处理含烃地层的方法和系统.pdf

上传人:1*** 文档编号:175388 上传时间:2018-01-31 格式:PDF 页数:376 大小:17.39MB
返回 下载 相关 举报
摘要
申请专利号:

CN01811317.6

申请日:

2001.04.24

公开号:

CN1436274A

公开日:

2003.08.13

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):E21B 43/24申请日:20010424授权公告日:20061004终止日期:20100424|||授权|||实质审查的生效|||公开

IPC分类号:

E21B43/24; E21B43/30; E21B36/04

主分类号:

E21B43/24; E21B43/30; E21B36/04

申请人:

国际壳牌研究有限公司

发明人:

I·E·伯肯克; R·M·范哈蒂威尔德; J·M·卡拉尼卡斯; C·R·奇迪; K·A·玛尔; E·德鲁菲格纳克; R·C·莱恩; L·G·舒林格; G·T·沙因; G·L·斯特戈美尔; H·J·万嘉; S·L·威灵顿; E·张; J·M·科尔斯; T·D·福勒; A·M·玛德加夫卡; J·L·米诺迪; B·G·亨苏克; L·J·彼拉莫威克兹

地址:

荷兰海牙

优先权:

2000.04.24 US 60/199,214; 2000.04.24 US 60/199,213; 2000.04.24 US 60/199,215

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

王杰

PDF下载: PDF下载
内容摘要

公开了现场处理含烃地层和从该地层生产烃流体的方法,该方法包括应用压力/温度控制对于在从地层中生产烃流体的过程中在地层中存在的烃类进行热解,以使得该压力是至少对于所选择温度计算的压力,或该温度是至多对于所选择压力从等式(I)计算的温度,其中P是压力(巴,绝对),T是温度(℃),以及A和B是预先测定的参数,后者涉及与所生产的烃流体的量、组成或质量有关的性质。任选地,该方法继之以现场生产合成气的步骤,该步骤包括:提供根据现场处理含烃地层的方法进行过处理的部分消耗的含烃地层,然后让含烃地层与合成气产生流体进行反应。任选地,如此生产的合成气被转化成烃类;和/或通过膨胀和/或燃烧所生产的合成气或在燃料电池中使用如此生产的合成气来产生能量。

