可降解多孔聚酯/硅酸钙生物活性复合支架、制备及用途 【技术领域】
本发明涉及可降解聚酯/硅酸钙复合支架材料的制备、性能及用途,属生物材料领域。
背景技术
可降解高分子材料如聚L-乳酸(PLLA)、聚DL-乳酸(PDLLA)、共聚(L-乳酸/DL-乳酸)(PLLA-co-PDLLA)、聚乙醇酸(PGA)、共聚(乳酸/乙醇酸)二元共聚物(PLGA)、共聚(乳酸/己内酯)二元共聚物(PLC)、聚己内酯(PCL)、共聚(乙醇酸/乳酸/己内酯)三元共聚物(PLGC),以及聚羟基酸(PHA)中的一种或它们间的共混物及共聚物在组织损伤修复和作为组织工程细胞支架材料方面已经有许多研究和应用报道(Biomaterials,1998,19,1405-1412;J Biomed Mater Res,1996,30,475-84及J Biomed Mater Res 1993,27,1135-1148)。然而,这些材料均不具有生物活性并且力学性能有待提高,因此在骨组织损伤修复方面的应用受到限制。此外,聚酯类生物材料通常亲水性较差,从而影响细胞的贴附。另外,在降解的过程中,由于聚酯类生物材料的降解产物通常是一些小分子的酸,因此会导致支架周围的液体pH值急剧降低,从而引发受体的炎症及其他不良反应而导致治疗失败。以上的这些不足之处在组织工程的研究过程中越来越受到研究者的关注(Mater SciForum.1997,250,115-29;J Biomed Mater Res.2001,55,141-50)。目前,聚酯和具有生物活性的玻璃或者陶瓷复合从而得到具有良好的体外生物活性和较好的力学性能的细胞支架已经引起了人们广泛的研究兴趣,羟基磷灰石、磷酸钙陶瓷以及生物玻璃已经被广泛地应用在复合支架材料的制备上(Ceramic Eng Sci Proc 2002,23,805-816;Biomaterials 2002,23,3871-3878;Adv Eng Mater 2002,4,105-109;Biomaterials 2004,25,2489-2500),然而这些材料具有的一些缺点又阻碍了它们的广泛应用,如羟基磷灰石降解性差,在降解过程中起不到稳定pH值的作用;磷酸钙陶瓷的生物活性比较差等。
硅酸钙在自然界中以矿物(硅灰石和假硅灰石)的形式存在,已被广泛作为填料用来增强聚合物及水泥等(Wear 2003,255,734-741;Cement andConcrete Research 1994,24,650-660)。近来有研究表明,硅酸钙包括α-硅酸钙(假硅灰石)和β-硅酸钙(硅灰石)也具有生物活性和降解性(J EurCeram Soc.2002,22,511-520;Biomaterials 2001,22,2007-2012),因此也有可能将其作为生物材料应用在组织工程研究中。另外,硅酸钙作为一种亲水性极好的无机粉体材料加入聚酯中,有可能改善聚酯的疏水性,从而更有利于细胞的贴附。除此以外,硅酸钙在水环境中浸泡时,会释放出一些钙、硅离子,这些粒子与水分子结合后呈碱性状态存在,对于聚酯的酸性降解产物引起的pH值降低可能会起到一定的稳定作用。
目前,利用硅酸钙与可降解聚酯复合从而得到一种具有良好生物活性、良好亲水性以及较好的力学性能和降解过程pH值稳定的骨组织缺损修复材料和体外骨组织培养用细胞支架材料还未见报道。
【发明内容】
