说明书一种电子地图接入方法和装置
技术领域
本发明涉及监控技术,特别涉及一种电子地图接入方法和装置。
背景技术
目前基于网络的视频监控技术的发展使得大量的视频监控资源能够被整合 起来,各个摄像机的监控录像能够在监控平台的电子地图中被调取,同时应用 电子地图可以使各个摄像机的空间位置直观显现。上述基于电子地图的监控平 台的实现,需要将数据提供方提供的电子地图接入到监控平台中。
当前很多电子地图都是以瓦片地图的形式提供,在将电子地图向平台接入 时,需要确定监控平台的屏幕中心点的经纬度坐标对应的瓦片地图的像素坐标, 将对应该像素坐标的瓦片地图调度到平台中心位置,再调度与该中心位置的瓦 片地图相邻的一系列瓦片地图即可,并且还需要获取电子地图中的每个像素坐 标对应的经纬度坐标,以根据该经纬度坐标进行监控布置等应用。上述处理涉 及到像素坐标和经纬度坐标之间的相互转换,需要依据数据提供方提供的两者 之间的转换关系,而当数据提供方出于数据保密性不能提供转换关系时,便无 法确定瓦片地图的调度规则,即不知道将哪张瓦片地图调取到监控平台的中心 位置,无法实现地图接入;即使目前通过一定方式实现地图接入,地图接入的 精确度也比较低,像素坐标对应的经纬度坐标转换不准确,影响监控应用。
发明内容
有鉴于此,本发明提供一种电子地图接入方法和装置,以实现在像素坐标 和经纬度坐标之间转换关系未知的情况下提高电子地图接入的精度。
具体地,本发明是通过如下技术方案实现的:
第一方面,提供一种电子地图接入方法,包括:
根据中心经纬度坐标,以及预设的第一转换关系,得到对应所述中心经纬 度坐标的中心像素坐标,调取所述中心像素坐标对应的瓦片地图,并显示与所 述瓦片地图相邻的各瓦片地图,所述各个瓦片地图组成接入的电子地图,所述 第一转换关系用于表示经纬度坐标至像素坐标的转换;
根据所述电子地图中的各像素坐标,以及预设的第二转换关系,得到与所 述像素坐标对应的经纬度坐标,以根据所述经纬度坐标进行监控应用,所述第 二转换关系用于表示像素坐标至经纬度坐标之间的转换,所述第一转换关系和 第二转换关系是根据所述电子地图中的像素点坐标通过数学计算得到。
第二方面,提供一种电子地图接入装置,包括:
第一转换模块,用于根据中心经纬度坐标,以及预设的第一转换关系,得 到对应所述中心经纬度坐标的中心像素坐标,所述第一转换关系用于表示经纬 度坐标至像素坐标的转换;
地图调取模块,用于调取所述中心像素坐标对应的瓦片地图,并显示与所 述瓦片地图相邻的各瓦片地图,所述各个瓦片地图组成接入的电子地图;
第二转换模块,用于根据所述电子地图中的各像素坐标,以及预设的第二 转换关系,得到与所述像素坐标对应的经纬度坐标,以根据所述经纬度坐标进 行监控应用,所述第二转换关系用于表示像素坐标至经纬度坐标之间的转换。
本发明的电子地图接入方法和装置,通过根据待接入的电子地图中的像素 点坐标通过数学计算得到第一转换关系和第二转换关系,并根据该两个转换关 系进行像素坐标和经纬度坐标之间的转换,实现了在像素坐标和经纬度坐标之 间转换关系未知的情况下提高电子地图接入的精度。
附图说明
图1是本发明实施例提供的一种电子地图接入方法的应用场景;
图2是本发明实施例提供的一种电子地图接入方法的流程图;
图3是本发明实施例提供的另一种电子地图接入方法的流程图;
图4是本发明实施例提供的电子地图接入方法中的坐标示意图一;
图5是本发明实施例提供的电子地图接入方法中的坐标示意图二;
图6是本发明实施例提供的纠偏方程二维显示图;
图7是本发明实施例提供的纠偏方程三维显示图一;
图8是本发明实施例提供的纠偏方程三维显示图二;
图9是本发明实施例提供的纠偏方程计算数值图;
