,入口总管125可 被置于出口总管135(未示出)之内。
管束150可以至少部分地设置在壳体110内并且可以与入口总管125和出 口总管135流体连通。管束150可以至少部分地设置在入口总管125和/或出口 总管135的下方。例如,管束150可设置在入口总管125和出口总管135下方 并且在侧壁111之间。管件149的重量可至少部分由所述一个或多个出口总管 135支承。
管束150可由一个或多个支承件或一个或多个管板(示出一个管板165)支 承。一个或多个第一管板165可位于每个管件149的开口的近端162附近的任 意位置。管件149的近端162的至少一部分可位于第一管板165的上方。在一 个或多个实施例中,第一管板165可连接至每个管件149的外表面或与其一体 形成。第一管板165可按足以支承至少管束150的全部重量的任何方式被连接 至管件149。在一个或多个实施例中,管件149可以是自由悬挂的或完全由第一 管板165支承。第一管板165可以被可密封地固定至壳体110的侧壁111的内 表面112(见图2)和每个管件149的外表面。第一管板165可形成与壳体内部104 和出口总管135的不透流体的密封,这样形成部分出口总管135。可包括一个或 多个稳定器175以减小或防止自由悬挂的管件149的振动。可包括任意数量的 稳定器175。在一个或多个实施例中,每个管件149可与至少一个稳定器175、 至少两个稳定器、或三个或更多个稳定器175接触。例如,可与一个或多个管 件149接触的稳定器175的数量的范围可以是在约1、约2、或约3的下限至约 5、约7、或约10的上限内。
管件149可具有封闭的远端160和开口的近端162。开口的近端162可接合 至入口总管125。管件149可相对于壳体110的纵轴线轴向定向和/或可以是大 致平直的。管件149的大致直线长度可以进行优化以减少或避免振动和/或便于 维护管件149。例如,管件149的直线长度的范围在约1米的下限至约20米的 上限内。管件149的数量和长度可基于所期望的传热负载量决定。
管件149可彼此隔开以减少或防止颗粒物在它们之间桥接。例如,管件149 之间的间隔范围可在约50毫米、约70毫米、或约100毫米的下限至约120毫 米、约140毫米、或约160毫米或更远的上限之内,以减少或防止颗粒物在它 们之间桥接。管件149之间的距离可以至少部分根据颗粒物特定尺寸决定,该 颗粒物可以是或是预期要通过该换热器100输送。
管件149可各自包含或包括至少部分设置在管件内的内导管155。每个内导 管155可被连接至入口总管125或与其一体形成。在每个管件内布置一内导管 155可在每个管件149和每个内导管155之间形成或以其它方式提供环形的空间 或区域。内导管155可同心地布置在每个管件149内,以在内导管155和管件 149之间形成环形空间。在一个或多个实施例中,管件149和至少部分位于其内 的内导管155的组合可形成或提供通常所称的内插管型管或内插管式管。
多个内导管155可由一个或多个支承件或一个或多个第二管板167支承。 第二管板167可位于所述多个内导管155的顶端159附近的任意位置。所述多 个内导管155的顶端159的至少一部分可位于第二管板167的上方。在一个或 多个实施例中,第二管板167可与内导管155的外表面相连接或与其一体形成。 第二管板167可按足以支承至少总和内导管155的全部重量的方式被连接至内 导管155。在一个或多个实施例中,内导管155可以是自由悬挂在管件149内的 或者可以完全由第二管板167支承。第二管板167可被可密封地固定至壳体110 的侧壁111的内表面112。第二管板167可与入口总管125和出口总管135形成 不透流体的密封,从而形成出口总管135和入口总管125的一部分。
壳体110和其内的任何一个或多个部分或部件可以由合适的金属、金属合 金、复合材料、聚合物材料或类似的材料制成。例如,包括入口120和出口130 的壳体110可以由碳钢或低铬钢制成,而内部部分即管件149、稳定器175、内 导管155、总管125、135、管板165、以及在入口管道和出口管道123、133可 以由不锈钢制成。
在操作中,换热器100可以接收通过颗粒物入口105的颗粒物、例如灰。 在颗粒物进入壳体110之前或同时,冷却剂、例如水可以经入口120导入。虽 然未示出,外部容器可以经外部管路向入口120供应冷却剂和/或接纳来自出口 130的冷却剂,其中外部管道与入口120和/或出口130可以流体连通。冷却剂 可以凭借重力从入口120、经入口管123流至入口总管125。在另一个例子中, 经由入口管123引入入口总管125的冷却剂可被加压。入口总管125可将冷却 剂分配给安置在管件149中的内导管155。冷却剂可凭借重力向下流进内导管 155并在内导管155的位于管件149的封闭的远端160附近的远端157处流出内 导管155(见示出流动路径的箭头)。冷却剂可反向行经位于内导管155和管件149 之间的环形空间且在离开管件149时进入出口总管135(见箭头)。冷却剂可经由 出口管道133流出出口总管135(见箭头)。在一个例子中,在冷却剂流出内导管 155时,其能够受热并能至少部分汽化,导致冷却剂具有更低密度。受热的冷却 剂的更低密度允许受热的冷却剂沿环形区域上升(见箭头)然后流出以进入外部 总管135。在另一个例子中,稠密的冷却剂可仅凭借重力向下流入内导管155。
所述颗粒物入口105可距封闭的远端160比距开口端162更近地布置在管 束150附近。例如,颗粒物入口105可被设置在管件150的最底端或封闭的远 端上方的至少约1厘米、约5厘米、约15厘米、约30厘米、至少约100厘米、 至少约150厘米、至少约300厘米、至少约450厘米、至少约600厘米、至少 约750厘米、至少约900厘米、至少约2000厘米、至少约5000厘米、或至少 约10000厘米处。像这样,从颗粒物入口105进入壳体110颗粒物可形成能通 过管件149之间的颗粒物的密相。颗粒物的稀相可存在于颗粒物的密相的上方。 当颗粒物流过换热器100时,热量可以间接地转移给冷却剂以产生被冷却的颗 粒物和被加热的冷却剂。被加热的冷却剂可以从换热器100的出口130中回收, 并供给到一系统或工艺过程的另一部分、如锅筒和/或节热器中。来自密相底部 的被冷却的颗粒物可经由冷却颗粒物出口115离开换热器100。
冷却剂可以在任何所需的压力下被引导至入口120。例如,冷却剂可以在与 换热器100中的压力相匹配的压力下流入入口120。这有助于冷却剂保持所需的 速度和/或减少冷却剂在流经管件149、入口总管和出口总管125、135和/或入口 管和出口管123、133时发生的沸腾。例如,足够量的冷却剂流入入口120使得 冷却剂不会在管件149的环形区域内全部汽化。在另一个示例中,小于约90 vol%(体积百分比)、小于约70vol%、小于约50vol%、小于约30vol%、 小于约20vol%、小于约10vol%、小于约5vol%、小于约2vol%、或小于约 1vol%的流入入口120的冷却剂会被汽化。甚至在另一个示例中,从约1vol%、 约2vol%、约5vol%的下限至约10vol%、约20vol%、约30vol%的上限之间的流 入入口120的冷却剂会被汽化。
冷却剂可以在低至约101千帕、约150千帕、约350千帕或约700千帕到 高达约3500千帕、约6900千帕、约13800千帕或约20000千帕的范围内的压 力作用下流入入口120。流入入口120的冷却剂温度范围为低至约15摄氏度(℃)、 约30℃、约60℃,约90℃到高达约175℃、约250℃、约300℃或约350℃。在 另一个示例中,流入入口120的冷却剂的温度为从约38℃至约335℃、从约45℃ 至约275℃或从约75℃至约200℃。虽然已经给出冷却剂压力范围和温度范围, 但是冷却的压力和温度可以至少部分地根据行经换热器100的颗粒物压力和温 度在很广泛的范围内变化。从出口130回收的冷却剂的温度高于流入入口120 的冷却剂的温度。例如,从出口130回收的冷却剂温度高于流入入口120的冷 却剂温度的范围为从低至约0.5℃、约1℃、约5℃或约10℃至高达约50℃、约 100℃、约150℃或约200℃。
示例性颗粒物可以包括但不限于灰颗粒、砂、陶瓷颗粒、催化剂颗粒、飞 灰、炉渣或它们的任意组合。因此,颗粒物可以是由多种烃处理工艺中所产生、 使用或者回收的。例如,颗粒物可以由气化工艺过程、催化裂化工艺过程、如 流化催化裂解装置或者类似的工艺过程中产生、使用或者回收。适宜的气化过 程可以包括一个或多个气化器。一个或多个气化器可以是或可以包括任何类型 的气化器,例如固定床气化器、夹带流气化器和流化床气化器。在至少一个示 例中,气化器是流化床气化器。
如本文所用的术语“粗”,例如粗灰和粗灰颗粒,指的是具有平均粒径范围从 低至约35微米(μm)、约45μm、约50μm、约75μm或约100μm到高达约500μm、 约750μm、约1000μC或约5000μm的颗粒物。例如,粗灰颗粒的平均粒径为从 约50μm至约1000μm、从约100μm至约750μm、从约125μm至约500μm或从 约150μm至约250μm。如本文所用的术语“细”,例如细灰和细灰颗粒,指的是 具有平均粒径范围从低至约2μm、约5μm或约10μm到高达约75μm、约85μm 或约95μm的颗粒物。例如,细灰颗粒具有的平均粒径可为从约5μm至约30μm、 从约7μm至约25μm或从约10μm至约20μm。
图2示出了图1的换热器100沿线2-2剖开的剖视视图。换热器100的壳体 110可具有多边形形状,包括但不限于圆形、矩形、三角形、正方形、五边形、 六边形、星形等、或它们的任意组合。例如壳体110可以具有如图所示的圆形 横截面。壳体110可具有与底端101和顶端102相同或不同的形状。例如,壳 体110的中间部分可具有圆形横截面,而顶端和底端102、101可具有方形横截 面。
管板165、167可具有多种形状和尺寸。例如,当壳体110如图所示为圆筒 形时,第一管板165具有对应于壳体110的尺寸和形状的尺寸和形状。第一管 板165可设置在或者以其它方式固定在侧壁111的内表面112上。第一管板165 可直接设置在和/或固定在侧壁111的内表面112上。例如,第一管板165可通 过紧固件(例如焊接接头、铆钉和/或螺栓)直接固定至侧壁111的内表面112。在 另一个示例中,第一管板165可通过焊接接头或其它足以使出口总管135和壳 体110内部流体隔绝的基质或机构被可密封地固定至侧壁111的内表面112。在 另一示例中,第一管板165可被可密封地固定至侧壁111的内表面112,以使出 口总管135可与壳体110的内部流体隔绝。此外,第二管板167(在图2中未示 出)被可密封地固定至侧壁111的内表面112,以使出口总管135和入口总管125 彼此间流体隔绝。
第一管板165可容纳或固定管束150。第一管板165可设置在或以其它方式 固定在每一管件149的外表面151上。第一管板165可直接设置在和/或固定在 每一管件149的外表面151上。例如,第一管板165可通过紧固件(例如焊接接 头或螺栓)直接固定至每一管件149的外表面151。在另一个示例中,第一管板 165可通过焊接接头或其它足以使出口总管135和壳体110内部流体隔绝的基质 或机构被可密封地固定至每一管件149的外表面151。管件149被示出各自具有 内导管155。内导管155可被置于管件149之内。例如,内导管155可同心地设 置在或就位于管件149之内。内导管稳定器180可被放置在内导管155的外壁 156和管件149的内表面152之间的环形区域内,以减小或防止振动并且将内导 管155保持在管件149内的中心位置中。在一个示例中,第一管板165被可密 封地固定至各管件149的外表面151而第二管板167(在图2中未示出)被可密封 地固定至各内导管155的外表面156,以使出口总管135和入口总管125彼此间 流体隔绝并且与壳体110的内部流体隔绝。
对于圆筒形壳体110来说,多个管件149可布置为一排或多排或者布置为 至少一个圆筒形或环形(未示出)。例如,多个管件149可布置为多排或布置为同 心圆筒或环。在一个或多个实施例中,多个管件149可布置为同心圆筒或环并 且每个圆筒或环可包含不同尺寸和数量的管件149。例如,管件149构成的第一 环可具有从约25厘米(cm)至约35cm的第一直径和从约4个至约10个管件149。 管件149构成的第二环可具有从约40cm至约50cm的第二直径和从约14个至 约24个管件149。管件149构成的第三环可具有从约55cm至约65cm的第三直 径并可具有从约20个至约26个管件149。管件149构成的第四环可具有从约 70cm至约80cm的第四直径和从约27个至约33个管件149。管件149构成的 第五环可具有从约85cm至约95cm的第五直径并可具有从约32个至约40个管 件149。管件149构成的第六环可具有从约100cm至约110cm的第六直径并具 有从约38个至约48个管件149。