本发明的目的在于提供一种具有优良生物活性、亲水性、较好的力学性能以及降解过程pH值稳定的可降解聚酯/硅酸钙复合支架材料及制备方法。在本发明中我们利用硅酸钙良好的生物活性和亲水性以及在水环境中会释放出碱性离子的特点,制备了可降解聚酯/硅酸钙复合支架材料。该复合支架材料不仅具有良好的生物活性和亲水性,而且克服了硅酸钙陶瓷材料的脆性和聚酯材料的强度低的问题,最重要的是这种复合支架还具有在降解过程中pH值较稳定的特点,解决了聚酯材料的酸性降解产物引发的问题给组织修复带来的难题。因此,该复合支架材料在具有以上特点后,可作为骨组织缺损修复材料和体外骨组织培养用细胞支架材料,以满足新一代生物材料发展的需要。
本发明提出的可降解聚酯/硅酸钙复合支架材料具有以下一些特征:
(1)该支架是由可降解聚酯和硅酸钙两种材料复合而成;
(2)所述的可降解聚酯为合成高分子材料脂肪族聚酯中的聚L-乳酸(PLLA)、聚DL-乳酸(PDLLA)、共聚(L-乳酸/DL-乳酸)(PLLA-co-PDLLA)、聚乙醇酸(PGA)、共聚(乳酸/乙醇酸)二元共聚物(PLGA)、共聚(乳酸/己内酯)二元共聚物(PLC)、聚己内酯(PCL)、共聚(乙醇酸/乳酸/己内酯)三元共聚物(PLGC),以及聚羟基酸(PHA)中的一种或它们间的共混物及共聚物;
(3)高纯度硅酸钙是采用化学沉淀法合成经煅烧所得,步骤如下:
①1mol/L的硅酸钠(Na2SiO3)与1mol/L的(Ca(NO3)2)溶液摩尔比1∶1室温下混合搅拌24~48小时,过滤后得到硅酸钙的水合物粉体;
②用去离子水和无水乙醇先后各洗涤三次后,置于80℃烘箱下烘24~72小时;
③在800℃下煅烧2~4小时即得β-硅酸钙粉体;在1150℃下煅烧2~4小时则得到α-硅酸钙粉体。
(4)制备复合支架的方法可以是下列两种方法中的任意一种:
①压片成型-热处理-粒子析出法,其工艺步骤是:
(a)按硅酸钙粉体的加入量占总质量的5~50%比例将聚酯粉体和硅酸钙粉体均匀混合;
(b)在混合物中加入按照氯化钠/聚合物=6∶1~9∶1(质量比)一定粒径(200-500微米)的氯化钠,再均匀混合,然后加入模具中压片成型,成型压力为8~10MPa;
(c)将步骤(b)所得的含盐复合材料置于120~200℃烘箱中加热30~60分钟,取出冷却;
(d)将冷却后的含盐复合材料置于去离子水中脱盐,脱盐后置于空气中干燥5~72小时。
②溶剂浇铸-粒子析出法,其工艺步骤是:
(a)聚酯溶解在室温下易挥发的有机溶剂中,形成聚合物溶液;
(b)加入占总质量5~50%的硅酸钙粉体搅拌均匀,搅拌均匀;
(c)按照氯化钠/聚合物=6∶1~9∶1(质量比)加入一定量的氯化钠,搅拌均匀;
(d)将步骤(c)所得的混合物浇注于模具中。使溶剂室温下挥发,然后真空干燥,去离子水中脱盐;脱盐后,置于空气中干燥5~72小时;
(5)支架孔隙率在50~90%、孔径在20~600微米范围内可调而且孔连通性较好;
(6)该支架在浸泡在模拟体液中3天后表面即有碳酸羟基磷灰石颗粒沉积,浸泡7天后,支架表面形成碳酸羟基磷灰石层,该碳酸羟基磷灰石的钙磷原子比在1.58~1.67之间;
(7)该支架的抗压强度可达0.16~0.7MPa;
(8)该支架具有良好的亲水性,水润湿角可低达16~35°;
(9)该支架在降解过程中能够保持周围的液体pH值稳定在7~8之间。
本发明所用高纯度硅酸钙的制备方法主要是化学共沉淀法。
本发明所用的硅酸钙粉体粒径在80~200微米。
本发明中硅酸钙的加入量占总质量的在5~50%之间。