权利要求书

1: 现场处理含烃地层并从地层中生产烃流体的方法,该方法包括 在从地层中生产烃流体的过程中将在地层中存在的烃类热解,其中应 用了压力/温度控制以使得该压力是至少对应于所选择温度计算的压 力,或温度是至多对应于所选择的压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。
2: 根据权利要求1的方法,其中该含烃地层包括干酪根,如煤炭 或油页岩,或重质烃类,如焦油砂。
3: 根据权利要求1或2的方法,其中应用一种热源,它经过构型设 计后大体上由传导加热来加热该烃类地层。
4: 根据权利要求1-3中任何一项所要求的方法,其中在岩层中存 在的烃类可通过在250℃到400℃范围内,尤其在260℃至375℃范围内 的温度下加热来进行热解。
5: 根据权利要求1-4中任何一项的方法,其中该压力是至少1.4 巴并且其中如果该压力是3.52巴和该热解在至多301.7℃的温度下进 行,则采用一种热源,它不是仅仅提供射频加热的热源。
6: 现场处理含烃岩层并从岩层中生产烃流体的方法,该方法包括 在从岩层中生产烃流体的过程中将在岩层中存在的烃类热解,其中应 用了压力/温度控制以使得该压力是至少对应于所选择温度计算的压 力,或温度是至多对应于所选择的压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 式中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及性 质的预定参数,该性质与所生产的烃液体的数量、组成和/或质量有关, 并且其中在至少0.5巴、例如在1巴至10巴范围内、尤其5巴到7巴范围 内的氢分压的气氛存在下。
7: 根据权利要求1-6中任何一项所要求的方法,其中A等于14000 和B等于25。
8: 根据权利要求1-6中任何一项所要求的方法,其中A等于24146 和B等于43.349。
9: 根据权利要求1-6中任何一项所要求的方法,其中A等于30864 和B等于50.676。
10: 根据权利要求9所要求的方法,其中A等于16947和B等于 33.603。
11: 根据权利要求1-6中任何一项所要求的方法,其中A等于 57379和B等于83.145。
12: 根据权利要求1-6中任何一项所要求的方法,其中A等于 5492.8和B等于14.234。
13: 根据权利要求1-6中任何一项所要求的方法,其中A等于 38360和B等于60.53。 14.根据权利要求1-6中任何一项所要求的方法,其中A等于 6613.1和B等于16.364。 15.根据权利要求1-6中任何一项所要求的方法,其中A等于 28554和B等于47.084。 16.根据权利要求1-6中任何一项所要求的方法,其中A等于 11118和B等于23.156。 17.生产合成气的方法,该方法包括 -提供含烃地层,其根据现场处理含烃地层并从地层生产烃流体 的方法进行了处理,该方法包括在从地层生产烃流体的过程中将地层 中存在的流体热解,其中应用了压力/温度控制以使得该压力是至少对 应于所选择温度计算的压力,或温度是至多对应于所选择压力计算的 温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关,和 -随后让处理过的含烃地层的至少一部分与合成气产生流体进行 反应。 18.生产烃类的方法,它包括提供根据权利要求17生产的合成气 并将合成气转化成烃类。 19.根据权利要求18的方法,其中该合成气通过费-托烃合成法被 转化成链烷烃并将该链烷烃在加氢裂化器中进行转化。 20.产生能量的方法,包括提供根据权利要求17生产的合成气并将 合成气膨胀和/或燃烧,或在燃料电池中使用该合成气。 21.用于根据权利要求1到16中任何一项的方法的系统,该系统包 括一个或多个热注入井和一个或多个烃流体生产井,该生产井各自与 该一个或多个热注入井相距一种或多种所选择的距离来设置并且提供 了压力控制设备,该设备用于在一个或多个热注入井和一个或多个生 产井之间的地层的加热部分中保持所升高的流体压力(P),以使得该压 力是至少对应于所选择温度计算的压力,或该温度是至多对应于所选 择压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。 22.权利要求21的系统,其中各烃流体生产井提供有压力控制设 备,该设备将生产井的井眼的至少一部分内的压力保持在预先设定的 值,该值是相对于在热解区内的所分析温度来确定的,来自热解区中 的现场热解的烃流体流过地层进入到生产井的井眼中。 23.权利要求21的系统,其中多个热注入井以一种或多种所选择 的距离并且大体上以三角形排列图案围绕着各生产井设置。 24.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界平行钻探的。 25.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界正交钻探的。 26.权利要求21的系统,其中至少一个热注入井包括: 氧化性流体供给管,在使用过程中从氧化性流体源中提供氧化性 流体到地层中的反应区中,并且其中该氧化性流体被选择来在使用过 程中将靠近井眼区的地层中的烃类的至少一部分氧化,使得在反应区 中产生热量;和 燃烧气体排放管,用于将燃烧气体从反应区排放到地表面,在使 用过程中让热量基本上通过传导方式从反应区中转移到该地层的所选 择区段中。 27.权利要求26的系统,其中该氧化剂注入管和燃烧气体排放管 装有压力调节设备,该设备控制在加热器井中的压力以使得在反应区 中产生的燃烧气体的至少一大部分经过燃烧气体排放管被排放到地表 面。 28.权利要求26或27的系统,其中氧化剂注入管和燃烧气体排放 管彼此同轴地从加热器井的井头延伸到含烃地层中,氧化剂注入管从 燃烧气体排放管的下端伸出穿过横贯该含烃地层的反应区,并且氧化 剂注入管的伸出的下面部分装有一排氧化剂注射孔以便将氧化剂注入 到在氧化剂注入管和反应区之间的环形空间中。 29.根据权利要求21到28中任何一项的系统,其中至少一个加热 器井包括电热器。 30.权利要求29的系统,其中电热器包括: 设置在贯穿含烃地层的加热器井的井眼的无套管区段内的矿物绝 缘电缆,其中该矿物绝缘电缆经过构型设计后在使用过程中为地层的 至少一部分提供辐射热;和 其中该系统经过构型设计后可以在使用过程中让热量从矿物绝缘 电缆转移到该地层的区段中。 31.权利要求30的系统,其中该矿物绝缘电缆包括包含铜-镍合金 的导体,该导体位于绝缘矿物材料之内,后者包括位于包括抗腐蚀材 料的鞘体中的氧化镁和/或其它矿物颗粒。 32.权利要求29的系统,其中该电热器包括位于被设置在加热器 井内的第一导管中的第一导电体。 33.权利要求32的系统,进一步包括联接于第一导体和/或第一导 管的滑动电连接器并且其中流体位于第一导管内,其中该流体经过构 型设计后保持第一导管内的压力基本上可以在使用过程中防止第一导 管的变形。 34.