图3示出了根据一个或多个实施例的示例性换热系统300的侧剖视图。该 换热系统300可包括一个或多个颗粒物入口305、一个或多个颗粒物出口315、 和一个或多个渐窄件313。该换热系统300还可包括一个或多个入口总管(未示 出)、一个或多个出口总管(未示出)和一个或多个换热件或管件350。该换热系统 300还可包括具有一个或多个侧壁(示出一个侧壁311)、顶端302和底端301的 壳体310。壳体310可呈多种形状,包括但不局限于立方体、矩形箱、圆筒形、 三棱柱、双曲面结构或一些其它形状或它们的各种组合。如图所示,壳体310 可以是圆筒形。所述壳体310可具有足以装入管束350的尺寸和形状。
入口总管可以至少部分地设置在壳体310内并且可以与冷却剂入口320流 体连通。例如,入口总管可通过入口管或入口管道(未示出)与入口320连接或流 体连通。出口总管也可以至少部分地设置在壳体310中并且可与出口330流体 连通。例如,出口总管可通过出口管或出口管道(未示出)被连接至该出口。入口 总管和出口总管可被安置在所述一个或多个换热件或管件350的上方。
管束350可由一个或多个支承件或者一个或多个第一管板365支承。第一 管板365可设置在法兰364和366之间。第一管板365可通过法兰364和366 紧固至壳体310。法兰364和366可如此紧固第一管板365,以使得当管件350 设置在第一管板365内时可形成使第一管板365上方的空间与第一管板365下 方的空间流体隔绝的密封。第一管板365可按足以支承至少总和管件350的全 部重量的任何方式被连接至管件350。
多个内导管355可由一个或多个支承件或者一个或多个第二管板367支承。 第二管板367可设置在法兰368和369之间。第二管板367可通过法兰368和 369紧固至壳体310。法兰368和369可如此紧固第二管板367,以使得当内导 管355设置在第二管板367内时可形成流体隔绝第二管板上方的空间与第二管 板下方的空间的密封。第二管板367可按足以支承至少总和内导管355的全部 重量的任何方式连接至内导管355。
一个或多个颗粒物入口305可位于沿换热系统300的一个或多个侧壁311 的任意位置。在一个或多个实施例中,一个或多个颗粒物入口305可定位在壳 体310上距底端301比距顶端302更近的高度处。例如,可使一个或多个颗粒 物入口305位于距管件350的封闭的远端360比距第一管板365更近的高度处。 颗粒物入口305可具有上端304和下端306。颗粒物入口305可含有设置在上端 304和下端306之间的弯头307。
颗粒物入口305还可具有充气嘴308。充气嘴308可置于沿颗粒物入口305 的、足以帮助将热颗粒物向下分配至颗粒物入口305并且进入壳体310的任意 位置。如图所示,充气嘴308可设置在上端304和弯头307之间。尽管未包含 在附图中,充气嘴308可被置于在弯头307和一个或多个侧壁311之间、沿下 端306的任意位置。充气嘴308可以以使充气嘴能向管束350引导空气、颗粒 物和/或流体的任意角度布置。例如,充气嘴308可以相对于轴向呈从低至约30°、 约40°或50°到高至约70°、约80°或约90°的角度设置。在另一示例中,充气嘴 308可以与轴向呈从约35°至约85°或者从约45°至约75°的角度设置。在又一示 例中,充气嘴308可以与轴向呈约55°、约60°或65°的角度设置。
在颗粒物入口305附近可包括牺牲防护件(未示出),以使管束350免遭通过 颗粒物入口305进入壳体310的新的热颗粒物侵害。所述牺牲防护件可由碳钢、 低铬钢、不锈钢或足以承受与离开颗粒物入口305的热颗粒物的直接接触的任 何其它材料构成。该牺牲防护件可遮蔽至少部分管件350以使其免于直接接触 刚刚离开颗粒物入口305的热颗粒物。在一个或多个实施例中,该牺牲防护件 可完全遮蔽所有管件350以使其免于与刚刚离开颗粒物入口305的热颗粒物的 任何直接接触。在一个或多个实施例中,该牺牲防护件可代替管件350置于离 颗粒物入口305最近的(多个)位置。
经热颗粒物入口305进入壳体310的热颗粒物可形成流态化颗粒物的密相 床和位于密相床上方的流态化颗粒物的稀相床。在一个或多个实施例中,热颗 粒物入口305在密相床表面处或下方引入壳体。密相可占据高达约10%、高达 约20%、高达约30%、高达约40%、高达约50%、高达约60%、高达约70%的 壳体310的内部高度。稀相可占据高达约30%、高达约40%、高达约50%、高 达约60%、高达约70%、高达约80%、高达约90%的壳体310的内部高度。
至少一个充气嘴314可在壳体310的底端301附近贯穿侧壁311布置。充 气嘴314可设置在管件350下方的、足以减小或防止管件350被来自充气嘴314 的充气气体侵蚀的某一距离处。例如,充气嘴314可设置在管件350的最底端 或封闭的远端下方的至少约15厘米、至少约30厘米、至少约60厘米、至少约 90厘米、至少约120厘米、至少约150厘米、至少约2米或至少约3米处。充 气嘴314可以以使充气嘴能向管束350引导空气、颗粒物和/或流体的任意角度 布置。例如,充气嘴314可以相对于轴向呈从低至约30°、约40°或50°到高至 约70°、约80°或约90°的角度设置。在另一示例中,充气嘴314可以与轴向呈 从约35°至约85°或者从约45°至约75°的角度设置。在又一示例中,充气嘴314 可以与轴向呈约55°、约60°或约65°的角度设置。充气嘴314可在内侧具有位 于壳体310的底端301上方的内突起324。内突起324可以是一端具有一个或多 个穿孔的管,其可至少部分设置在壳体310内部。充气嘴314可提供松料空气 以使空气和/或颗粒物朝向管束350向上流动。
流出充气嘴314的充气气体的量可决定颗粒物密相床的尺寸、密度和高度。 在一个或多个实施例中,流出充气嘴314的充气气体可首先经密相床、其次经 稀相床地从底部流至顶部,然后再经位于壳体310顶部的管路370流出壳体310。 在一个或多个实施例中,充气气体的流动可仅沿一个方向,从设置在管件350 下方的充气嘴314向上穿过密相床然后穿过稀相床并最后经管路370流出壳体 310。在一个或多个实施例中,热颗粒物的流动可仅沿一个方向,从热颗粒物入 口305流向壳体310并从壳体310流向被冷却的颗粒物出口315。流出充气嘴 314的充气气体的量可部分由经管路370流出壳体310的充气气体的量来确定。 管路370可包括阀372,当其关闭时,其可减小或防止充气气体从壳体310逸出。 此外,由于可经管路370从系统300中被释放的充气气体的量可确定,则流出 充气嘴314的充气气体的量可有助于确定颗粒物密相床的高度。
密相和稀相之间的压差可通过压力传感器352和354监测。如图所示,压 力传感器352可在壳体310的顶部和排出气管路370附近就位在稀相床内。压 力传感器354可在颗粒物入口350附近就位在密相床内。通过压力传感器352、 354观察到的压力数据可经由用于控制控制阀372的线路356和358传输。控制 阀372可基于所观察到的压差被打开或关闭,以便在壳体310中维持期望压差 并因此维持壳体310中的密相床的期望高度。
渐窄件313可设置在壳体310的底端301。渐窄件313例如可以是截头圆锥 形或圆锥形。渐窄件313可具有设置在渐窄件313最窄端的颗粒物出口315,其 用于从换热系统300中排出被冷却的颗粒物。
渐窄件313可包括设置在其侧壁上的一个或多个充气嘴(示出两个充气嘴 316、317)。充气嘴316、317可以相对于壳体和/或轴向以任意角度设置,使得 充气嘴316、317能朝向颗粒物出口315引导第二鼓风流体。例如,空气、氮气、 二氧化碳、氩气或它们的任意组合可作为第二充气流体经由充气嘴316、317被 引入。在一个或多个实施例中,第二充气流体可以是惰性气体例如氮气。在一 个或多个实施例中,第二充气流体可以是或包括空气。
充气嘴316、317可以相对于轴向呈从低至约30°、约40°或50°到高至约70°、 约80°或约90°的角度设置。在另一示例中,充气嘴316、317可以与轴向呈从约 35°至约85°或者从约45°至约75°的角度设置。在又一示例中,充气嘴316、317 可以与轴向呈约55°、约60°或65°的角度设置。
尽管未示出,但充气嘴316、317可在壳体310的渐窄件313的内部具有内 突起。该内突起可以是一端具有一个或多个穿孔的管,其可至少部分设置在壳 体310的渐窄件313的内部。充气嘴316、317可提供松料空气以使空气和/或被 冷却的颗粒物经颗粒物出口315流出。
壳体310可具有在管件350下方的位置处设置在壳体310内或上的一个或 多个压力传感器开口318和/或一个或多个温度传感器开口319。一个或多个压 力传感器(未示出)可以至少部分地设置在压力传感器开口318中,而一个或多个 温度传感器(未示出)可以至少部分地设置在温度传感器开口319中。压力传感器 开口318和温度传感器开口319可以具有相对于壳体310轴向的相同或不同角 度。例如,压力传感器开口318和/或温度传感器开口319可相对于壳体310轴 向以低至约30°、约40°或约50°到高达约70°、约80°或约90°角度设置。在另一 个示例中,压力传感器开口318和温度传感器开口319可相对于壳体310轴向 以约35°至约85°或约45°至约75°角度设置。在又一示例中,压力传感器开口318 和温度传感器开口319可相对于壳体310的轴向以约55°、约60°或约65°的角 度设置。在又一示例中,压力传感器开口318可相对于壳体310的轴向以45° 角度设置,而温度传感器开口319可相对于壳体310的轴向以90°的角度设置。
进入换热系统300的颗粒物如灰的温度范围为从低至约400℃、约500℃、 约550℃、约600℃、约650℃、约700℃、约750℃或约800℃到高达约900℃、 约950℃、约1000℃、约1050℃、约1100℃、约1150℃、约1200℃、约1250℃、 约1350℃或约1400℃。例如,进入换热系统300的颗粒物的温度可为约785℃ 至约1250℃、约900℃至约1150℃、约925℃至约1125℃或约950℃至约1100℃。 在另一个示例中,进入换热系统300的颗粒物的温度为约975℃至约1050℃。 进入换热系统300的颗粒物所受的压力可以与系统\如气化系统中的压力相同或 者在系统到系统之间也可以不同。例如,颗粒物可以以低至约101千帕、约500 千帕、约1000千帕、或约1500千帕到高达约3500千帕、约4000千帕、约4500 千帕或约5000千帕的压力进入换热系统300。在另一示例中,颗粒物可以以约 250千帕至约4750千帕、约750千帕至约4250千帕或约1250千帕至3750千帕 的温度进入换热系统300。
从换热系统300排出的颗粒物的温度范围为低至约100℃、约110℃、约 120℃、约130℃、约140℃、约150℃、约160℃或约165℃到高达约170℃、 约175℃、约180℃、约185℃、约190℃、约200℃、约210℃、约220℃、约 230℃或约240℃。例如,从换热系统300排出的颗粒物的温度为约145℃至约 205℃、约155℃至约195℃或约165℃至约185℃。在另一个示例中,从换热系 统300中排出的颗粒物的温度为约175℃、约176℃或约177℃。
颗粒物在换热系统300中的滞留时间的范围可以为从低至约1秒、约5秒、 约10秒、约40秒或约80秒到高达约600秒、约900秒、约1800秒、约2500 秒或约5000秒。例如,颗粒物在换热系统300中的滞留时间的范围可以为从约 15秒至约1150秒、约45秒至约850秒或约85秒至约550秒。颗粒物可以在如 下范围内的速率下被引入换热系统300,即从低至约0.01千克每平方米每秒 (kg/m2-s)、或约40kg/m2-s或约80kg/m2-s到高达约600kg/m2-s、约800kg/m2-s 或约1000kg/m2-s。例如,颗粒物可在如下速率下经入口304被引入换热系统300, 即从约0.01kg/m2-s至约950kg/m2-s、约45kg/m2-s至约750kg/m2-s或约85kg/m2-s 至约550kg/m2-s。
图4示出了根据一个或多个实施例的示例性换热系统400的透视侧视图。 该换热系统400可包括一个或多个颗粒物入口405、一个或多个颗粒物出口415、 和渐窄件413。该换热系统400还可包括一个或多个入口总管420、一个或多个 出口总管430和一个或多个换热件或管件450。该换热系统400还可包括具有一 个或多个侧壁(示出一个侧壁411)、顶端402和底端401的壳体410。壳体410 可呈多种形状,包括但不局限于立方体、矩形箱、圆筒形、三棱柱、双曲面结 构或一些其它形状或它们的各种组合。如图所示,壳体410可以是圆筒形。壳 体410可具有足以装入管束450的尺寸和形状。渐窄件413可设置在壳体410 的底端401。渐窄件413例如可以是截头圆锥形或圆锥形。颗粒物出口415可被 设置在渐窄件413的最窄端上,以用于从换热系统400中排出被冷却的颗粒物。 充气嘴414可设置在壳体410的底端401附近。