本发明所用的高分子的溶剂首先应对所用高分子溶解,且不会改变高分子的性质。通常采用具有在室温下易挥发性的有机溶剂,一般为氯仿、二氯甲烷、二甲基亚砜、N,N-二甲基乙酰胺、1,4-二氧环六烷等。最佳溶剂为氯仿。
本发明采用硅酸钙与可降解聚酯复合来获得具有生物活性和可降解性的骨组织缺损修复材料和骨组织工程用细胞支架材料。
本发明采用硅酸钙与聚酯复合来改善聚酯的亲水性。
本发明采用硅酸钙在水溶液中释放碱性离子来稳定聚酯在降解过程中的pH值。
本发明采用硅酸钙与聚酯复合来得到力学强度有所提高的复合支架材料。
本发明的可降解聚酯/硅酸钙复合支架材料可用于骨组织损伤的修复及作为骨组织工程细胞支架。
附图的简要说明
通过下面的结合附图对本发明所做的详细说明,可以更好地理解本发明所述的支架架构和性能。其中,
图1为聚乳酸/β-硅酸钙复合支架材料的结构的扫描电子显微照片:(A)PDLLA;(b)PDLLA/20wt%β-硅酸钙;(c)PDLLA/40wt%β-硅酸钙;
图2为聚乳酸/β-硅酸钙复合支架材料(PDLLA/20wt%硅酸钙)在模拟体液中浸泡7天后的扫描电子显微照片;
图3为PHBV/β-硅酸钙复合支架材料的结构的扫描电子显微照片:(A)PHBV;(b)PHBV/20wt%β-硅酸钙;(c)PHBV/40wt%β-硅酸钙;
图4为PHBV/β-硅酸钙复合支架材料(PHBV/20wt%硅酸钙)在模拟体液中浸泡后14天后的扫描电子显微照片;
图5PLGA以及PLGA与β-硅酸钙以及羟基磷灰石复合制备的支架在PBS溶液中降解时的pH值变化。
【具体实施方式】
本发明优异的特点和效果可从下列实施例来描述,但它们并不是对本发明作任何限制。
实施例1:PHBV/β-硅酸钙复合支架的制备
采用压片成型-热处理-粒子析出法制备聚(羟基丁酸酯-羟基戊酸酯)(PHBV,3%HV)与β-硅酸钙的复合支架。首先将PHBV粉体(分子量30万)与β-硅酸钙粉体以质量比80∶20和60∶40在球磨机上均匀混合,混合停止后再按照PHBV∶氯化钠=1∶7(质量比)加入粒径在150~300微米的氯化钠,搅拌均匀。然后在压片机上压片成型,得到具有直径分别为6毫米和10毫米、厚度在2.5毫米左右的圆柱形复合物。然后将该圆柱形复合物置于180℃烘箱中热处理30分钟,随后取出,在空气中自然冷却。将冷却后的复合物置于去离子水中浸泡,开始一天每两小时换一次水,随后每6小时换一次水,直到用硝酸银滴定法检测时无白色沉淀为止,即得到多孔支架。然后将该多孔支架置于真空干燥箱中干燥24小时,取出后待用。该复合支架孔隙率在73%~79%之间,经模拟体液37℃静态浸泡14天后表面形成羟基磷灰石层。而且复合20%的β-硅酸钙后,支架的水接触角就从PHBV的66°降至33°,当PHBV∶β-硅酸钙=64∶40(质量比)时,水接触角降至16°。而且复合材料的力学强度和纯的PHBV相比,从0.16MPa(PHBV)提高到了0.28MPa(PHBV/40%β-硅酸钙)。在降解过程中,PHBV支架在浸泡7天后浸泡液的pH值开始下降,到21天时从7.2降至6.1,而浸泡PHBV/20%β-硅酸钙复合支架的浸泡液的pH值在21天的浸泡期内一直稳定在7.1~7.6之间,浸泡PHBV/40%β-硅酸钙复合支架的浸泡液pH值稳定在7.2~7.8之间。
实施例2:PDLLA/β-硅酸钙复合支架的制备