权利要求32的系统,进一步包括设置在位于第一导管之外的 环形开孔之内的管,并且该管经过构型设计后可以除去从地层的至少 加热部分中生产的蒸汽,以使得在第一导管和开孔之间保持压力平衡 以大体上防止在使用过程中第一导管的变形。 35.权利要求29的系统,其中该电热器包括在加热器井的至少部 分地无套管的区段中排列的至少一种长条导电体元件。 36.权利要求35的系统,其中流体供给管被设置在加热器井内以 便在导电体元件的表面上注入清洗流体如空气,从而在使用过程中抑 制燃烧产物在至少一个长条导电体元件上或在其附近的沉积。 37.权利要求36的系统,其中该长条导电体元件借助于一系列绝 缘的定中心器的作用来通过流体供给管支承,并且导管包括接近长条 导电体元件的一系列流体注入孔。 38.根据权利要求21-37中任何一项的系统,其中在至少一个加热 器井中的电加热器和/或其它加热器经过构型设计,以在使用过程中产 生在0.5和1.5KW/每米长度的相关加热器井之间的累积辐射热。 39.包括低于10wt%的烯烃和具有低于35的碳数的热解产物。 40.权利要求39的热解产物,具有低于30的平均碳数。 41.权利要求39的热解产物,具有低于25的平均碳数。 42.权利要求39的热解产物,包括包含碳数低于5的烃类的不凝结 组分;并且其中碳数为2-4的烃类与甲烷的重量比大于1。 43.权利要求39的热解产物,具有折干计算的低于1wt%的元素氮 含量;折干计算的低于1wt%的元素氧含量,和折干计算的低于1wt%的 元素硫含量。 44.权利要求39的热解产物,具有含氨的组分,其中含氨组分在 产品中的重量百分数大于0.5%。 45.权利要求39或42的热解产物,包括可凝结组分,其中可凝结 组分的烯烃含量低于可凝结组分的9wt%。 46.权利要求39的热解产物,包括烃类组分,其中在烃类组分当 中低于5wt%的化合物具有大于20的碳数。 47.权利要求39的热解产物,具有低于1wt%的元素氮含量;低于 1wt%的元素氧含量,和低于1wt%的元素硫含量。 48.权利要求45的热解产物,其中可凝结组分的芳烃含量高于可 凝结组分的30wt%。 49.权利要求39的热解产物,包括: 包括1,2,3或4个碳原子的烃类,或它们的混合物,和其中C2-4 组分与甲烷的重量比大于1,其中C2-4被定义为含有2,3和4个碳原子 的烃类的总和;和 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; H 2 含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 50.权利要求39的热解产物,包括: 烃类组分,其中在烃类组分当中低于5%的化合物具有大于20的碳 数; 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; 氢气(H 2 )含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 51.权利要求39的热解产物,包括可凝结组分,后者具有占可凝 结组分的0.1wt%-5wt%的烯烃含量;和占可凝结组分的0wt%-0.1wt% 的该烃类液体的萘含量。 52.权利要求39的热解产物,包括可凝结流体,它包括在0.1%到 2%范围内的烯烃的重量百分数;和低于2%的三芳族烃的重量百分数。 53.权利要求39的热解产物,包括: H 2 的重量百分数大于10%; 氨的重量百分数大于0.5%;和 多于2个碳原子的烃类与甲烷的重量比大于0.4。 54.根据权利要求39到53中任何一项的热解产物,其中该热解产 物可通过权利要求1-16中任何一项所要求的方法获得。 55.根据权利要求54的热解产物,其中该热解产物是通过权利要 求1-16中任何一项所要求的方法获得的。
14: 234。 13.根据权利要求1-6中任何一项所要求的方法,其中A等于 38360和B等于60.53。 14.根据权利要求1-6中任何一项所要求的方法,其中A等于 6613.1和B等于16.364。
15: 根据权利要求1-6中任何一项所要求的方法,其中A等于 28554和B等于47.084。 16.根据权利要求1-6中任何一项所要求的方法,其中A等于 11118和B等于23.156。 17.生产合成气的方法,该方法包括 -提供含烃地层,其根据现场处理含烃地层并从地层生产烃流体 的方法进行了处理,该方法包括在从地层生产烃流体的过程中将地层 中存在的流体热解,其中应用了压力/温度控制以使得该压力是至少对 应于所选择温度计算的压力,或温度是至多对应于所选择压力计算的 温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关,和 -随后让处理过的含烃地层的至少一部分与合成气产生流体进行 反应。 18.生产烃类的方法,它包括提供根据权利要求17生产的合成气 并将合成气转化成烃类。 19.根据权利要求18的方法,其中该合成气通过费-托烃合成法被 转化成链烷烃并将该链烷烃在加氢裂化器中进行转化。 20.产生能量的方法,包括提供根据权利要求17生产的合成气并将 合成气膨胀和/或燃烧,或在燃料电池中使用该合成气。 21.用于根据权利要求1到16中任何一项的方法的系统,该系统包 括一个或多个热注入井和一个或多个烃流体生产井,该生产井各自与 该一个或多个热注入井相距一种或多种所选择的距离来设置并且提供 了压力控制设备,该设备用于在一个或多个热注入井和一个或多个生 产井之间的地层的加热部分中保持所升高的流体压力(P),以使得该压 力是至少对应于所选择温度计算的压力,或该温度是至多对应于所选 择压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。 22.权利要求21的系统,其中各烃流体生产井提供有压力控制设 备,该设备将生产井的井眼的至少一部分内的压力保持在预先设定的 值,该值是相对于在热解区内的所分析温度来确定的,来自热解区中 的现场热解的烃流体流过地层进入到生产井的井眼中。 23.权利要求21的系统,其中多个热注入井以一种或多种所选择 的距离并且大体上以三角形排列图案围绕着各生产井设置。 24.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界平行钻探的。 25.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界正交钻探的。 26.权利要求21的系统,其中至少一个热注入井包括: 氧化性流体供给管,在使用过程中从氧化性流体源中提供氧化性 流体到地层中的反应区中,并且其中该氧化性流体被选择来在使用过 程中将靠近井眼区的地层中的烃类的至少一部分氧化,使得在反应区 中产生热量;和 燃烧气体排放管,用于将燃烧气体从反应区排放到地表面,在使 用过程中让热量基本上通过传导方式从反应区中转移到该地层的所选 择区段中。 27.权利要求26的系统,其中该氧化剂注入管和燃烧气体排放管 装有压力调节设备,该设备控制在加热器井中的压力以使得在反应区 中产生的燃烧气体的至少一大部分经过燃烧气体排放管被排放到地表 面。 28.