管束450可由一个或多个支承件或者一个或多个第一管板465支承。第一 管板465可被如此地紧固,以使得当管件450设置在第一管板465内时可形成 使第一管板465上方的空间与第一管板465下方的空间流体隔绝的密封。第一 管板465可按足以支承至少总和管件450的全部重量的方式被连接至管件450。 一个或多个导向件424和一个或多个牺牲防护件426也可全部由一个或多个第 一管板465支承。第一管板465可支承管束450、导向件424、牺牲防护件426 和定向格栅420、422的总和重量。
多个内导管455可由一个或多个支承件或者一个或多个第二管板467支承。 第二管板467可被如此紧固,以使得当内导管455设置在第二管板467内时可 形成使第二管板上方的空间与第二管板下方的空间流体隔绝的密封。第二管板 467可按足以支承至少总和内导管455的全部重量的方式被连接至内导管455。
导向件424可沿管束450侧边布置地延伸了壳体410长度。导向件424可 被用于支承定向格栅420、422。例如,一个或多个导向件424可支承上定向格 栅420和下定向格栅422。一个或多个定向格栅的定位和安置可有助于对准管束 450和减小管束450的任何振动。导向件424相对于壳体110的纵轴线轴向取向 和/或可以是大致直的。导向件424的大致直线长度可被最优化以减少或避免管 件450的振动和/或便于维护管件450。导向件424、上定向格栅420和下定向格 栅422可以由合适的金属、金属合金、复合材料、聚合物材料或类似的材料制 成。例如,导向件424、上定向格栅420和下定向格栅422可由不锈钢构成。
在颗粒物入口405附近可包括牺牲防护件426,以便防护管束450免遭通过 颗粒物入口405进入壳体410的新的热颗粒物的侵害。所述牺牲防护件可由碳 钢、低铬钢、不锈钢或足以承受与离开颗粒物入口405的热颗粒物的直接接触 的其它材料构成。该牺牲防护件426可遮蔽至少部分管件450以使其免于直接 接触刚刚离开颗粒物入口405的热颗粒物。在一个或多个实施例中,牺牲防护 件426可至少部分地或完全地遮蔽所有管件450,以使其免于与刚刚离开颗粒物 入口405的热颗粒物直接接触。在一个或多个实施例中,该牺牲防护件可代替 管件450置于离颗粒物入口405最近的(多个)位置。
图5示出了图4中的换热器的沿线5-5剖开的剖视图。管束450被示出位于 壳体410内。如图所示,管束450可沿四个导向件424和四个牺牲防护件426 的侧边就位。管束450、导向件424和牺牲防护件426可全部被容纳在定向格栅 420之内。定向格栅420被示出具有用于形成定向格栅420的、正交布置的多个 撑条421。定向格栅420可包含连接至所布置的撑条421的外边缘并且形成围绕 所布置的撑条421的周边的带状条423。带状条423可将所布置的多个撑条421 固定和保持为网格图案。示出四个导向件424均匀地分布在带状条423的周边 附近。定向格栅420可通过沿带状条423的外周等距地就位的多个固定件419 进一步固定在壳体410中。固定件419可接触、附接、结合、接合或以其它方 式连接至壳体410的所述一个或多个侧壁411的内表面。
图6示出了图4中所示的换热器的沿线6-6剖开的剖视图。示出充气嘴414 置于壳体410的中心。空气或其它气体可经由通气阀490供给至充气嘴414。充 气嘴414可通过从充气嘴凸伸出的通气定心器492被固定并居中定位在壳体410 内。通气扶正器492可接触、附接或连接至壳体410的所述一个或多个侧壁411 的内表面。
图7示出了根据一个或多个实施例的、结合图3的换热系统300的示例性 气化系统700的示意图。气化系统700可包括一个或多个烃制备单元705、气化 器710、合成气冷却器715、颗粒物控制装置720以及换热系统300。原料经管 路701可被导入到烃制备单元705中以产生经管路706的气化器进料。经管路 701导入的原料可包括一种或多种碳质材料,无论是固态、液态、气态或它们的 组合。碳质材料可包括但不限于生物材料(例如植物和/或动物材料或植物和/或动 物衍生物质)、煤(例如高钠和低钠褐煤、褐煤、次烟煤和/或无烟煤)、油页岩、 焦炭、焦油、沥青质、低灰分或无灰分聚合物、烃类聚合材料、生物衍生材料 或来自制造作业的副产品。烃类聚合材料可包括例如热塑性体、弹性体、橡胶、 包括聚丙烯、聚乙烯、聚苯乙烯、包括其它的聚烯烃、均质聚合物、共聚物、 嵌段共聚物和它们的掺混物;PET(聚对苯二甲酸乙二醇酯)、共混聚合物、其它 聚烯烃、含氧聚烃;来自石油炼油厂和石油化工厂的重烃污泥和残留产物、如烃 蜡、其共混物、衍生物及它们的任意组合。
经管路701导入的原料可以包括两种或更多种碳质材料的混合物或组合物。 例如,经管路701导入的原料可以包括两种或更多种低灰分或无灰分聚合物、 源自生物物质的材料或来自制造作业的副产物的混合物或组合物。在另一个示 例中,经管路701导入的原料可以包括一种或多种丢弃的消费品如地毯和/或包 括保险杠和仪表盘的汽车塑料部件/零件所结合的一种或多种碳质材料。这种丢 弃的消费品的尺寸可以被减小以适于被置于气化器710中。因此,气化系统700 适于妥善处置以前生产的材料的要求。
根据经管路701导入的原料和管路721中所需的合成气产品,烃制备单元 705可以是本技术领域中已知的任何制备单元。例如,烃制备单元705可通过洗 去污物或其它不需要的部分以从来自管路701的原料中除去污染物。通过管路 701的原料可以是干的进料或可作为淤浆或悬浮液被输送到烃制备单元705。在 被导入烃制备单元705前,经管路701导入的原料可被干燥,然后由一个或多 个研磨单元(未示出)来粉碎。例如经管路701导入的原料可从高达约35%的水分 干燥至低至约18%的水分。例如流化床干燥器(未示出)可用于干燥经管路701导 入的原料。经管路701导入的原料的平均粒径大小为约50微米、约150微米或 约250微米至约400微米、约500微米或约600微米或更大。经管路706的气 化器进料、经管路731的一种或多种氧化剂和/或经管路709的蒸汽被导入到气 化器710中以产生经管路711的粗制合成气和经管路712的废料如粗灰。
经管路704导入的氧化剂由空气分离单元730供应到气化器710。空气分离 单元730可以经管路731向气化器710中提供纯氧、近纯氧、高浓度氧或富氧 空气。空气分离单元730经管路731向气化器710提供贫氮富氧进料,从而尽 可能降低经管路711提供给合成气冷却器715的粗制合成气中的氮浓度。纯氧 或近纯氧进料的使用允许气化器711产生的合成气基本上是无氮的,例如含有 少于约0.5摩尔百分比(mol%)的氮气/氩气。空气分离单元730是高压、低温型 分离器。空气可以经管路729被导入到空气分离单元730中。虽然未示出,分 离出的氮气可以从空气分离单元730被导入到燃气轮机中。空气分离单元730 可以向气化器710提供氧化剂总量的约10%、约30%、约50%、约70%、约90% 或约100%。
尽管未示出,一种或多种吸附剂可以被添加到气化器710中。一种或多种 吸附剂可以被添加用以在气化器710内从粗制合成气中吸收污物、如气态钠蒸 汽。一种或多种吸附剂可以被添加用来以充分的速度和量扫除氧气,足以延缓 或阻止氧气达到会与气化器710内的进料中的氢(例如水)发生不希望有的副反应 的浓度。一种或多种吸附剂可以与一种或多种烃混合或以其它方式附加到该一 种或多种烃中。一种或多种吸附剂用于撒在或覆盖在气化器710中的进料颗粒 物上以降低颗粒结块的可能。一种或多种吸附剂可以研磨至平均粒径为约5微 米至约100微米或约10微米至约75微米。吸附剂的示例可以包括但不限于富 含碳的灰、石灰石、白云石和焦屑。从进料中释放的残余硫元素可以被进料中 的天然钙元素或钙基吸附剂吸收以形成硫化钙。
气化器710可以是一个或多个循环固体气化器或输送式气化器、一个或多 个逆流固定床气化器、一个或多个顺流固定床气化器、一个或多个流化床反应 器、一个或多个夹带流气化器、任何其它类型的气化器或者它们的任意组合。 循环固体气化器或输送式气化器通过管路706导入气化器进料并导入一种或多 种氧化剂至一个或多个混合区(未示出)来提供气体混合物地工作。一个示例性的 循环固体气化器可以是如美国专利第7,722,690号中所讨论和描述的循环固体气 化器。
气化器710生产通过管路711的粗制合成气,同时气化器710中的废料例 如灰或者粗灰可以通过管路712排出。经管路712排出的废物或灰的尺寸大于 经管路722的细灰。经管路712的废物或灰可以丢弃或可以在其它场合使用。 经由管路712分离的颗粒物可被导入换热系统300以产生经管路301的被冷却 的颗粒物。经由管路712分离的颗粒物可在以下温度范围下进入换热系统300, 即温度范围为从低至约400℃、约500℃、约550℃、约600℃、约650℃、约 700℃、约750℃或约800℃至高达约900℃、约950℃、约1000℃、约1050℃、 约1100℃、约1150℃、约1200℃、约1250℃、约1350℃或约1400℃。经由 管路301离开换热系统300的被冷却的颗粒物的温度范围可以为从低至约 100℃、约110℃、约120℃、约130℃、约140℃、约150℃、约160℃或约165℃ 到高至约170℃、约175℃、约180℃、约185℃、约190℃、约200℃、约210℃、 约220℃、约230℃或约240℃。经由管路712分离的颗粒物和/或经过管路301 的被冷却的颗粒物可具有约20微米或更小、约15微米或更小、约12微米或更 小或者约9微米或更小的颗粒物直径(或平均横截面尺寸)。尽管未示出,但一个 或多个换热系统300可以被连接至同一气化器710或连接至多个气化器710。例 如,四个换热系统300可彼此并联并且连接至气化器710。经由管路709的蒸汽 可被导入气化器710中以支承气化工艺过程。然而在一个或多个实施例中,气 化器710不包括经由管路709的直接蒸汽导入。
气化器710产生的经管路711的粗制合成气可包括一氧化碳、氢气、氧气、 甲烷、二氧化碳、烃类、硫、固体、它们的混合物、它们的衍生物或它们的组 合。通过管路711的粗制合成气可以包含85%或更多的一氧化碳和氢气,其余 成分主要为二氧化碳和甲烷。气化器710可以将经管路706导入的气化器进料 中的至少约85%、约90%、约95%、约98%或约99%的碳转变成合成气。
通过管路711的粗制合成气包含90%或更多的一氧化碳和氢气、95%或更多 的一氧化碳和氢气、97%或更多的一氧化碳和氢气或99%或更多的一氧化碳和氢 气。气化器710中产生的通过管路711的粗制合成气中一氧化碳的含量范围为 低至约10vol%、约20vol%或约30vol%到高达约60vol%、约70vol%、约80vol% 或约90vol%。例如,通过管路711的粗制合成气的一氧化碳含量范围为约15vol% 至约85vol%、约25vol%至约75vol%、或约35vol%至约65vol%。
经管路711的粗制合成气中的氢含量范围为低至约1vol%、约5vol%或约 10vol%到高达约30vol%、约40vol%或约50vol%。例如,通过管路711的粗制 合成气中氢含量范围为约5vol%至约45vol%的氢气、从约10vol%至约35vol% 的氢气或约10vol%至约25vol%的氢气。
通过管路711的粗制合成气可包含小于25vol%、小于20vol%、小于15vol%、 小于10vol%或小于5vol%的氮、甲烷、二氧化碳、水、硫化氢和氯化氢组合。
通过管路711的粗制合成气中氮含量范围为低至约0vol%、约0.5vol%、约 1.0vol%或约1.5vol%到高达约2.0vol%、约2.5vol%或约3.0vol%。通过管路711 的粗制合成气可以是无氮的或基本上是无氮的,例如含有0.5vol%或更少的氮。
通过管路711的粗制合成气中甲烷的含量范围为低至约0vol%、约2vol%或 约5vol%到高达约10vol%、约15vol%、或约20vol%。例如,通过管路711的 粗制合成气中甲烷的含量范围可以为约1vol%至约20vol%、约5vol%至约 15vol%或约5vol%至约10vol%。在另一个示例中,通过管路711的粗制合成气 中甲烷的含量为约15vol%或更小、10vol%或更小、5vol%或更小、3vol%或更小、 2vol%或更小、1vol%或更小。
经管路711的粗制合成气中的二氧化碳含量范围为低至约0vol%、约5vol% 或约10vol%到高达约20vol%、约25vol%或约30vol%。例如,经管路711的粗 制合成气中的二氧化碳的含量可以是约20vol%或更少、约15vol%或更少、约 10vol%或更少、大约5vol%或更少、约1vol%或更少。
经管路711的粗制合成气中的水含量为约40vol%或更少、30vol%或更少、 25vol%或更少、20vol%或更少、15vol%或更少、10vol%或更少、5vol%或更少、 3vol%或更少、2vol%或更少、1vol%或更少。