图10本发明实施例提供的一种电子地图接入装置的结构示意图;
图11本发明实施例提供的另一种电子地图接入装置的结构示意图。
具体实施方式
图1示例了一种电子地图接入方法的应用场景,如图1所示,要将数据提 供方提供的电子地图11接入到监控平台12中,该数据提供方可以是需要监控 平台提供监控服务的客户,比如数据提供方将自己的电子地图接入到监控平台 后,在平台接入的地图中预设的经纬度位置设置监控摄像机,数据提供方就可 以通过平台可以直观的查看各摄像机的空间位置并调取监控录像。
当前数据提供方提供的电子地图可以是瓦片形式的,如图1所示的,该地 图是由多个瓦片地图组成,比如瓦片地图13、瓦片地图14和瓦片地图15等, 是方框形式的瓦片地图(图1只是示意),每个瓦片地图可以有自己的编号。
本发明实施例的电子地图接入方法,所涉及到的“电子地图接入”,说明 如下:监控平台12要实现对电子地图11的接入,需要做如下两方面处理:
一方面,监控平台要确定对于瓦片地图的调取规则,该规则是,确定监控 平台的屏幕中心点的经纬度坐标,也就是监控平台的中心位置要显示地图中的 哪个经纬度位置,即确定监控平台12中的瓦片地图16,换一个角度看,也就是 在电子地图11包括的各个瓦片地图中确定哪一个是要显示在监控平台中心位置 的瓦片地图16,之后依次调取放入瓦片地图16的各个相邻瓦片地图,比如虚线 所示的瓦片地图17等,整个电子地图就可以放入监控平台。
具体实施时,每一个瓦片地图的左上方点的像素坐标是可以知道的,可以 用该像素坐标代表该瓦片地图。比如若确定与监控平台的屏幕中心点的经纬度 坐标对应的像素坐标是(a,b),则调取像素坐标(a,b)对应的瓦片地图即可, 该瓦片地图的左上方点的像素坐标是(a,b)。例如,假设当前监控平台的中 心点经纬度坐标为121.3419,29.9858,11级显示比例尺,通过计算可知瓦片地图 对应的像素坐标为438862,216331,再根据通常每个瓦片地图是由256个像素构 成这一条件,便可以计算得出平台中心点对应的瓦片地图的左上方点像素坐标 为1714,845,调取该瓦片地图,然后再调取与之相邻的各个瓦片图即可。
另一方面,不仅要将电子地图显示在监控平台,监控平台还要确定地图中 的各个像素点的经纬度坐标,比如图1所示的,任意一个地图中的像素点18, 都需要能够确定其对应的经纬度坐标,以根据该经纬度坐标进行监控应用。例 如,数据提供方设计的监控方案是在经纬度坐标为(x,y)的位置安装一个监 控摄像机,那么就需要在监控平台的电子地图上找到该经纬度坐标对应的位置 设置摄像机,如果经纬度坐标不准确将影响监控的应用(当然也包括根据经纬 度的其他方面的应用)。此外,相对应的,实际经纬度坐标对应的像素坐标的 转换也需要准确,代表了监控平台在调取电子地图时是否合理,即每个瓦片地 图都具有像素坐标和对应的经纬度坐标两种坐标,这两种坐标都要尽量准确。
由上述的两方面处理可以看到,在电子地图的接入中,涉及到经纬度坐标 到像素坐标的转换(调度瓦片地图时使用),也涉及到像素坐标到经纬度坐标 的转换(需要根据经纬度坐标进行监控应用),这两方面的转换都需要依据两 种坐标之间的转换关系。那么本实施例的电子地图接入方法,将要实现的是, 在数据提供方不提供像素坐标和经纬度坐标转换关系的情况下,通过数学方法 计算出转换关系,并根据该转换关系完成上述两方面的转换,并且该方法实现 的转换能够使得瓦片地图调取合理,且计算的经纬度坐标更加准确。
图2示例了本实施例的电子地图接入方法的流程,包括:
201、根据中心经纬度坐标,以及预设的第一转换关系,得到对应所述中心 经纬度坐标的中心像素坐标,调取所述中心像素坐标对应的瓦片地图,并显示 与所述瓦片地图相邻的各瓦片地图,所述各个瓦片地图组成接入的电子地图, 所述第一转换关系用于表示经纬度坐标至像素坐标的转换;