权利要求26或27的系统,其中氧化剂注入管和燃烧气体排放 管彼此同轴地从加热器井的井头延伸到含烃地层中,氧化剂注入管从 燃烧气体排放管的下端伸出穿过横贯该含烃地层的反应区,并且氧化 剂注入管的伸出的下面部分装有一排氧化剂注射孔以便将氧化剂注入 到在氧化剂注入管和反应区之间的环形空间中。 29.根据权利要求21到28中任何一项的系统,其中至少一个加热 器井包括电热器。 30.权利要求29的系统,其中电热器包括: 设置在贯穿含烃地层的加热器井的井眼的无套管区段内的矿物绝 缘电缆,其中该矿物绝缘电缆经过构型设计后在使用过程中为地层的 至少一部分提供辐射热;和 其中该系统经过构型设计后可以在使用过程中让热量从矿物绝缘 电缆转移到该地层的区段中。 31.权利要求30的系统,其中该矿物绝缘电缆包括包含铜-镍合金 的导体,该导体位于绝缘矿物材料之内,后者包括位于包括抗腐蚀材 料的鞘体中的氧化镁和/或其它矿物颗粒。 32.权利要求29的系统,其中该电热器包括位于被设置在加热器 井内的第一导管中的第一导电体。 33.权利要求32的系统,进一步包括联接于第一导体和/或第一导 管的滑动电连接器并且其中流体位于第一导管内,其中该流体经过构 型设计后保持第一导管内的压力基本上可以在使用过程中防止第一导 管的变形。 34.权利要求32的系统,进一步包括设置在位于第一导管之外的 环形开孔之内的管,并且该管经过构型设计后可以除去从地层的至少 加热部分中生产的蒸汽,以使得在第一导管和开孔之间保持压力平衡 以大体上防止在使用过程中第一导管的变形。 35.权利要求29的系统,其中该电热器包括在加热器井的至少部 分地无套管的区段中排列的至少一种长条导电体元件。 36.权利要求35的系统,其中流体供给管被设置在加热器井内以 便在导电体元件的表面上注入清洗流体如空气,从而在使用过程中抑 制燃烧产物在至少一个长条导电体元件上或在其附近的沉积。 37.权利要求36的系统,其中该长条导电体元件借助于一系列绝 缘的定中心器的作用来通过流体供给管支承,并且导管包括接近长条 导电体元件的一系列流体注入孔。 38.根据权利要求21-37中任何一项的系统,其中在至少一个加热 器井中的电加热器和/或其它加热器经过构型设计,以在使用过程中产 生在0.5和1.5KW/每米长度的相关加热器井之间的累积辐射热。 39.包括低于10wt%的烯烃和具有低于35的碳数的热解产物。 40.权利要求39的热解产物,具有低于30的平均碳数。 41.权利要求39的热解产物,具有低于25的平均碳数。 42.权利要求39的热解产物,包括包含碳数低于5的烃类的不凝结 组分;并且其中碳数为2-4的烃类与甲烷的重量比大于1。 43.权利要求39的热解产物,具有折干计算的低于1wt%的元素氮 含量;折干计算的低于1wt%的元素氧含量,和折干计算的低于1wt%的 元素硫含量。 44.权利要求39的热解产物,具有含氨的组分,其中含氨组分在 产品中的重量百分数大于0.5%。 45.权利要求39或42的热解产物,包括可凝结组分,其中可凝结 组分的烯烃含量低于可凝结组分的9wt%。 46.权利要求39的热解产物,包括烃类组分,其中在烃类组分当 中低于5wt%的化合物具有大于20的碳数。 47.权利要求39的热解产物,具有低于1wt%的元素氮含量;低于 1wt%的元素氧含量,和低于1wt%的元素硫含量。 48.权利要求45的热解产物,其中可凝结组分的芳烃含量高于可 凝结组分的30wt%。 49.权利要求39的热解产物,包括: 包括1,2,3或4个碳原子的烃类,或它们的混合物,和其中C2-4 组分与甲烷的重量比大于1,其中C2-4被定义为含有2,3和4个碳原子 的烃类的总和;和 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; H 2 含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 50.权利要求39的热解产物,包括: 烃类组分,其中在烃类组分当中低于5%的化合物具有大于20的碳 数; 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; 氢气(H 2 )含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 51.权利要求39的热解产物,包括可凝结组分,后者具有占可凝 结组分的0.1wt%-5wt%的烯烃含量;和占可凝结组分的0wt%-0.1wt% 的该烃类液体的萘含量。 52.权利要求39的热解产物,包括可凝结流体,它包括在0.1%到 2%范围内的烯烃的重量百分数;和低于2%的三芳族烃的重量百分数。 53.权利要求39的热解产物,包括: H 2 的重量百分数大于10%; 氨的重量百分数大于0.5%;和 多于2个碳原子的烃类与甲烷的重量比大于0.4。 54.根据权利要求39到53中任何一项的热解产物,其中该热解产 物可通过权利要求1-16中任何一项所要求的方法获得。 55.根据权利要求54的热解产物,其中该热解产物是通过权利要 求1-16中任何一项所要求的方法获得的。
16: 364。 15.根据权利要求1-6中任何一项所要求的方法,其中A等于 28554和B等于47.084。 16.根据权利要求1-6中任何一项所要求的方法,其中A等于 11118和B等于23.156。
17: 生产合成气的方法,该方法包括 -提供含烃地层,其根据现场处理含烃地层并从地层生产烃流体 的方法进行了处理,该方法包括在从地层生产烃流体的过程中将地层 中存在的流体热解,其中应用了压力/温度控制以使得该压力是至少对 应于所选择温度计算的压力,或温度是至多对应于所选择压力计算的 温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关,和 -随后让处理过的含烃地层的至少一部分与合成气产生流体进行 反应。
18: 生产烃类的方法,它包括提供根据权利要求17生产的合成气 并将合成气转化成烃类。
19: 根据权利要求18的方法,其中该合成气通过费-托烃合成法被 转化成链烷烃并将该链烷烃在加氢裂化器中进行转化。
20: 产生能量的方法,包括提供根据权利要求17生产的合成气并将 合成气膨胀和/或燃烧,或在燃料电池中使用该合成气。
21: 用于根据权利要求1到16中任何一项的方法的系统,该系统包 括一个或多个热注入井和一个或多个烃流体生产井,该生产井各自与 该一个或多个热注入井相距一种或多种所选择的距离来设置并且提供 了压力控制设备,该设备用于在一个或多个热注入井和一个或多个生 产井之间的地层的加热部分中保持所升高的流体压力(P),以使得该压 力是至少对应于所选择温度计算的压力,或该温度是至多对应于所选 择压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。