从气化器710中经管路711排出的粗制合成气在校正热损失和稀释效应后 的热值为约1863kJ/m3(千焦每立方米)(50Btu/scf(英国热量单位/标准立方英尺)) 至约2794kJ/m3(75Btu/scf)、约1863kJ/m3至约3726kJ/m3(100Btu/scf)、约1863kJ/ m3至约4098kJ/m3(110Btu/scf)、约1863kJ/m3至约5516kJ/m3(140Btu/scf)、约 1863kJ/m3至约6707kJ/m3(180Btu/scf)、约1863kJ/m3至约7452kJ/ m3(200Btu/scf)、约1863kJ/m3至约9315kJ/m3(250Btu/scf)、约1863kJ/m3至约 10246kJ/m3(275Btu/scf)、1863kJ/m3至约11178kJ/m3(300Btu/scf)或约1863kJ/m3至约14904kJ/m3(400Btu/scf)。
从气化器710中经管路711排出的粗制合成气的温度范围为约575℃至约 2100℃。例如经管路711的粗制合成气的温度范围为低至约800℃、约900℃、 约1000℃或约1050℃至高达约1150℃、约1250℃、约1350℃或约1450℃。
经管路711的粗制合成气可被导入到合成气冷却器715,以提供经管路716 导出的冷却合成气。经管路711导入的粗制合成气可在合成气冷却器715中通 过使用经管路714导入的传热介质来冷却。例如经管路711导入的粗制合成气 可通过约260℃至约430℃的间接换热进行冷却。虽然未示出,但经管路714导 入的传热介质可包括从合成气净化系统导入的工艺蒸汽或冷凝液。经管路714 导入的传热介质可以是工艺产水、锅炉供水、过热低压蒸汽、过热中压蒸汽、 过热高压蒸汽、饱和低压蒸汽、饱和中压蒸汽、饱和高压蒸汽等。经管路711 导入合成气冷却器715的粗制合成气的热量可以间接地转移到经管路714导入 的传热介质。例如,经管路714导入合成气冷却器715的粗制合成气的热量可 以间接地转移到经管路714导入的锅炉供水中,以提供经管路717的过热高压 蒸汽。经管路717的过热或高压过热蒸汽可以用来给可驱动直连发电机(未示出) 的一个或多个蒸汽轮机(未示出)提供动力。从蒸汽轮机(未示出)回收的冷凝液然 后可以循环作为经由管路714导入合成气冷却器715的传热介质例如锅炉供水。
从合成气冷却器715经管路717导出的过热或高压过热蒸汽的温度范围为 低至约300℃、约325℃、约350℃、约370℃、约390℃、约415℃、约425℃ 或约435℃到高达约440℃、约445℃、约450℃、约455℃、约460℃、约470℃、 约500℃、约550℃、约600℃或约650℃。例如经管路717导出的过热或高压 过热蒸汽的温度为约427℃至约454℃、约415℃至约433℃、约430℃至约460℃ 或约420℃至约455℃。经管路717导出的过热或高压过热蒸汽的压力范围为低 至约3000千帕、约3500千帕、约4000千帕或约4300千帕到高达约4700千帕、 约5000千帕、约5300千帕、约5500千帕、约6000千帕或约6500千帕。例如, 经管路717导出的过热或高压过热蒸汽的压力为约3550千帕至约5620千帕、 约3100千帕至约4400千帕、约4300千帕至约5700千帕或约3700千帕至约5200 千帕。
虽然未示出,但合成气冷却器711可以包括以并联或串联方式配置的一个 或多个换热器或换热区。合成气冷却器711中包括的换热器可以是管壳式换热 器。例如经管路711导出的粗制合成气可以接续地或并行地被供应到换热器的 壳体侧或管侧。根据粗制合成气在哪一侧被导入,经管路714导入的传热介质 可以流经壳体侧或管侧。
冷却的合成气经管路716可以被导入到一个或多个颗粒物去除系统720以 从经由管路716导入的冷却的合成气中部分或完全地去除颗粒物以提供经气管 路721导出的分离的或“贫颗粒物”的合成气、经管路722导出的被分离的颗粒物 和经管路723导出的冷凝液。虽然未示出,但在启动颗粒物去除系统720时就 可以提供蒸汽。
虽然未示出,但在粗制合成气冷却之前,一个或多个颗粒物去除系统720 可任选地用于部分地或完全地从经管路711导入的粗制合成气中除去颗粒物。 例如经管路711的粗制合成气可以被直接导入到颗粒物去除系统720中从而去 除热气体颗粒物(例如约550℃至约1050℃)。虽然未示出,但可以使用两个颗粒 物去除系统720。例如,一个颗粒去除系统720可以布置在合成气冷却器715的 上游,另一个颗粒去除系统720可以布置在合成气冷却器715的下游。
一个或多个颗粒物去除系统720可以包括一个或多个分离装置、如传统沉 降器和/或旋流器(未示出)。也可以使用能够提供出口颗粒浓度在约0.1ppmw(按 质量计的百万分之一)的可检出限值以下的颗粒物控制装置(“PCD”)。示例性的 PCD可包括但不限于烧结金属过滤器、金属滤芯和/或陶瓷滤芯(例如铁铝金属过 滤材料)。当过滤器从未经过滤的合成气中收集颗粒物时,可用少量的高压循环 的合成气对过滤器进行脉冲式清理。
尽管未示出,管路722中的灰可与管路722中的细灰一起被导入换热系统 300。尽管未示出,在另一示例中,经管路722的灰可被导入另一个或单独的换 热系统300。
本发明的实施例还涉及下文的任何一个或多个段落:
1.一种用于冷却热颗粒物的方法,包括:将颗粒物导入换热器,该换热器包 括:具有细长壳体的容器,该壳体具有第一端、第二端和一个或多个侧壁;布 置在所述一个或多个侧壁上的、用于接收颗粒物的壳体侧颗粒物入口;靠近第 二端布置的、用于排出被冷却的颗粒物的壳体侧颗粒物出口;包括布置在所述 容器内的多个管件的管束,其中每个所述管件各具有被固定至第一管板的开口 的第一端和封闭的第二端,并且其中每个管件内各设置有内导管,每个内导管 具有被固定至第二管板的开口的第一端和靠近其相应管件的封闭的第二端布置 的开口的第二端;和靠近所述第一端布置的、用于接收冷却剂的冷却剂入口; 以及在第一管板和第二管板之间设置在所述一个或多个侧壁上的、用于排出被 加热的冷却剂的冷却剂出口;该方法还包括将冷却剂经由冷却剂入口导入所述 多个管件;该方法还包括使热颗粒物流经所述容器的壳体侧以及使至少一部分 颗粒物与所述管束接触;该方法还包括从冷却剂出口回收被加热的冷却剂;以 及从颗粒物出口回收被冷却的颗粒物。
2.根据段落1所述的方法,还包括将颗粒物从气化器导入换热器的颗粒物入 口,其中所述颗粒物包括细灰、粗灰或它们的组合。
3.根据段落1或2所述的方法,其中进入换热器的颗粒物的温度范围从约 400℃至约1400℃。
4.根据段落1至3的任一项所述的方法,其中从颗粒物出口回收的被冷却的 颗粒物的温度范围是从约100℃至约240℃。
5.根据段落1至4的任一段所述的方法,其中所述颗粒物在换热器内的滞留 时间的范围是从约10秒至约1800秒。
6.根据段落1至5的任一段所述的方法,其中流经所述容器的壳体侧的颗粒 物在该容器的壳体侧内形成流态化的颗粒物的密相床。
7.根据段落1至4的任一段所述的方法,其中所述容器是基本竖直定向的, 并具有在顶部的所述第一端和在底部的所述第二端,并且其中所述多个管件中 的每一个各相对于该容器的纵轴线轴向定向并且大致是直的。
8.根据段落7所述的方法,还包括将第一充气气体从所述容器的第二端并且 朝向所述多个管件导入该容器,其中第一充气气体在所述多个管件下方被导入。
9.根据段落8所述的方法,其中第一充气气体在所述多个管件的封闭的远端 下方至少约15厘米的位置被导入所述容器,并且其中所述颗粒物在所述多个管 件的封闭的远端上方至少约30厘米的位置被导入该容器。
10.根据段落7或8所述的方法,其中所述容器还包括位于所述容器的第二 端和颗粒物出口之间的渐窄件。
11.根据段落10所述的方法,还包括将第二充气气体经设置在所述渐窄件侧 壁上的一个或多个充气嘴导入所述容器,其中所述第二充气气体被引向颗粒物 出口。
12.根据段落8或9所述的方法,还包括将所述第一充气气体经在颗粒物入 口上方布置在所述一个或多个侧壁上的充气气体排放管路排放,其中所述充气 气体排放管路包括控制阀,该控制阀被接合至在充气气体排放管路的高度上设 置在所述一个或多个侧壁上的第一压力传感器并被接合至在颗粒物入口的高度 上设置在所述一个或多个侧壁上的第二压力传感器。
13.根据段落12所述的方法,其中颗粒物的密相流化床形成在所述容器的第 二端和所述多个管件的远端之间,而颗粒物的稀相床形成在密相流化床的表面 和所述容器的第一端之间。
14.根据段落13所述的方法,还包括通过控制第一充气气体的流速、调节控 制阀的位置或它们的组合的方式来调节颗粒物的密相流化床的表面高度。
15.一种用于冷却热颗粒物的方法,包括:使碳质材料在有一种或多种氧化 剂的情况下气化以提供包含氢气、一氧化碳和颗粒物的粗制合成气;将所述粗 制合成气导入颗粒物去除系统以从所述粗制合成气中分离颗粒物;将至少一部 分分离出的颗粒物导入颗粒物冷却器,该颗粒物冷却器包括容器,该容器包括 具有第一端、第二端和一个或多个侧壁的细长壳体,其中所述颗粒物经设置在 所述一个或多个侧壁上的颗粒物入口被导入,被冷却的颗粒物经设置在第二端 上的颗粒物出口离开颗粒物冷却器;将冷却剂引导至设置在该容器内的管束, 其中该管束包括多个管件,其中每个所述管件各具有固定至第一管板的开口的 第一端和封闭的第二端,其中内导管同心地置于每个管件内,其中所述内导管 具有固定至第二管板的开口的第一端和靠近所述封闭的第二端布置的开口的第 二端,其中所述冷却剂经邻近第一端的冷却剂入口进入管束;从在第一管板和 第二管板之间布置在所述一个或多个侧壁上的、用于排出被加热的冷却剂的冷 却剂出口回收被加热的冷却剂;使颗粒物流经所述容器的壳体侧以形成颗粒物 的密相床以及使所述颗粒物的密相床与所述管束接触;从位于所述容器内的、 在所述第二端和管束之间的一个或多个充气嘴将充气气体导入所述容器,其中 所述充气气体被引向管束;经由在颗粒物入口和第一管板之间的位置处设置在 所述一个或多个侧壁上的充气气体排放管路排放至少一部分充气气体;以及从 设置在所述容器的第二端的颗粒物出口回收被冷却的颗粒物。
16.根据段落15所述的方法,其中所述容器大致竖直定向并且颗粒物的密相 床位于所述颗粒物入口和所述容器的第二端之间的高度上。
17.根据段落15或16所述的方法,其中进入换热器的颗粒物的温度范围为 从约400℃至约1400℃,并且其中离开换热器的被冷却的颗粒物的温度范围为 从约100℃至约240℃。
18.根据段落15至17任一段所述的方法,其中颗粒物的密相床的高度通过 调节进入所述容器的充气气体的流速、通过调节从所述容器排出的充气气体的 流速或者它们的组合来调节。
19.一种用于冷却热颗粒物的系统,包括:与粗制合成气管路流体连通的气 化器;与粗制合成气管路和热颗粒物管路流体连通的颗粒物去除系统;以及与 热颗粒物管路流体连通的颗粒物冷却器,该颗粒物冷却器包括:具有第一端、 第二端和一个或多个侧壁的细长壳体;与热颗粒物管路流体连通并且设置在所 述一个或多个侧壁上的、用于接收热颗粒物的壳体侧颗粒物入口;设置在所述 第二端附近的、用于排出被冷却的颗粒物的壳体侧颗粒物出口,其中渐窄件位 于所述第二端和所述颗粒物出口之间;靠近所述第一端布置的、用于接收冷却 剂的管侧流体入口;包括多个管件的管束,其中每个管件各具有被固定至第一 管板的开口的第一端和封闭的第二端,并且其中内导管同心地置于每个管件内, 所述内导管具有被固定至第二管板的开口的第一端和靠近所述封闭的第二端布 置的开口的第二端;在第一管板和第二管板之间设置在所述一个或多个侧壁上 的、用于排出被加热的冷却剂的冷却剂出口和靠近所述第一端布置的、用于接 收冷却剂的冷却剂入口;设置在所述容器的第二端和管束之间的、用于将第一 充气流体引向管束的一个或多个第一充气嘴;以及设置在渐窄件的侧壁上的、 用于将第二充气气体引向颗粒物出口的一个或多个第二充气嘴。
20.根据段落19所述的系统,还包括:在颗粒物入口和所述容器的第一端之 间的位置处设置在一个或多个侧壁上的充气气体排放管路;设置在充气气体排 放管路上并被接合至在所述充气气体排放管路的高度上设置在所述一个或多个 侧壁上的第一压力传感器的控制阀;以及靠近所述颗粒物入口布置在所述一个 或多个侧壁上的第二压力传感器。
本文通过使用一组数值上限和一组数值下限描述了某些实施例和特征。应 该理解,除另有说明外,可以想到由任意这些下限至任意这些上限所得到的范 围。一定的下限值、上限值和范围会在下文的一个或多个权利要求中体现。所 有的数值是所指示的值“大约”或“近似”,并要考虑本技术领域的普通技术人员能 够预料的实验误差和变化。
上文已经定义了各种术语。权利要求所用的术语在一定程度上不受上文限 定,其应是相关领域的技术人员可以根据至少一个印刷出版物或授权专利反映 的内容所给出的最宽泛的定义。此外,本申请引用的所有专利、测试过程和其 它文件通过援引以与本发明不相违的方式被完全加入本文,且适于这样的援引 加入可被允许的所有司法管辖区。
虽然上文是针对本发明的实施例,但在不偏离本发明的基本范围的情况下 可以想到本发明的其它或进一步实施例,本发明的范围由以下的权利要求来限 定。