202、根据所述电子地图中的各像素坐标,以及预设的第二转换关系,得到 与所述像素坐标对应的经纬度坐标,以根据所述经纬度坐标进行监控应用,所 述第二转换关系用于表示像素坐标至经纬度坐标之间的转换,所述第一转换关 系和第二转换关系是根据所述电子地图中的像素点坐标通过数学计算得到。
上述的步骤201和202,也就是上面提到的电子地图接入时涉及到的两方面 处理,其中,中心经纬度坐标就是要显示在监控平台的中心位置的坐标,此外, 该方法可以是监控平台执行的,本实施例中的监控平台在接入电子地图时依据 的第一转换关系和第二转换关系是根据所述电子地图中的像素点坐标通过数学 计算得到,而不是数据提供方提供的。
需要说明的是,根据电子地图中的像素点坐标通过数学计算转换关系的过 程,可以是监控平台自己执行的,也可以是其他装置执行的,本实施例不做限 制,监控平台能够获得计算得到的上述转换关系进行电子地图接入时的转换, 使得即使数据提供方不提供像素坐标和经纬度坐标之间的转换关系,也能够实 现电子地图的接入;并且,该转换关系是通过数学方法计算得到的,基于数学 方法的严谨性,能够比较合理的表示两种坐标之间的关系,提高电子地图接入 的精度,比如按照该转换关系计算出的像素点的经纬度坐标更加准确。
如下将更加详细的描述本实施例的电子地图接入方法,参见图3示例的流 程,如图3所示,包括以下步骤:
301、判断是否已知经纬度坐标与像素坐标之间的转换关系;
如果转换关系是已知的,则直接执行309;否则,继续执行302。
302、接收电子地图中的四个参考坐标点的像素坐标,并获取所述像素坐标 对应的经纬度坐标;
在本步骤中,监控平台可以获取待接入的电子地图中的四个参考坐标点的 像素坐标以及对应的经纬度坐标。结合图4所示,在像素坐标系中选取的四个 参考坐标点分别是P1、P2、P3和P4,这四个点在像素坐标系中能够构成长方 形。然后将该长方形映射到经纬度坐标系中,由于投影变形的存在,在像素坐 标中的长方形映射到实际经纬度坐标中会变成四边形,根据数据提供方提供的 地图投影方式的不同,投影的四边形可能呈不同的形状,该经纬度坐标系中的 四边形参见图5。
其中,四个参考坐标点的经纬度坐标的获取可以有两种方式,要么是数据 提供方提供精确的经纬度坐标(此时数据提供方只需要提供四个点的经纬度坐 标即可,也并没有提供两种坐标的转换关系),要么可以通过网络找到对应的 大致经纬度坐标;或者可选的,也可以通过监控平台直接获得对应的经纬度坐 标,只是该经纬度坐标的数据来源于网络。
本步骤中获取到的图4的长方形和图5的四边形,以及四个参考坐标点的 像素坐标和经纬度坐标,将作为后续步骤中计算第一转换关系和第二转换关系 的基础;本实施例中将先计算第二转换关系,再计算第一转换关系。另外需要 说明的是,本实施例中的四个参考坐标点在像素坐标系构成的长方形,最好能 够包括进要显示在监控平台的整个区域,以使得转换关系的计算更加准确。
303、根据长方形和四边形的中心点均为直线交点的几何特性,以及四个参 考坐标点的像素坐标和经纬度坐标,计算得到第二转换关系;
本步骤中,计算的第二转换关系用于像素坐标至经纬度坐标的转换,例如 位于像素坐标系中的P(X,Y)点映射到经纬度坐标系下P’(X’,Y’)点的坐标。本实 施例中假设长方形投影到四边形时所产生的变形在经度和纬度方向是连续均匀 分布的,没有出现较大的波动。图4中的点PTop、PLeft、PBottom和PRight 四个参考点,是中心点P投影在长方形四边上的四个点,由几何知识可知点P 是PTop与PBottom两点所构成的直线与PLeft与PRight两点所构成的直线的交 点;在映射到经纬度坐标系下时,P’点同样是PTop’与PBottom’两点所构成的直 线与PLeft’与PRight’两点所构成的直线的交点。根据上述的几何特性,可以计 算点P到点P’之间的映射关系。