22: 权利要求21的系统,其中各烃流体生产井提供有压力控制设 备,该设备将生产井的井眼的至少一部分内的压力保持在预先设定的 值,该值是相对于在热解区内的所分析温度来确定的,来自热解区中 的现场热解的烃流体流过地层进入到生产井的井眼中。 23.权利要求21的系统,其中多个热注入井以一种或多种所选择 的距离并且大体上以三角形排列图案围绕着各生产井设置。 24.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界平行钻探的。 25.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界正交钻探的。 26.权利要求21的系统,其中至少一个热注入井包括: 氧化性流体供给管,在使用过程中从氧化性流体源中提供氧化性 流体到地层中的反应区中,并且其中该氧化性流体被选择来在使用过 程中将靠近井眼区的地层中的烃类的至少一部分氧化,使得在反应区 中产生热量;和 燃烧气体排放管,用于将燃烧气体从反应区排放到地表面,在使 用过程中让热量基本上通过传导方式从反应区中转移到该地层的所选 择区段中。 27.权利要求26的系统,其中该氧化剂注入管和燃烧气体排放管 装有压力调节设备,该设备控制在加热器井中的压力以使得在反应区 中产生的燃烧气体的至少一大部分经过燃烧气体排放管被排放到地表 面。 28.权利要求26或27的系统,其中氧化剂注入管和燃烧气体排放 管彼此同轴地从加热器井的井头延伸到含烃地层中,氧化剂注入管从 燃烧气体排放管的下端伸出穿过横贯该含烃地层的反应区,并且氧化 剂注入管的伸出的下面部分装有一排氧化剂注射孔以便将氧化剂注入 到在氧化剂注入管和反应区之间的环形空间中。 29.根据权利要求21到28中任何一项的系统,其中至少一个加热 器井包括电热器。 30.权利要求29的系统,其中电热器包括: 设置在贯穿含烃地层的加热器井的井眼的无套管区段内的矿物绝 缘电缆,其中该矿物绝缘电缆经过构型设计后在使用过程中为地层的 至少一部分提供辐射热;和 其中该系统经过构型设计后可以在使用过程中让热量从矿物绝缘 电缆转移到该地层的区段中。 31.权利要求30的系统,其中该矿物绝缘电缆包括包含铜-镍合金 的导体,该导体位于绝缘矿物材料之内,后者包括位于包括抗腐蚀材 料的鞘体中的氧化镁和/或其它矿物颗粒。 32.权利要求29的系统,其中该电热器包括位于被设置在加热器 井内的第一导管中的第一导电体。 33.权利要求32的系统,进一步包括联接于第一导体和/或第一导 管的滑动电连接器并且其中流体位于第一导管内,其中该流体经过构 型设计后保持第一导管内的压力基本上可以在使用过程中防止第一导 管的变形。 34.权利要求32的系统,进一步包括设置在位于第一导管之外的 环形开孔之内的管,并且该管经过构型设计后可以除去从地层的至少 加热部分中生产的蒸汽,以使得在第一导管和开孔之间保持压力平衡 以大体上防止在使用过程中第一导管的变形。 35.权利要求29的系统,其中该电热器包括在加热器井的至少部 分地无套管的区段中排列的至少一种长条导电体元件。 36.权利要求35的系统,其中流体供给管被设置在加热器井内以 便在导电体元件的表面上注入清洗流体如空气,从而在使用过程中抑 制燃烧产物在至少一个长条导电体元件上或在其附近的沉积。 37.权利要求36的系统,其中该长条导电体元件借助于一系列绝 缘的定中心器的作用来通过流体供给管支承,并且导管包括接近长条 导电体元件的一系列流体注入孔。 38.根据权利要求21-37中任何一项的系统,其中在至少一个加热 器井中的电加热器和/或其它加热器经过构型设计,以在使用过程中产 生在0.5和1.5KW/每米长度的相关加热器井之间的累积辐射热。 39.包括低于10wt%的烯烃和具有低于35的碳数的热解产物。 40.权利要求39的热解产物,具有低于30的平均碳数。 41.权利要求39的热解产物,具有低于25的平均碳数。 42.权利要求39的热解产物,包括包含碳数低于5的烃类的不凝结 组分;并且其中碳数为2-4的烃类与甲烷的重量比大于1。 43.权利要求39的热解产物,具有折干计算的低于1wt%的元素氮 含量;折干计算的低于1wt%的元素氧含量,和折干计算的低于1wt%的 元素硫含量。 44.权利要求39的热解产物,具有含氨的组分,其中含氨组分在 产品中的重量百分数大于0.5%。 45.权利要求39或42的热解产物,包括可凝结组分,其中可凝结 组分的烯烃含量低于可凝结组分的9wt%。 46.权利要求39的热解产物,包括烃类组分,其中在烃类组分当 中低于5wt%的化合物具有大于20的碳数。 47.权利要求39的热解产物,具有低于1wt%的元素氮含量;低于 1wt%的元素氧含量,和低于1wt%的元素硫含量。 48.权利要求45的热解产物,其中可凝结组分的芳烃含量高于可 凝结组分的30wt%。 49.权利要求39的热解产物,包括: 包括1,2,3或4个碳原子的烃类,或它们的混合物,和其中C2-4 组分与甲烷的重量比大于1,其中C2-4被定义为含有2,3和4个碳原子 的烃类的总和;和 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; H 2 含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 50.权利要求39的热解产物,包括: 烃类组分,其中在烃类组分当中低于5%的化合物具有大于20的碳 数; 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; 氢气(H 2 )含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 51.权利要求39的热解产物,包括可凝结组分,后者具有占可凝 结组分的0.1wt%-5wt%的烯烃含量;和占可凝结组分的0wt%-0.1wt% 的该烃类液体的萘含量。 52.权利要求39的热解产物,包括可凝结流体,它包括在0.1%到 2%范围内的烯烃的重量百分数;和低于2%的三芳族烃的重量百分数。 53.权利要求39的热解产物,包括: H 2 的重量百分数大于10%; 氨的重量百分数大于0.5%;和 多于2个碳原子的烃类与甲烷的重量比大于0.4。 54.根据权利要求39到53中任何一项的热解产物,其中该热解产 物可通过权利要求1-16中任何一项所要求的方法获得。 55.根据权利要求54的热解产物,其中该热解产物是通过权利要 求1-16中任何一项所要求的方法获得的。