用于冷却热颗粒物的方法和系统.pdf_第1页
第1页 / 共27页
用于冷却热颗粒物的方法和系统.pdf_第2页
第2页 / 共27页
用于冷却热颗粒物的方法和系统.pdf_第3页
第3页 / 共27页
点击查看更多>>
资源描述

《用于冷却热颗粒物的方法和系统.pdf》由会员分享,可在线阅读,更多相关《用于冷却热颗粒物的方法和系统.pdf(27页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 (43)申请公布日 (21)申请号 201380039483.X(22)申请日 2013.05.2413/480265 2012.05.24 USC10J 3/56(2006.01)(71)申请人 凯洛格布朗及鲁特有限公司地址 美国德克萨斯州(72)发明人 IH陈 WE菲利普斯 Y李(74)专利代理机构 北京泛华伟业知识产权代理有限公司 11280代理人 谭彦闻 胡强(54) 发明名称用于冷却热颗粒物的方法和系统(57) 摘要提供了用于冷却颗粒物的方法、系统和设备。所述方法可包括将颗粒物引入包含管束的换热器,该管束具有多个管件,包括将冷却剂经冷却剂入口引入多个管件,使所述颗。

2、粒物流经换热器的壳体侧,以及使至少一部分颗粒物与管束接触。该方法还可包括从冷却剂出口回收被加热的冷却剂以及从颗粒物出口回收被冷却的颗粒物。所述换热器可包括具有细长壳体的容器,所述壳体具有第一端、第二端、一个或多个侧壁、设置在所述一个或多个侧壁上的用于接收颗粒物的壳体侧颗粒物入口、靠近第二端布置的用于排出被冷却的颗粒物的壳体侧颗粒物出口以及包括设置在该容器中的多个管件的管束。(30)优先权数据(85)PCT国际申请进入国家阶段日2015.01.23(86)PCT国际申请的申请数据PCT/US2013/042584 2013.05.24(87)PCT国际申请的公布数据WO2013/177485 E。