具体的,设XRatio,YRatio为PTop、PBottom、PLeft、PRight点在四边的比 值,由于长方形所以PTop与PBottom的比值相同设为XRatio,PLeft与PRight 的比值相同设为YRatio。该XRatio和YRatio的计算公式如下:
XRatio = X - X 1 X 2 - X 1 ]]>
YRatio = Y - Y 1 Y 3 - Y 1 ]]>
上述公式中的X、Y、X1、Y1等是图4中的参考点的像素坐标,比如(X1、 Y1)是参考点P1的坐标,其他可以参见图4所示。PTop’点的计算如下:
XTop’=X1’+(X2’-X1’)×XRatio
YTop’=Y1’+(Y2’-Y1’)×YRatio
其中的X1’、X2’、Y1’等是图5中的参考点的经纬度坐标,这些坐标都是 已知的,再结合上面计算得到的XRatio、YRatio就可以得到PTop’点的经纬度 坐标(XTop’、YTop’);其他参考点PBottom’、PLeft’、PRight’的计算方法类 似,不再赘述。
当四个参考点PTop’、PBottom’、PLeft’、PRight’的经纬度坐标都计算得到 后,可以得到两点构成的直线,包括:PTop’与PBottom’构成直线为Line1:
y+a1x+b1=0,PLeft’与PRight’构成直线Line2:y+a2x+b2=0。对于其中的每一条 直线,由于构成该直线的两个点的坐标在上面已经计算得到,据此可以计算出 该直线公式中的系数a和b。比如,设构成两条线的点为p1(x1,y1)、p2(x2,y2) 则有直线参数a、b的公式如下:a=(x1-x2)/(y2-y1),b=-y1-a×x1。根据该公式, 可以将上述的直线公式中的a1、b1、a2、b2都计算得到,接着可以得到四边形 的中心点P’(X’,Y’)计算如下:
X ′ = b 2 - b 1 a 1 - a 2 ]]>
Y ′ = b 2 × a 1 - b 1 × a 2 a 2 - a 1 ]]>
至此,已经从像素坐标系下的长方形的中心点P(X、Y)的像素坐标,按 照上面的逐步计算和转换的步骤,得到了将点P(X、Y)映射到经纬度坐标系 下的四边形的中心点P’(X’,Y’)的经纬度坐标,实现了从像素坐标到经纬度坐标 转换的第一转换关系的获得。
304、判断四边形是否满足上下边分别平行以及左右边分别平行;
本步骤将判断投影到经纬度坐标系时,四边形是否满足上下边分别平行以 及左右边分别平行,如果经纬度坐标系下的四边形满足上下边分别平行以及左 右边分别平行,则在计算第一转换关系时的方法较为简单,执行步骤305;如果 经纬度坐标系下的四边形不满足上下边分别平行以及左右边分别平行,则第一 转换关系如果仍然按照平行时的方式计算将较为复杂,将采取步骤306所示的 另一方法来求解第一转换关系。
305、根据所述中心点在四边比例的几何特性,计算得到第一转换关系;
其中,第一转换关系是用于经纬度坐标至像素坐标的转换,在本实施例中 为计算经纬度点P’在经纬度坐标系下所对应的XRatio与YRatio(像素坐标X,Y 分别为XRatio与YRatio的线性方程)。如下可以通过P’(X’,Y’)以上下边的斜率 投影到左边计算YRatio,以左右边的斜率投影到上边计算XRatio。公式如下:
iy 1 = ( - a 3 × x - y ) × a 1 - b 1 × a 3 a 3 - a 1 ]]>