采用溶剂浇铸-粒子析出法制备聚(DL-乳酸)(PDLLA)和β-硅酸钙的复合支架材料。首先将聚乳酸粉体溶解于三氯甲烷中制得10%(w/v)的聚乳酸溶液,然后按PDLLA∶β-硅酸钙=80∶20以及PDLLA/β-硅酸钙=60∶40(质量比)的比例加入β-硅酸钙粉体,搅拌2小时后按PDLLA∶氯化钠=9∶1(质量比)的比例加入粒径为150~300微米的氯化钠。搅拌均匀后,将混合物浇铸于直径为60毫米的圆盘中,置于通风橱中48小时让溶剂挥发,然后再在60℃下真空干燥48小时。将干燥后的复合物置于去离子水中去离子水中浸泡,开始一天每两小时换一次水,随后每6小时换一次水,直到用硝酸银滴定法检测时无白色沉淀为止,即得到多孔支架。然后将该多孔支架置于真空干燥箱中干燥24小时,取出后待用。该复合支架孔隙率在83%~85%之间,经模拟体液37℃静态浸泡7天后表面形成羟基磷灰石层。而且复合20%的β-硅酸钙后,支架的水接触角就从PHBV的67°降至44°,当PHBV∶β-硅酸钙=60∶40(质量比)时,水接触角降至39°。在降解过程中,PDLLA支架在浸泡14天后浸泡液的pH值开始急剧下降,到21天时从7.2降至5.1,而浸泡PHBV/20%β-硅酸钙复合支架的浸泡液的pH值在21天的浸泡期内一直稳定在7.2~6.7之间,浸泡PHBV/40%β-硅酸钙复合支架的浸泡液pH值稳定在7.2~7.6之间。
实施例3:PHBV/α-硅酸钙复合支架的制备
采用压片成型-热处理-粒子析出法制备聚(羟基丁酸酯-羟基戊酸酯)(PHBV,3%HV)与α-硅酸钙的复合支架。首先将PHBV粉体(分子量30万)与α-硅酸钙粉体以质量比95∶5和50∶50在球磨机上均匀混合,混合停止后再按照PHBV∶氯化钠=1∶7(质量比)加入粒径在150~300微米的氯化钠,再搅拌均匀。然后在压片机上压片成型,得到具有直径分别为6毫米和10毫米、厚度在2.5毫米左右的圆柱形复合物。然后将该圆柱形复合物置于180℃烘箱中热处理30分钟,随后取出,在空气中自然冷却。将冷却后的复合物置于去离子水中浸泡,开始一天每两小时换一次水,随后每6小时换一次水,直到用硝酸银滴定法检测时无白色沉淀为止,即得到多孔支架。然后将该多孔支架置于真空干燥箱中干燥24小时,取出后待用。该复合支架孔隙率在70%~85%之间,经模拟体液37℃静态浸泡14天后表面形成羟基磷灰石层。而且复合20%的α-硅酸钙后,支架的水接触角就从PHBV的66°降至43°,当PHBV∶α-硅酸钙=50∶50(质量比)时,水接触角降至16°。而且复合材料的力学强度和纯的PHBV相比,从0.16MPa(PHBV)提高到了0.35MPa(PHBV/50%α-硅酸钙)。在降解过程中,PHBV支架在浸泡7天后浸泡液的pH值开始下降,到21天时从7.2降至6.1,而浸泡PHBV/5%α-硅酸钙复合支架的浸泡液的pH值在21天的浸泡期内一直稳定在6.8~7.6之间,浸泡PHBV/50%α-硅酸钙复合支架的浸泡液pH值稳定在7.2~7.8之间。
实施例4:PLGA/β-硅酸钙复合支架降解过程中的pH值变化
采用与实例2相同的溶剂浇铸-粒子析出方法制备聚(乳酸/乙醇酸)与β-硅酸钙、以及羟基磷灰石的复合支架材料。将尺寸为1×1×0.5厘米的复合支架在20毫升磷酸缓冲溶液(PBS)中浸泡不同时间并记录浸泡过程中PBS溶液的pH值变化。实验显示,在降解过程中,含有纯PLGA支架的PBS溶液到第8周时pH值从7.4降至4.3,含有PLGA/羟基磷灰石复合支架的PBS溶液的pH值从7.4下降至第8周的5.6。而含有PLGA/β-硅酸钙复合支架的PBS溶液在整个浸泡期间的pH值稳定在7.7-7.3范围内。由此可见,利用β-硅酸钙与可降解聚酯复合可以使聚酯在降解过程中pH值稳定。