3、N 2013.11.28(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书3页 说明书17页 附图6页(10)申请公布号 CN 104487551 A(43)申请公布日 2015.04.01CN 104487551 A1/3 页21.一种用于冷却热颗粒物的方法,包括 :将颗粒物导入换热器,该换热器包括 :包含细长壳体的容器,该壳体具有第一端、第二端和一个或多个侧壁,布置在所述一个或多个侧壁上的、用于接收颗粒物的壳体侧颗粒物入口,靠近所述第二端布置的、用于排出被冷却的颗粒物的壳体侧颗粒物出口,包括布置在所述容器内的多个管件的管束,其中每个所述管件各具有被固定。

4、至第一管板的开口的第一端和封闭的第二端,并且其中每个管件内各设置有内导管,每个内导管具有被固定至第二管板的开口的第一端和靠近其相应管件的封闭的第二端布置的开口的第二端,靠近所述第一端布置的、用于接收冷却剂的冷却剂入口,以及在第一管板和第二管板之间设置在所述一个或多个侧壁上的、用于排出被加热的冷却剂的冷却剂出口 ;将冷却剂经由冷却剂入口导入所述多个管件 ;使颗粒物流经所述容器的壳体侧以及使至少一部分颗粒物与所述管束接触 ;从冷却剂出口回收被加热的冷却剂 ;以及从颗粒物出口回收被冷却的颗粒物。2.根据权利要求 1 所述的方法,还包括将颗粒物从气化器导入换热器的颗粒物入口,其中所述颗粒物包含细灰、粗。

5、灰或它们的组合。3.根据权利要求 1 所述的方法,其中进入换热器的颗粒物的温度范围是从约 400至约 1400。4.根据权利要求 1 所述的方法,其中从颗粒物出口回收的被冷却的颗粒物的温度范围是从约 100至约 240。5.根据权利要求 1 所述的方法,其中所述颗粒物在换热器内的滞留时间的范围是从约10 秒至约 1800 秒。6.根据权利要求 1 所述的方法,其中流经所述容器的壳体侧的颗粒物在该容器的壳体侧内形成流态化的颗粒物的密相床。7.根据权利要求 1 所述的方法,其中所述容器是基本竖直定向的,并具有在顶部的所述第一端和在底部的所述第二端,并且其中所述多个管件中的每一个各相对于该容器的纵轴。

6、线轴向定向并且大致是直的。8.根据权利要求 7 所述的方法,还包括将第一充气气体从所述容器的第二端并且朝向所述多个管件导入该容器,其中第一充气气体在所述多个管件下方被导入。9.根据权利要求 8 所述的方法,其中第一充气气体在所述多个管件的封闭的远端下方至少约 15 厘米的位置被导入所述容器,并且其中所述颗粒物在所述多个管件的封闭的远端上方至少约 30 厘米的位置被导入该容器。10.根据权利要求 7 所述的方法,其中所述容器还包括位于所述容器的第二端和颗粒物出口之间的渐窄件。11.根据权利要求 10 所述的方法,还包括将第二充气气体经设置在所述渐窄件侧壁上的一个或多个充气嘴导入所述容器,其中所述。

7、第二充气气体被引导朝向颗粒物出口。12.根据权利要求 8 所述的方法,还包括将所述第一充气气体经在所述一个或多个侧权 利 要 求 书CN 104487551 A2/3 页3壁上的、在颗粒物入口上方布置的充气气体排放管路排放,其中所述充气气体排放管路包括控制阀,该控制阀被接合至在充气气体排放管路的高度上设置在所述一个或多个侧壁上的第一压力传感器并被接合至在颗粒物入口的高度上设置在所述一个或多个侧壁上的第二压力传感器。13.根据权利要求 12 所述的方法,其中颗粒物的密相流化床形成在所述容器的第二端和所述多个管件的远端之间,而颗粒物的稀相床形成在密相流化床的表面和所述容器的第一端之间。14.根据权。

8、利要求 13 所述的方法,还包括通过控制第一充气气体的流速、调节控制阀的位置或它们的组合的方式来调节颗粒物的密相流化床的表面高度。15.一种用于冷却热颗粒物的方法,包括 :使碳质材料在有一种或多种氧化剂的情况下气化以提供包含氢气、一氧化碳和颗粒物的粗制合成气 ;将所述粗制合成气导入颗粒物去除系统以从所述粗制合成气中分离出颗粒物 ;将至少一部分分离出的颗粒物导入颗粒物冷却器,该颗粒物冷却器包括容器,该容器包括具有第一端、第二端和一个或多个侧壁的细长壳体,其中所述颗粒物经设置在所述一个或多个侧壁上的颗粒物入口被引入,被冷却的颗粒物经设置在所述第二端上的颗粒物出口离开颗粒物冷却器 ;将冷却剂引导至设。

9、置在该容器内的管束,其中该管束包括多个管件,其中每个所述管件各具有被固定至第一管板的开口的第一端和封闭的第二端,其中内导管同心地置于每个管件内,其中所述内导管具有被固定至第二管板的开口的第一端和靠近所述封闭的第二端布置的开口的第二端,其中所述冷却剂经邻近所述第一端的冷却剂入口进入管束 ;从在第一管板和第二管板之间布置在所述一个或多个侧壁上的、用于排出被加热的冷却剂的冷却剂出口回收被加热的冷却剂 ;使颗粒物流经所述容器的壳体侧以形成颗粒物的密相床以及使所述颗粒物的密相床与所述管束接触 ;从位于所述容器内的、在所述第二端和管束之间的一个或多个充气嘴将充气气体导入所述容器,其中所述充气气体被引导朝向。

10、管束 ;经由在颗粒物入口和第一管板之间的位置处设置在所述一个或多个侧壁上的充气气体排放管路排放至少一部分充气气体 ;以及从设置在所述容器的第二端的颗粒物出口回收被冷却的颗粒物。16.根据权利要求 15 所述的方法,其中所述容器大致竖直定向并且颗粒物的密相床位于所述颗粒物入口和所述容器的第二端之间的高度上。17.根据权利要求 15 所述的方法,其中进入换热器的颗粒物的温度范围为从约 400至约 1400,并且其中离开换热器的被冷却的颗粒物的温度范围为从约 100至约 240。18.根据权利要求 15 所述的方法,其中颗粒物的密相床的高度通过调节进入所述容器的充气气体的流速、通过调节从所述容器排出。

11、的充气气体的流速或者它们的组合来调节。19.一种用于冷却热颗粒物的系统,包括 :与粗制合成气管路流体连通的气化器 ;与粗制合成气管路和颗粒物管路流体连通的颗粒物去除系统 ;以及权 利 要 求 书CN 104487551 A3/3 页4与颗粒物管路流体连通的颗粒物冷却器,该颗粒物冷却器包括 :具有第一端、第二端和一个或多个侧壁的细长壳体 ;与颗粒物管路流体连通并且设置在所述一个或多个侧壁上的、用于接收颗粒物的壳体侧颗粒物入口 ;设置在所述第二端附近的、用于排出被冷却的颗粒物的壳体侧颗粒物出口,其中渐窄件位于所述第二端和所述颗粒物出口之间 ;靠近所述第一端布置的、用于接收冷却剂的管侧流体入口 ;包。

12、括多个管件的管束,其中每个管件各具有被固定至第一管板的开口的第一端和封闭的第二端,并且其中内导管同心地置于每个管件内,所述内导管具有被固定至第二管板的开口的第一端和靠近所述封闭的第二端布置的开口的第二端 ;在第一管板和第二管板之间设置在所述一个或多个侧壁上的、用于排出被加热的冷却剂的冷却剂出口,靠近所述第一端布置的、用于接收冷却剂的冷却剂入口 ;设置在所述容器的第二端和管束之间的、用于将第一充气流体引向管束的一个或多个第一充气嘴 ;以及设置在渐窄件的侧壁上的、用于将第二充气气体引向颗粒物出口的一个或多个第二充气嘴。20.根据权利要求 19 所述的系统,还包括 :在颗粒物入口和所述容器的第一端之。

13、间的位置处设置在所述一个或多个侧壁上的充气气体排放管路 ;设置在充气气体排放管路上并被接合至在所述充气气体排放管路的高度上设置在所述一个或多个侧壁上的第一压力传感器的控制阀 ;以及靠近所述颗粒物入口布置在所述一个或多个侧壁上的第二压力传感器。权 利 要 求 书CN 104487551 A1/17 页5用于冷却热颗粒物的方法和系统技术领域0001 本文描述的实施例总体涉及烃的气化。确切的说,这些实施例涉及冷却从气化过程中回收的颗粒物。背景技术0002 气化器流出的粗制合成气包含在进一步处理之前需要被去除的颗粒物如粗灰、细灰和 / 或渣。使用颗粒物去除系统如过滤器和 / 或旋流器可以除去大部分的颗。

14、粒物。去除的颗粒物通常从系统被回收到气化器中或作为副产品从系统中被清除掉,流出颗粒物去除系统的合成气被进一步处理和 / 或净化。但是,去除的颗粒物在从系统中回收或清除之前通常需要进行冷却。0003 一种用于冷却去除的颗粒物的方法是使热的颗粒物落到盛水容器中,然后冷却的颗粒物被从“脏”水中分离出来。该方法的效率不高并且只能在低压条件下进行。另一种方法是将热的颗粒物供应到大型的水平定位的流化床上,该流化床具有设置在其中的冷却盘管。但是,大型流化床不易于膨胀或收缩来满足系统的一般冷却要求。还需要输入高能量以保持颗粒物流经流化床。并且,如果流化床的一部分发生故障,整个气化过程就不得不减缓或停止,直到流。