XRatio = iy 1 - y 1 y 2 - y 1 ]]>
iy 3 = ( - a 1 × x - y ) × a 3 - b 3 × a 1 a 1 - a 3 ]]>
YRatio = iy 3 - y 1 y 3 - y 1 ]]>
其中,a1、b1为上边构成的直线的参数,a3、b3为左边构成的直线的参数, 由于构成上边和左边的两点的经纬度坐标是已知的,比如构成上边的P1’和P2’ 的经纬度坐标已知,则可以计算到上边的直线参数a1、b1,同理可以计算得到 a3、b3。iy1为四边形的中心点P’以a3斜率与上边的交点坐标y,iy3为四边形 的中心点P’以斜率a1与左边的交点坐标y,x、y、y3、y1、y2都是经纬度坐标, 比如(x、y)是经纬度坐标系下的四边形中心点的经纬度坐标,y3是点P3的经 纬度坐标。
306、获取根据样本点拟合得到的第一转换关系,该第一转换关系是像素坐 标至经纬度坐标的转换回归方程,所述样本点根据第二转换关系得到;
本步骤要计算像素坐标至经纬度坐标的转换回归方程g(X’,Y’),根据该回归 方程,就可以由经纬度坐标得到对应的像素坐标。回归方程的获得需要依据一 些样本点,通过样本点拟合得到该转换回归方程。
其中,样本点可以是根据在步骤303中得到的第二转换关系获得,由程序 直接计算得出,容易使用足够的样本点拟合出合适的方程g(X’,Y’),得到的该方 程g(X’,Y’)->X,Y与像素坐标转换至经纬度坐标的方程f(X,Y)->X’,Y’十分接近 (即计算得到的坐标结果误差足够小,小于2个象素点以下)。本实施例通过对二 元一次方程和二元二次方程的试验,发现使用二元二次方程拟合g(X’,Y’)能够达 到十分好的效果,方程形式如下:
g(x′,y′)=c1X′2+c2Y′2+c3X′Y′+c4X′+c5Y′+c6
其中,x′,y′为经纬度坐标,所述c1至c6为方程系数。
计算c1、c2、c3、c4、c5、c6的值,具体方法为通过像素坐标转换至经纬 度坐标的方程f(x,y),即根据第二转换关系,每隔1/30生成一个样本点,然后 拟合出方程g(x’,y’),由于样本点可以由程序直接计算得出,所以十分容易使 用足够的样本点拟合出合适的方程并且拟合优度十分高。
对于回归方程的拟合,其关键点在于确定回归方程的形式以及获取足够多 的样本点,以确保回归计算能够收敛,当计算出方程中的c1、c2、c3、c4、c5、 c6的值之后,将值以参数的形式保存下来,以供平台在后续的应用中调取,该 过程只计算一次。此外需要说明的是,本步骤中的回归方程的拟合可以采用监 控平台之外的软件实现,以节省平台的处理能力,平台可以根据第一转换关系 为该软件提供样本点数据,软件在拟合得到回归方程后可以返回给监控平台, 以供监控平台根据回归方程进行坐标转换。
307、判断地图接入的精度是否满足要求。
本步骤中,要查看地图接入的效果,精度是否能够满足使用要求。比如, 可以将地图接入平台来查看精度,选择一些样本点,按照在303中确定的第二 转换关系,根据该样本点的像素坐标得到经纬度坐标,再查看该样本点的实际 经纬度,看计算经纬度和实际经纬度是否相差太大,具体实施中可以设定一个 阈值,如果在阈值范围内则表示精度满足要求,继续执行309即可;否则表明 误差太大则执行308。
308、根据纠偏回归方程,对与像素坐标对应的经纬度坐标进行纠偏补偿;
其中,地图接入精度低的原因,可能是由于在步骤302中的参考坐标点可 以是手工点选的(人为的原因存在一定的误差),或者,客户的瓦片地图的实际投 影方式可能较为复杂(使得变形不是呈现均匀分布,上文中的假设不成立)等原 因,造成实际的应用过程中存在一定的误差,此时则需要进行纠偏的工作。