23: 156。 17.生产合成气的方法,该方法包括 -提供含烃地层,其根据现场处理含烃地层并从地层生产烃流体 的方法进行了处理,该方法包括在从地层生产烃流体的过程中将地层 中存在的流体热解,其中应用了压力/温度控制以使得该压力是至少对 应于所选择温度计算的压力,或温度是至多对应于所选择压力计算的 温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关,和 -随后让处理过的含烃地层的至少一部分与合成气产生流体进行 反应。 18.生产烃类的方法,它包括提供根据权利要求17生产的合成气 并将合成气转化成烃类。 19.根据权利要求18的方法,其中该合成气通过费-托烃合成法被 转化成链烷烃并将该链烷烃在加氢裂化器中进行转化。 20.产生能量的方法,包括提供根据权利要求17生产的合成气并将 合成气膨胀和/或燃烧,或在燃料电池中使用该合成气。 21.用于根据权利要求1到16中任何一项的方法的系统,该系统包 括一个或多个热注入井和一个或多个烃流体生产井,该生产井各自与 该一个或多个热注入井相距一种或多种所选择的距离来设置并且提供 了压力控制设备,该设备用于在一个或多个热注入井和一个或多个生 产井之间的地层的加热部分中保持所升高的流体压力(P),以使得该压 力是至少对应于所选择温度计算的压力,或该温度是至多对应于所选 择压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。 22.权利要求21的系统,其中各烃流体生产井提供有压力控制设 备,该设备将生产井的井眼的至少一部分内的压力保持在预先设定的 值,该值是相对于在热解区内的所分析温度来确定的,来自热解区中 的现场热解的烃流体流过地层进入到生产井的井眼中。 23.权利要求21的系统,其中多个热注入井以一种或多种所选择 的距离并且大体上以三角形排列图案围绕着各生产井设置。
24: 权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界平行钻探的。
25: 权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界正交钻探的。
26: 权利要求21的系统,其中至少一个热注入井包括: 氧化性流体供给管,在使用过程中从氧化性流体源中提供氧化性 流体到地层中的反应区中,并且其中该氧化性流体被选择来在使用过 程中将靠近井眼区的地层中的烃类的至少一部分氧化,使得在反应区 中产生热量;和 燃烧气体排放管,用于将燃烧气体从反应区排放到地表面,在使 用过程中让热量基本上通过传导方式从反应区中转移到该地层的所选 择区段中。
27: 权利要求26的系统,其中该氧化剂注入管和燃烧气体排放管 装有压力调节设备,该设备控制在加热器井中的压力以使得在反应区 中产生的燃烧气体的至少一大部分经过燃烧气体排放管被排放到地表 面。
28: 权利要求26或27的系统,其中氧化剂注入管和燃烧气体排放 管彼此同轴地从加热器井的井头延伸到含烃地层中,氧化剂注入管从 燃烧气体排放管的下端伸出穿过横贯该含烃地层的反应区,并且氧化 剂注入管的伸出的下面部分装有一排氧化剂注射孔以便将氧化剂注入 到在氧化剂注入管和反应区之间的环形空间中。
29: 根据权利要求21到28中任何一项的系统,其中至少一个加热 器井包括电热器。
30: 权利要求29的系统,其中电热器包括: 设置在贯穿含烃地层的加热器井的井眼的无套管区段内的矿物绝 缘电缆,其中该矿物绝缘电缆经过构型设计后在使用过程中为地层的 至少一部分提供辐射热;和 其中该系统经过构型设计后可以在使用过程中让热量从矿物绝缘 电缆转移到该地层的区段中。
31: 权利要求30的系统,其中该矿物绝缘电缆包括包含铜-镍合金 的导体,该导体位于绝缘矿物材料之内,后者包括位于包括抗腐蚀材 料的鞘体中的氧化镁和/或其它矿物颗粒。
32: 权利要求29的系统,其中该电热器包括位于被设置在加热器 井内的第一导管中的第一导电体。 33.权利要求32的系统,进一步包括联接于第一导体和/或第一导 管的滑动电连接器并且其中流体位于第一导管内,其中该流体经过构 型设计后保持第一导管内的压力基本上可以在使用过程中防止第一导 管的变形。 34.权利要求32的系统,进一步包括设置在位于第一导管之外的 环形开孔之内的管,并且该管经过构型设计后可以除去从地层的至少 加热部分中生产的蒸汽,以使得在第一导管和开孔之间保持压力平衡 以大体上防止在使用过程中第一导管的变形。 35.权利要求29的系统,其中该电热器包括在加热器井的至少部 分地无套管的区段中排列的至少一种长条导电体元件。 36.权利要求35的系统,其中流体供给管被设置在加热器井内以 便在导电体元件的表面上注入清洗流体如空气,从而在使用过程中抑 制燃烧产物在至少一个长条导电体元件上或在其附近的沉积。 37.权利要求36的系统,其中该长条导电体元件借助于一系列绝 缘的定中心器的作用来通过流体供给管支承,并且导管包括接近长条 导电体元件的一系列流体注入孔。 38.根据权利要求21-37中任何一项的系统,其中在至少一个加热 器井中的电加热器和/或其它加热器经过构型设计,以在使用过程中产 生在0.5和1.5KW/每米长度的相关加热器井之间的累积辐射热。 39.包括低于10wt%的烯烃和具有低于35的碳数的热解产物。 40.权利要求39的热解产物,具有低于30的平均碳数。 41.权利要求39的热解产物,具有低于25的平均碳数。 42.权利要求39的热解产物,包括包含碳数低于5的烃类的不凝结 组分;并且其中碳数为2-4的烃类与甲烷的重量比大于1。 43.权利要求39的热解产物,具有折干计算的低于1wt%的元素氮 含量;折干计算的低于1wt%的元素氧含量,和折干计算的低于1wt%的 元素硫含量。 44.权利要求39的热解产物,具有含氨的组分,其中含氨组分在 产品中的重量百分数大于0.5%。 45.权利要求39或42的热解产物,包括可凝结组分,其中可凝结 组分的烯烃含量低于可凝结组分的9wt%。 46.权利要求39的热解产物,包括烃类组分,其中在烃类组分当 中低于5wt%的化合物具有大于20的碳数。 47.权利要求39的热解产物,具有低于1wt%的元素氮含量;低于 1wt%的元素氧含量,和低于1wt%的元素硫含量。 48.权利要求45的热解产物,其中可凝结组分的芳烃含量高于可 凝结组分的30wt%。 49.权利要求39的热解产物,包括: 包括1,2,3或4个碳原子的烃类,或它们的混合物,和其中C2-4 组分与甲烷的重量比大于1,其中C2-4被定义为含有2,3和4个碳原子 的烃类的总和;和 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; H 2 含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 50.权利要求39的热解产物,包括: 烃类组分,其中在烃类组分当中低于5%的化合物具有大于20的碳 数; 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; 氢气(H 2 )含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 51.权利要求39的热解产物,包括可凝结组分,后者具有占可凝 结组分的0.1wt%-5wt%的烯烃含量;和占可凝结组分的0wt%-0.1wt% 的该烃类液体的萘含量。 52.权利要求39的热解产物,包括可凝结流体,它包括在0.1%到 2%范围内的烯烃的重量百分数;和低于2%的三芳族烃的重量百分数。 53.权利要求39的热解产物,包括: H 2 的重量百分数大于10%; 氨的重量百分数大于0.5%;和 多于2个碳原子的烃类与甲烷的重量比大于0.4。 54.根据权利要求39到53中任何一项的热解产物,其中该热解产 物可通过权利要求1-16中任何一项所要求的方法获得。 55.根据权利要求54的热解产物,其中该热解产物是通过权利要 求1-16中任何一项所要求的方法获得的。