15、化床冷却器能被修好。再一种方法是将热颗粒物供应到包含盘绕的冷却管的容器中。但是这些管可毁于由热颗粒物的高温引起的热应力。此外,在颗粒物温度因变化的热负荷而变化时,可发生管膨胀或收缩。所述管膨胀或收缩可导致引起冷却管破裂或其它损伤的热应力,这可能需要停止整个气化过程以修复冷却器。0004 因此,需要用于冷却从气化过程中回收的颗粒物的新设备、新系统和新方法。附图说明0005 图 1 示出了根据一个或多个所述实施例的示例性换热器的侧剖视图。0006 图 2 示出了在图 1 中示出的换热器的沿线 2-2 剖开的剖视图。0007 图 3 示出了根据所述一个或多个实施例的示例性换热系统的侧剖视图。0008。

16、 图 4 示出了根据所述一个或多个实施例的具有支承件的示例性换热系统的侧剖视图。0009 图 5 示出了在图 4 中示出的换热器的沿线 5-5 剖开的剖视图。0010 图 6 示出了在图 4 中示出的换热器的沿线 6-6 剖开的剖视图。0011 图 7 示出了根据所述一个或多个实施例的、结合了图 4 中示出的换热系统的示例性气化系统的示意图。具体实施方式0012 提供了用于冷却颗粒物的方法、系统和设备。用于冷却颗粒物的方法可包括将颗粒物引入包含具有多个管件的管束的换热器,将冷却剂通过冷却剂入口引入所述多个管件,使所述颗粒物流经换热器的壳体侧,以及使至少一部分颗粒物与所述管束接触。该方法说 明 。

17、书CN 104487551 A2/17 页6还可包括从冷却剂出口回收被加热的冷却剂以及从颗粒物出口回收被冷却的颗粒物。所述换热器可包括具有细长壳体的容器,所述细长壳体具有第一端、第二端、一个或多个侧壁、布置在所述一个或多个侧壁上的用于接收颗粒物的壳体侧颗粒物入口、靠近第二端布置的用于排出被冷却的颗粒物的壳体侧颗粒物出口、以及包括布置在该容器内的多个管件的管束。每个所述管件可各具有固定至第一管板的开口的第一端和封闭的第二端,其中在每个管件内均布置有内导管。每个内导管可具有被固定至第二管板的开口的第一端和靠近其相应管件的封闭的第二端布置的开口的第二端。冷却剂入口可靠近所述第一端布置,以用于接收冷却。

18、剂。冷却剂出口可在第一管板和第二管板之间设置在所述一个或多个侧壁上,以用于排出被加热的冷却剂。0013 图 1 示出了根据一个或多个实施例的示例性换热器 100 的剖视图。该换热器 100包括壳体 110、一个或多个入口总管 125、一个或多个出口总管 135 和一个或多个换热件或管件 149。该换热器 100 可包括多个管件 149 以形成或提供管束 150。所述入口总管 125、出口总管 135 和管束 150 可至少部分是或形成该换热器 100 的“管侧”,而剩余的内部容积或壳体内部 104 可至少部分是或形成该换热器 100 的“壳体侧”。所述壳体 110 可具有第一端或“顶”端 10。

19、2 和第二端或“底”端 101。该壳体 110 可包括颗粒物入口 105、颗粒物出口115 和排出气出口 170。所述颗粒物入口 105 可在第一端 102 和第二端 101 之间被布置在壳体 110 上。例如,所述颗粒物入口 105 可在管束 150 的下半部附近与内部容积 104 流体连通,以使得颗粒物的密相床可在第二端 101 和颗粒物入口 105 之间形成在内部容积 104之内,而颗粒物的稀相可在密相床表面和换热器 100 的第二端 102 之间形成。底端 101 和颗粒物出口115可通过渐缩部段或渐窄件113连接在一起。所述的另一种方式,渐窄件113可具有内表面,该内表面从在底端10。

20、1处的第一截面区域向颗粒物出口115渐缩或变窄。例如,渐窄件113可具有截头圆锥形或圆锥形的内表面或壁190。一个或多个充气嘴114可被设置在壳体 110 的底端 101 处或附近,以将任意方向的空气引向管束 150。0014 所述壳体110还可包括一个或多个入口120和一个或多个出口130,它们贯穿壳体110 的一个或多个侧壁 ( 示出了一个侧壁 111) 和 / 或顶端 102 布置。在一个或多个实施例中,可将出口 130 配置为穿过侧壁 111、而将入口 120 配置为穿过置于或位于壳体 110 顶端上的顶部区段。所述入口或“冷却剂入口”120 可连接至冷却剂供给装置 ( 未示出 ) 并。

21、且构造为或适配成接收流过其中的冷却剂。例如,可以将冷水从冷水源、另一换热器或它们的组合供应到入口120。合适的冷却剂可包括但不限于水、空气、液态烃、气态烃或它们的任意组合。被加热的冷却剂可通过出口或“冷却剂出口”130 回收。例如,被加热的水可经出口 130流入一个或多个蒸汽锅筒、节热器或类似的装置 ( 未示出 )。在一个或多个实施例中,冷却剂可进入入口 120、分配给管束 150 并离开出口 130 而不需要泵或其它输送设备。例如,冷却剂可仅凭借重力进入入口 120、分配给管束 150 和离开出口 130。冷却剂可以是或用作冷却介质和 / 或加热介质。同样地,换热器 100 可作为颗粒物冷却。

22、器和 / 或颗粒物加热器运行。0015 壳体 110 可具有任何期望形状。例如,壳体 110 可呈立方体、矩形箱、圆筒形、三棱柱、双曲面结构或其它形状或它们的各种组合的形式。在一个或多个实施例中,壳体110 可以是圆筒形。在一个或多个实施例中,壳体 110 可以是竖直定向的或基本上竖直定向的。例如,基本竖直的壳体 110 可相对于竖向呈如下度数的角,即约 -20至约 20,说 明 书CN 104487551 A3/17 页7约-15至约15,约-10至约10,约-5至约5,约-3至约3,约-2至约2,约 -1至约 1,约 -0.1至约 0.1,约 -0.01至约 0.01,约 -0.001至约。

23、 0.001或约 -0.0001至约 0.0001。0016 入口总管125可以至少部分地设置在壳体110中并且与入口120流体连通。例如,入口总管 125 可通过入口管或入口管道 123 与入口 120 连接或流体连通。出口总管 135 也可以至少部分地设置在壳体 110 中并且与出口 130 流体连通。例如,出口总管 135 可通过出口管或出口管道 133 与出口 130 连接。入口总管 125 和出口总管 135 可各自被布置在一个或多个换热件或管件 149 的上方。如所示出的,入口总管 125 可被置于出口总管 135 的上方。或者,入口总管 125 可被置于出口总管 135( 未示出。

24、 ) 之内。0017 管束 150 可以至少部分地设置在壳体 110 内并且可以与入口总管 125 和出口总管135 流体连通。管束 150 可以至少部分地设置在入口总管 125 和 / 或出口总管 135 的下方。例如,管束 150 可设置在入口总管 125 和出口总管 135 下方并且在侧壁 111 之间。管件 149的重量可至少部分由所述一个或多个出口总管 135 支承。0018 管束150可由一个或多个支承件或一个或多个管板(示出一个管板165)支承。一个或多个第一管板 165 可位于每个管件 149 的开口的近端 162 附近的任意位置。管件 149的近端 162 的至少一部分可位于。

25、第一管板 165 的上方。在一个或多个实施例中,第一管板165 可连接至每个管件 149 的外表面或与其一体形成。第一管板 165 可按足以支承至少管束150的全部重量的任何方式被连接至管件149。在一个或多个实施例中,管件149可以是自由悬挂的或完全由第一管板 165 支承。第一管板 165 可以被可密封地固定至壳体 110 的侧壁 111 的内表面 112( 见图 2) 和每个管件 149 的外表面。第一管板 165 可形成与壳体内部104和出口总管135的不透流体的密封,这样形成部分出口总管135。可包括一个或多个稳定器 175 以减小或防止自由悬挂的管件 149 的振动。可包括任意数量。

26、的稳定器 175。在一个或多个实施例中,每个管件 149 可与至少一个稳定器 175、至少两个稳定器、或三个或更多个稳定器 175 接触。例如,可与一个或多个管件 149 接触的稳定器 175 的数量的范围可以是在约 1、约 2、或约 3 的下限至约 5、约 7、或约 10 的上限内。0019 管件 149 可具有封闭的远端 160 和开口的近端 162。开口的近端 162 可接合至入口总管 125。管件 149 可相对于壳体 110 的纵轴线轴向定向和 / 或可以是大致平直的。管件149的大致直线长度可以进行优化以减少或避免振动和/或便于维护管件149。例如,管件 149 的直线长度的范围在。

27、约 1 米的下限至约 20 米的上限内。管件 149 的数量和长度可基于所期望的传热负载量决定。0020 管件 149 可彼此隔开以减少或防止颗粒物在它们之间桥接。例如,管件 149 之间的间隔范围可在约 50 毫米、约 70 毫米、或约 100 毫米的下限至约 120 毫米、约 140 毫米、或约 160 毫米或更远的上限之内,以减少或防止颗粒物在它们之间桥接。管件 149 之间的距离可以至少部分根据颗粒物特定尺寸决定,该颗粒物可以是或是预期要通过该换热器 100输送。0021 管件149可各自包含或包括至少部分设置在管件内的内导管155。每个内导管155可被连接至入口总管 125 或与其一。

28、体形成。在每个管件内布置一内导管 155 可在每个管件149 和每个内导管 155 之间形成或以其它方式提供环形的空间或区域。内导管 155 可同心地布置在每个管件 149 内,以在内导管 155 和管件 149 之间形成环形空间。在一个或多个说 明 书CN 104487551 A4/17 页8实施例中,管件 149 和至少部分位于其内的内导管 155 的组合可形成或提供通常所称的内插管型管或内插管式管。0022 多个内导管 155 可由一个或多个支承件或一个或多个第二管板 167 支承。第二管板 167 可位于所述多个内导管 155 的顶端 159 附近的任意位置。所述多个内导管 155 的。

29、顶端 159 的至少一部分可位于第二管板 167 的上方。在一个或多个实施例中,第二管板 167可与内导管 155 的外表面相连接或与其一体形成。第二管板 167 可按足以支承至少总和内导管155的全部重量的方式被连接至内导管155。在一个或多个实施例中,内导管155可以是自由悬挂在管件 149 内的或者可以完全由第二管板 167 支承。第二管板 167 可被可密封地固定至壳体 110 的侧壁 111 的内表面 112。第二管板 167 可与入口总管 125 和出口总管135 形成不透流体的密封,从而形成出口总管 135 和入口总管 125 的一部分。0023 壳体 110 和其内的任何一个或。

30、多个部分或部件可以由合适的金属、金属合金、复合材料、聚合物材料或类似的材料制成。例如,包括入口 120 和出口 130 的壳体 110 可以由碳钢或低铬钢制成,而内部部分即管件 149、稳定器 175、内导管 155、总管 125、135、管板165、以及在入口管道和出口管道 123、133 可以由不锈钢制成。0024 在操作中,换热器 100 可以接收通过颗粒物入口 105 的颗粒物、例如灰。在颗粒物进入壳体 110 之前或同时,冷却剂、例如水可以经入口 120 导入。虽然未示出,外部容器可以经外部管路向入口 120 供应冷却剂和 / 或接纳来自出口 130 的冷却剂,其中外部管道与入口 1。