本实施例中,设实际经纬度坐标与上文中所计算得出的与像素坐标对应的 计算经纬度坐标之间的差值为z,则有z=f(x,y),自变量x、y为像素坐标。 由于投影是基于一定的数学法则,上文中的几何计算同样时基于数学法则(使用 回归方程处理误差的原因),所以其误差是也可以通过一个方程式来表示,所以 可以通过获取足够的样本点来拟合方程f(x,y),通过纠偏的方式使得坐标转换 更加精确。在获取样本点时,要得到该样本点的像素坐标以及与像素坐标对应 的经纬度差值,比如,可以根据已知的像素坐标以及第二转换关系得到计算经 纬度,再查找到实际经纬度,求得实际经纬度和计算经纬度的差值,该差值与 像素坐标对应,像素坐标点就是一个样本点。
再根据多个样本点的像素坐标和经纬度差值,拟合得到像素坐标至经纬度 差值的纠偏回归方程。该纠偏回归方程可以通过图6的二维显示,也可以在图7 或图8的三维空间中显示该回归方程所表示的含义。例如在图6中,通常我们 认为在对点P进行点选时其上下左右的偏移概率是相等的,点选时的数学期望 落在实际的P点,同时也是符合正态分布的(现实生活中的很多事情分布规律都 是符合正态分布的,即高概率落在期望值的附近,离期望值越远概率越低),设 P(x,y)为实际的点,P(x’,y’)为点选点,则存在x=x’+△x,y=y’+△y,△x、△y 是符合标准正态分布,所以可以认为E(P(x’,y’))=P(x,y),样本点是拟合方程的 无偏估计,只需要通过足够的样本点便可以拟合出方程,在二维中的示意图如 图6所示(点选的样本点会均匀的落在拟合的方程上下,回归方程反映的是样本 点期望的分布规律)。
在三维中则是寻找一个方程f(x,y)表示的曲面使得目标函数 (这是回归方程的目标函数,回归计算中就是找寻一组常量 使得目标函数无限接近于0)无限接近于0。在三维空间中显示z与x,y之间的 关系,能够观察出f(x,y)是属于怎样的方程(运用三维显示软件可以展示x,y,z 之间的关系),如果显示的z与x,y之间呈现出如图7所示的趋势面则表示f(x,y) 的方程形式为f(x,y)=ax2+by2+cxy+dx+ey+f,其中a、b、c、d、e、f为 常量;如果显示的z与x,y之间呈现出如图8所示的趋势面则表示f(x,y)的方程 式为二元三次方程,根据样本点展现出的趋势面的不同形状选择合适的方程进 行非线性回归拟合方程,并且求解方程相关的常量,通过残差平方和以及参数 估计是否处于置信区间等判断回归方程是否符合要求。
本实施例中选取的样本点如图9所示,图9示例了一部分样本点。回归方 程计算中的初始值全部设置为1,通过回归计算得出拟合方程f(x,y)= -0.33x2+1.005y2-0.916xy-0.642x+0.753y+0.734,该方程的残差平方和 仅为0.07(拟合优度较高)所有估计的参数都位于置信区间内,所以可以认为该结 果是可以接受的。在图9中,计算X是计算经纬度坐标中的X坐标,真实X是 实际经纬度坐标中的X坐标,X差值是实际经纬度坐标中的X坐标与计算经纬 度坐标中的X坐标的差值(为了计算方便将X差值和Y差值乘以1000),Y的 含义也与上述X类似,不再详述。
在图9中,根据纠偏回归方程对经纬度坐标进行了纠偏补偿,比如,根据 回归方程得到像素坐标(X,Y)对应的差值,包括X差值和Y差值;另一方面, 根据像素坐标(X,Y)和第二转换关系计算得到计算经纬度坐标,包括你计算 X和计算Y;在该计算X和计算Y的基础上,分别通过对应的X差值和Y差值 进行纠偏,得到真实X和真实Y,从而保证了经纬度坐标的准确性,能够十分 好的控制地图接入的精度。按照上述同样的方式,也可以计算到经纬度坐标转 换为像素坐标时的纠偏回归方程,并据此对计算的像素坐标进行纠偏。