33: 603。 11.根据权利要求1-6中任何一项所要求的方法,其中A等于 57379和B等于83.145。 12.根据权利要求1-6中任何一项所要求的方法,其中A等于 5492.8和B等于14.234。 13.根据权利要求1-6中任何一项所要求的方法,其中A等于 38360和B等于60.53。 14.根据权利要求1-6中任何一项所要求的方法,其中A等于 6613.1和B等于16.364。 15.根据权利要求1-6中任何一项所要求的方法,其中A等于 28554和B等于47.084。 16.根据权利要求1-6中任何一项所要求的方法,其中A等于 11118和B等于23.156。 17.生产合成气的方法,该方法包括 -提供含烃地层,其根据现场处理含烃地层并从地层生产烃流体 的方法进行了处理,该方法包括在从地层生产烃流体的过程中将地层 中存在的流体热解,其中应用了压力/温度控制以使得该压力是至少对 应于所选择温度计算的压力,或温度是至多对应于所选择压力计算的 温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关,和 -随后让处理过的含烃地层的至少一部分与合成气产生流体进行 反应。 18.生产烃类的方法,它包括提供根据权利要求17生产的合成气 并将合成气转化成烃类。 19.根据权利要求18的方法,其中该合成气通过费-托烃合成法被 转化成链烷烃并将该链烷烃在加氢裂化器中进行转化。 20.产生能量的方法,包括提供根据权利要求17生产的合成气并将 合成气膨胀和/或燃烧,或在燃料电池中使用该合成气。 21.用于根据权利要求1到16中任何一项的方法的系统,该系统包 括一个或多个热注入井和一个或多个烃流体生产井,该生产井各自与 该一个或多个热注入井相距一种或多种所选择的距离来设置并且提供 了压力控制设备,该设备用于在一个或多个热注入井和一个或多个生 产井之间的地层的加热部分中保持所升高的流体压力(P),以使得该压 力是至少对应于所选择温度计算的压力,或该温度是至多对应于所选 择压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。 22.权利要求21的系统,其中各烃流体生产井提供有压力控制设 备,该设备将生产井的井眼的至少一部分内的压力保持在预先设定的 值,该值是相对于在热解区内的所分析温度来确定的,来自热解区中 的现场热解的烃流体流过地层进入到生产井的井眼中。 23.权利要求21的系统,其中多个热注入井以一种或多种所选择 的距离并且大体上以三角形排列图案围绕着各生产井设置。 24.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界平行钻探的。 25.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界正交钻探的。 26.权利要求21的系统,其中至少一个热注入井包括: 氧化性流体供给管,在使用过程中从氧化性流体源中提供氧化性 流体到地层中的反应区中,并且其中该氧化性流体被选择来在使用过 程中将靠近井眼区的地层中的烃类的至少一部分氧化,使得在反应区 中产生热量;和 燃烧气体排放管,用于将燃烧气体从反应区排放到地表面,在使 用过程中让热量基本上通过传导方式从反应区中转移到该地层的所选 择区段中。 27.权利要求26的系统,其中该氧化剂注入管和燃烧气体排放管 装有压力调节设备,该设备控制在加热器井中的压力以使得在反应区 中产生的燃烧气体的至少一大部分经过燃烧气体排放管被排放到地表 面。 28.权利要求26或27的系统,其中氧化剂注入管和燃烧气体排放 管彼此同轴地从加热器井的井头延伸到含烃地层中,氧化剂注入管从 燃烧气体排放管的下端伸出穿过横贯该含烃地层的反应区,并且氧化 剂注入管的伸出的下面部分装有一排氧化剂注射孔以便将氧化剂注入 到在氧化剂注入管和反应区之间的环形空间中。 29.根据权利要求21到28中任何一项的系统,其中至少一个加热 器井包括电热器。 30.权利要求29的系统,其中电热器包括: 设置在贯穿含烃地层的加热器井的井眼的无套管区段内的矿物绝 缘电缆,其中该矿物绝缘电缆经过构型设计后在使用过程中为地层的 至少一部分提供辐射热;和 其中该系统经过构型设计后可以在使用过程中让热量从矿物绝缘 电缆转移到该地层的区段中。 31.权利要求30的系统,其中该矿物绝缘电缆包括包含铜-镍合金 的导体,该导体位于绝缘矿物材料之内,后者包括位于包括抗腐蚀材 料的鞘体中的氧化镁和/或其它矿物颗粒。 32.权利要求29的系统,其中该电热器包括位于被设置在加热器 井内的第一导管中的第一导电体。 33.权利要求32的系统,进一步包括联接于第一导体和/或第一导 管的滑动电连接器并且其中流体位于第一导管内,其中该流体经过构 型设计后保持第一导管内的压力基本上可以在使用过程中防止第一导 管的变形。
34: 权利要求32的系统,进一步包括设置在位于第一导管之外的 环形开孔之内的管,并且该管经过构型设计后可以除去从地层的至少 加热部分中生产的蒸汽,以使得在第一导管和开孔之间保持压力平衡 以大体上防止在使用过程中第一导管的变形。
35: 权利要求29的系统,其中该电热器包括在加热器井的至少部 分地无套管的区段中排列的至少一种长条导电体元件。
36: 权利要求35的系统,其中流体供给管被设置在加热器井内以 便在导电体元件的表面上注入清洗流体如空气,从而在使用过程中抑 制燃烧产物在至少一个长条导电体元件上或在其附近的沉积。
37: 权利要求36的系统,其中该长条导电体元件借助于一系列绝 缘的定中心器的作用来通过流体供给管支承,并且导管包括接近长条 导电体元件的一系列流体注入孔。
38: 根据权利要求21-37中任何一项的系统,其中在至少一个加热 器井中的电加热器和/或其它加热器经过构型设计,以在使用过程中产 生在0.5和1.5KW/每米长度的相关加热器井之间的累积辐射热。
39: 包括低于10wt%的烯烃和具有低于35的碳数的热解产物。
40: 权利要求39的热解产物,具有低于30的平均碳数。
41: 权利要求39的热解产物,具有低于25的平均碳数。