31、20 和 / 或出口 130 可以流体连通。冷却剂可以凭借重力从入口 120、经入口管 123 流至入口总管 125。在另一个例子中,经由入口管 123 引入入口总管 125 的冷却剂可被加压。入口总管 125 可将冷却剂分配给安置在管件 149 中的内导管 155。冷却剂可凭借重力向下流进内导管 155 并在内导管 155 的位于管件 149 的封闭的远端 160 附近的远端 157 处流出内导管 155( 见示出流动路径的箭头 )。冷却剂可反向行经位于内导管 155 和管件 149 之间的环形空间且在离开管件 149 时进入出口总管 135( 见箭头 )。冷却剂可经由出口管道 133流出出。

32、口总管135(见箭头)。在一个例子中,在冷却剂流出内导管155时,其能够受热并能至少部分汽化,导致冷却剂具有更低密度。受热的冷却剂的更低密度允许受热的冷却剂沿环形区域上升(见箭头)然后流出以进入外部总管135。在另一个例子中,稠密的冷却剂可仅凭借重力向下流入内导管 155。0025 所述颗粒物入口 105 可距封闭的远端 160 比距开口端 162 更近地布置在管束 150附近。例如,颗粒物入口105可被设置在管件150的最底端或封闭的远端上方的至少约1厘米、约5厘米、约15厘米、约30厘米、至少约100厘米、至少约150厘米、至少约300厘米、至少约 450 厘米、至少约 600 厘米、至少。

33、约 750 厘米、至少约 900 厘米、至少约 2000 厘米、至少约 5000 厘米、或至少约 10000 厘米处。像这样,从颗粒物入口 105 进入壳体 110 颗粒物可形成能通过管件 149 之间的颗粒物的密相。颗粒物的稀相可存在于颗粒物的密相的上方。当颗粒物流过换热器 100 时,热量可以间接地转移给冷却剂以产生被冷却的颗粒物和被加热的冷却剂。被加热的冷却剂可以从换热器 100 的出口 130 中回收,并供给到一系统或工艺过程的另一部分、如锅筒和 / 或节热器中。来自密相底部的被冷却的颗粒物可经由冷却颗粒物出口 115 离开换热器 100。0026 冷却剂可以在任何所需的压力下被引导至。

34、入口 120。例如,冷却剂可以在与换热器 100 中的压力相匹配的压力下流入入口 120。这有助于冷却剂保持所需的速度和 / 或减说 明 书CN 104487551 A5/17 页9少冷却剂在流经管件 149、入口总管和出口总管 125、135 和 / 或入口管和出口管 123、133时发生的沸腾。例如,足够量的冷却剂流入入口 120 使得冷却剂不会在管件 149 的环形区域内全部汽化。在另一个示例中,小于约 90vol ( 体积百分比 )、小于约 70vol、小于约50vol、小于约30vol、小于约20vol、小于约10vol、小于约5vol、小于约2vol、或小于约 1vol的流入入口 。

35、120 的冷却剂会被汽化。甚至在另一个示例中,从约 1vol、约 2vol、约 5vol的下限至约 10vol、约 20vol、约 30vol的上限之间的流入入口120 的冷却剂会被汽化。0027 冷却剂可以在低至约 101 千帕、约 150 千帕、约 350 千帕或约 700 千帕到高达约3500 千帕、约 6900 千帕、约 13800 千帕或约 20000 千帕的范围内的压力作用下流入入口120。流入入口 120 的冷却剂温度范围为低至约 15 摄氏度 ( )、约 30、约 60,约 90到高达约175、约250、约300或约350。在另一个示例中,流入入口120的冷却剂的温度为从约 3。

36、8至约 335、从约 45至约 275或从约 75至约 200。虽然已经给出冷却剂压力范围和温度范围,但是冷却的压力和温度可以至少部分地根据行经换热器 100的颗粒物压力和温度在很广泛的范围内变化。从出口 130 回收的冷却剂的温度高于流入入口 120 的冷却剂的温度。例如,从出口 130 回收的冷却剂温度高于流入入口 120 的冷却剂温度的范围为从低至约0.5、约1、约5或约10至高达约50、约100、约150或约 200。0028 示例性颗粒物可以包括但不限于灰颗粒、砂、陶瓷颗粒、催化剂颗粒、飞灰、炉渣或它们的任意组合。因此,颗粒物可以是由多种烃处理工艺中所产生、使用或者回收的。例如,颗粒。

37、物可以由气化工艺过程、催化裂化工艺过程、如流化催化裂解装置或者类似的工艺过程中产生、使用或者回收。适宜的气化过程可以包括一个或多个气化器。一个或多个气化器可以是或可以包括任何类型的气化器,例如固定床气、夹带流气化器和流化床气化器。在至少一个示例中,气化器是流化床气化器。0029 如本文所用的术语“粗”,例如粗灰和粗灰颗粒,指的是具有平均粒径范围从低至约 35 微米 (m)、约 45m、约 50m、约 75m 或约 100m 到高达约 500m、约 750m、约1000C 或约 5000m 的颗粒物。例如,粗灰颗粒的平均粒径为从约 50m 至约 1000m、从约 100m 至约 750m、从约 。

38、125m 至约 500m 或从约 150m 至约 250m。如本文所用的术语“细”,例如细灰和细灰颗粒,指的是具有平均粒径范围从低至约 2m、约 5m 或约 10m 到高达约 75m、约 85m 或约 95m 的颗粒物。例如,细灰颗粒具有的平均粒径可为从约 5m 至约 30m、从约 7m 至约 25m 或从约 10m 至约 20m。0030 图 2 示出了图 1 的换热器 100 沿线 2-2 剖开的剖视视图。换热器 100 的壳体 110可具有多边形形状,包括但不限于圆形、矩形、三角形、正方形、五边形、六边形、星形等、或它们的任意组合。例如壳体 110 可以具有如图所示的圆形横截面。壳体 1。

39、10 可具有与底端101 和顶端 102 相同或不同的形状。例如,壳体 110 的中间部分可具有圆形横截面,而顶端和底端 102、101 可具有方形横截面。0031 管板 165、167 可具有多种形状和尺寸。例如,当壳体 110 如图所示为圆筒形时,第一管板 165 具有对应于壳体 110 的尺寸和形状的尺寸和形状。第一管板 165 可设置在或者以其它方式固定在侧壁 111 的内表面 112 上。第一管板 165 可直接设置在和 / 或固定在侧壁 111 的内表面 112 上。例如,第一管板 165 可通过紧固件 ( 例如焊接接头、铆钉和 / 或螺说 明 书CN 104487551 A6/1。

40、7 页10栓 ) 直接固定至侧壁 111 的内表面 112。在另一个示例中,第一管板 165 可通过焊接接头或其它足以使出口总管135和壳体110内部流体隔绝的基质或机构被可密封地固定至侧壁111 的内表面 112。在另一示例中,第一管板 165 可被可密封地固定至侧壁 111 的内表面112,以使出口总管 135 可与壳体 110 的内部流体隔绝。此外,第二管板 167( 在图 2 中未示出)被可密封地固定至侧壁111的内表面112,以使出口总管135和入口总管125彼此间流体隔绝。0032 第一管板 165 可容纳或固定管束 150。第一管板 165 可设置在或以其它方式固定在每一管件 1。

41、49 的外表面 151 上。第一管板 165 可直接设置在和 / 或固定在每一管件 149的外表面 151 上。例如,第一管板 165 可通过紧固件 ( 例如焊接接头或螺栓 ) 直接固定至每一管件149的外表面151。在另一个示例中,第一管板165可通过焊接接头或其它足以使出口总管 135 和壳体 110 内部流体隔绝的基质或机构被可密封地固定至每一管件 149 的外表面 151。管件 149 被示出各自具有内导管 155。内导管 155 可被置于管件 149 之内。例如,内导管 155 可同心地设置在或就位于管件 149 之内。内导管稳定器 180 可被放置在内导管 155 的外壁 156 。

42、和管件 149 的内表面 152 之间的环形区域内,以减小或防止振动并且将内导管 155 保持在管件 149 内的中心位置中。在一个示例中,第一管板 165 被可密封地固定至各管件 149 的外表面 151 而第二管板 167( 在图 2 中未示出 ) 被可密封地固定至各内导管 155 的外表面 156,以使出口总管 135 和入口总管 125 彼此间流体隔绝并且与壳体110 的内部流体隔绝。0033 对于圆筒形壳体 110 来说,多个管件 149 可布置为一排或多排或者布置为至少一个圆筒形或环形 ( 未示出 )。例如,多个管件 149 可布置为多排或布置为同心圆筒或环。在一个或多个实施例中,。

43、多个管件 149 可布置为同心圆筒或环并且每个圆筒或环可包含不同尺寸和数量的管件 149。例如,管件 149 构成的第一环可具有从约 25 厘米 (cm) 至约 35cm的第一直径和从约 4 个至约 10 个管件 149。管件 149 构成的第二环可具有从约 40cm 至约50cm 的第二直径和从约 14 个至约 24 个管件 149。管件 149 构成的第三环可具有从约 55cm至约 65cm 的第三直径并可具有从约 20 个至约 26 个管件 149。管件 149 构成的第四环可具有从约 70cm 至约 80cm 的第四直径和从约 27 个至约 33 个管件 149。管件 149 构成的第。

44、五环可具有从约 85cm 至约 95cm 的第五直径并可具有从约 32 个至约 40 个管件 149。管件149 构成的第六环可具有从约 100cm 至约 110cm 的第六直径并具有从约 38 个至约 48 个管件 149。0034 图 3 示出了根据一个或多个实施例的示例性换热系统 300 的侧剖视图。该换热系统 300 可包括一个或多个颗粒物入口 305、一个或多个颗粒物出口 315、和一个或多个渐窄件 313。该换热系统 300 还可包括一个或多个入口总管 ( 未示出 )、一个或多个出口总管( 未示出 ) 和一个或多个换热件或管件 350。该换热系统 300 还可包括具有一个或多个侧壁。

45、 ( 示出一个侧壁 311)、顶端 302 和底端 301 的壳体 310。壳体 310 可呈多种形状,包括但不局限于立方体、矩形箱、圆筒形、三棱柱、双曲面结构或一些其它形状或它们的各种组合。如图所示,壳体 310 可以是圆筒形。所述壳体 310 可具有足以装入管束 350 的尺寸和形状。0035 入口总管可以至少部分地设置在壳体 310 内并且可以与冷却剂入口 320 流体连通。例如,入口总管可通过入口管或入口管道 ( 未示出 ) 与入口 320 连接或流体连通。出口总管也可以至少部分地设置在壳体 310 中并且可与出口 330 流体连通。例如,出口总管说 明 书CN 104487551 A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 石油、煤气及炼焦工业;含一氧化碳的工业气体;燃料;润滑剂;泥煤


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1