309、调取瓦片地图,并求取像素点对应的经纬度坐标。
经过上述的步骤,已经得到了满足精度要求的第一转换关系和第二转换关 系,则最后利用第二转换关系确定监控平台的中心位置对应的瓦片地图进行调 取,并计算接入的电子地图中的各个像素点对应的经纬度坐标供监控应用。
本实施例中,在像素坐标与经纬度坐标换算中产生偏差时,针对偏差的分 布使用纠偏回归方程的方式拟合偏差趋势面,将数学的方法引入到地图接入中, 从而能够使用科学合理的方法通过样本点增加地图的精度,同时具有样本点数 量与地图精度呈正相关性的特点,样本点越多地图接入精度越高。此外,在302 中选取的参考坐标点也不一定为长方形,如果在上述的变形处理中运用 morphing(一种图像变形理论),可以达到更高的灵活性和精度。
本实施例的方法将电子地图接入到监控平台中,即使数据提供方不能提供 坐标转换关系,也能够通过几何计算的方式完成像素坐标和经纬度坐标之间的 转换计算,并且还可以使用样本点通过数学的方式系统的分析误差的趋势面拟 合获取回归方程,对地图数据进行纠偏,大大提高了地图接入的精度。
为了实现上述的电子地图接入方法,本发明实施例还提供了一种电子地图 接入装置,如图10所示,包括:第一转换模块1001、地图调取模块1002和第 二转换模块1003;其中,
第一转换模块1001,用于根据中心经纬度坐标,以及预设的第一转换关系, 得到对应所述中心经纬度坐标的中心像素坐标,所述第一转换关系用于表示经 纬度坐标至像素坐标的转换;
地图调取模块1002,用于调取所述中心像素坐标对应的瓦片地图,并显示 与所述瓦片地图相邻的各瓦片地图,所述各个瓦片地图组成接入的电子地图;
第二转换模块1003,用于根据所述电子地图中的各像素坐标,以及预设的 第二转换关系,得到与所述像素坐标对应的经纬度坐标,以根据经纬度坐标进 行监控应用,所述第二转换关系用于表示像素坐标至经纬度坐标之间的转换。
如图11所示,该装置在图10结构的基础上,还可以包括:参数接收模块 1004、第一参数处理模块1005、第二参数处理模块1006和第三参数处理模块 1007;其中,
参数接收模块1004,用于接收所述电子地图中的四个参考坐标点的像素 坐标,并获取所述像素坐标对应的经纬度坐标,所述四个参考坐标点在像素 坐标系中构成长方形;
第一参数处理模块1005,用于将所述长方形映射到经纬度坐标系中得到 四边形,根据所述长方形和四边形的中心点均为直线交点的几何特性,以及 所述四个参考坐标点的像素坐标和经纬度坐标,计算得到所述第二转换关系。
第二参数处理模块1006,用于若所述四边形满足上下边分别平行以及左 右边分别平行,根据中心点在四边比例的几何特性,计算得到第一转换关系;
第三参数处理模块1007,用于若长方形不满足上下边分别平行及左右边分 别平行,则获取根据样本点拟合得到的第一转换关系,第一转换关系是像素坐 标至经纬度坐标的转换回归方程,所述样本点根据第二转换关系得到。
进一步的,该装置还可以包括:纠偏模块1008,用于获取纠偏回归方程, 并根据所述纠偏回归方程对根据所述第二转换关系得到的与所述像素坐标对应 的经纬度坐标进行纠偏补偿。
具体实施中,该电子地图接入装置可以设置在监控平台,使得监控平台可 以执行上述的电子地图接入方法,比如监控平台可以根据第一转换关系或第二 转换关系进行像素坐标与经纬度坐标之间的转换,或者监控平台还可以根据纠 偏回归方程对计算经纬度坐标进行纠偏,提高地图接入的精度等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发 明保护的范围之内。