42: 权利要求39的热解产物,包括包含碳数低于5的烃类的不凝结 组分;并且其中碳数为2-4的烃类与甲烷的重量比大于1。 43.权利要求39的热解产物,具有折干计算的低于1wt%的元素氮 含量;折干计算的低于1wt%的元素氧含量,和折干计算的低于1wt%的 元素硫含量。 44.权利要求39的热解产物,具有含氨的组分,其中含氨组分在 产品中的重量百分数大于0.5%。 45.权利要求39或42的热解产物,包括可凝结组分,其中可凝结 组分的烯烃含量低于可凝结组分的9wt%。 46.权利要求39的热解产物,包括烃类组分,其中在烃类组分当 中低于5wt%的化合物具有大于20的碳数。 47.权利要求39的热解产物,具有低于1wt%的元素氮含量;低于 1wt%的元素氧含量,和低于1wt%的元素硫含量。 48.权利要求45的热解产物,其中可凝结组分的芳烃含量高于可 凝结组分的30wt%。 49.权利要求39的热解产物,包括: 包括1,2,3或4个碳原子的烃类,或它们的混合物,和其中C2-4 组分与甲烷的重量比大于1,其中C2-4被定义为含有2,3和4个碳原子 的烃类的总和;和 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; H 2 含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 50.权利要求39的热解产物,包括: 烃类组分,其中在烃类组分当中低于5%的化合物具有大于20的碳 数; 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; 氢气(H 2 )含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 51.权利要求39的热解产物,包括可凝结组分,后者具有占可凝 结组分的0.1wt%-5wt%的烯烃含量;和占可凝结组分的0wt%-0.1wt% 的该烃类液体的萘含量。 52.权利要求39的热解产物,包括可凝结流体,它包括在0.1%到 2%范围内的烯烃的重量百分数;和低于2%的三芳族烃的重量百分数。 53.权利要求39的热解产物,包括: H 2 的重量百分数大于10%; 氨的重量百分数大于0.5%;和 多于2个碳原子的烃类与甲烷的重量比大于0.4。 54.根据权利要求39到53中任何一项的热解产物,其中该热解产 物可通过权利要求1-16中任何一项所要求的方法获得。 55.根据权利要求54的热解产物,其中该热解产物是通过权利要 求1-16中任何一项所要求的方法获得的。
43: 349。 9.根据权利要求1-6中任何一项所要求的方法,其中A等于30864 和B等于50.676。 10.根据权利要求9所要求的方法,其中A等于16947和B等于 33.603。 11.根据权利要求1-6中任何一项所要求的方法,其中A等于 57379和B等于83.145。 12.根据权利要求1-6中任何一项所要求的方法,其中A等于 5492.8和B等于14.234。 13.根据权利要求1-6中任何一项所要求的方法,其中A等于 38360和B等于60.53。 14.根据权利要求1-6中任何一项所要求的方法,其中A等于 6613.1和B等于16.364。 15.根据权利要求1-6中任何一项所要求的方法,其中A等于 28554和B等于47.084。 16.根据权利要求1-6中任何一项所要求的方法,其中A等于 11118和B等于23.156。 17.生产合成气的方法,该方法包括 -提供含烃地层,其根据现场处理含烃地层并从地层生产烃流体 的方法进行了处理,该方法包括在从地层生产烃流体的过程中将地层 中存在的流体热解,其中应用了压力/温度控制以使得该压力是至少对 应于所选择温度计算的压力,或温度是至多对应于所选择压力计算的 温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关,和 -随后让处理过的含烃地层的至少一部分与合成气产生流体进行 反应。 18.生产烃类的方法,它包括提供根据权利要求17生产的合成气 并将合成气转化成烃类。 19.根据权利要求18的方法,其中该合成气通过费-托烃合成法被 转化成链烷烃并将该链烷烃在加氢裂化器中进行转化。 20.产生能量的方法,包括提供根据权利要求17生产的合成气并将 合成气膨胀和/或燃烧,或在燃料电池中使用该合成气。 21.用于根据权利要求1到16中任何一项的方法的系统,该系统包 括一个或多个热注入井和一个或多个烃流体生产井,该生产井各自与 该一个或多个热注入井相距一种或多种所选择的距离来设置并且提供 了压力控制设备,该设备用于在一个或多个热注入井和一个或多个生 产井之间的地层的加热部分中保持所升高的流体压力(P),以使得该压 力是至少对应于所选择温度计算的压力,或该温度是至多对应于所选 择压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。 22.权利要求21的系统,其中各烃流体生产井提供有压力控制设 备,该设备将生产井的井眼的至少一部分内的压力保持在预先设定的 值,该值是相对于在热解区内的所分析温度来确定的,来自热解区中 的现场热解的烃流体流过地层进入到生产井的井眼中。 23.权利要求21的系统,其中多个热注入井以一种或多种所选择 的距离并且大体上以三角形排列图案围绕着各生产井设置。 24.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界平行钻探的。 25.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界正交钻探的。 26.权利要求21的系统,其中至少一个热注入井包括: 氧化性流体供给管,在使用过程中从氧化性流体源中提供氧化性 流体到地层中的反应区中,并且其中该氧化性流体被选择来在使用过 程中将靠近井眼区的地层中的烃类的至少一部分氧化,使得在反应区 中产生热量;和 燃烧气体排放管,用于将燃烧气体从反应区排放到地表面,在使 用过程中让热量基本上通过传导方式从反应区中转移到该地层的所选 择区段中。 27.权利要求26的系统,其中该氧化剂注入管和燃烧气体排放管 装有压力调节设备,该设备控制在加热器井中的压力以使得在反应区 中产生的燃烧气体的至少一大部分经过燃烧气体排放管被排放到地表 面。 28.权利要求26或27的系统,其中氧化剂注入管和燃烧气体排放 管彼此同轴地从加热器井的井头延伸到含烃地层中,氧化剂注入管从 燃烧气体排放管的下端伸出穿过横贯该含烃地层的反应区,并且氧化 剂注入管的伸出的下面部分装有一排氧化剂注射孔以便将氧化剂注入 到在氧化剂注入管和反应区之间的环形空间中。 29.根据权利要求21到28中任何一项的系统,其中至少一个加热 器井包括电热器。 30.权利要求29的系统,其中电热器包括: 设置在贯穿含烃地层的加热器井的井眼的无套管区段内的矿物绝 缘电缆,其中该矿物绝缘电缆经过构型设计后在使用过程中为地层的 至少一部分提供辐射热;和 其中该系统经过构型设计后可以在使用过程中让热量从矿物绝缘 电缆转移到该地层的区段中。 31.权利要求30的系统,其中该矿物绝缘电缆包括包含铜-镍合金 的导体,该导体位于绝缘矿物材料之内,后者包括位于包括抗腐蚀材 料的鞘体中的氧化镁和/或其它矿物颗粒。 32.权利要求29的系统,其中该电热器包括位于被设置在加热器 井内的第一导管中的第一导电体。 33.权利要求32的系统,进一步包括联接于第一导体和/或第一导 管的滑动电连接器并且其中流体位于第一导管内,其中该流体经过构 型设计后保持第一导管内的压力基本上可以在使用过程中防止第一导 管的变形。 34.权利要求32的系统,进一步包括设置在位于第一导管之外的 环形开孔之内的管,并且该管经过构型设计后可以除去从地层的至少 加热部分中生产的蒸汽,以使得在第一导管和开孔之间保持压力平衡 以大体上防止在使用过程中第一导管的变形。 35.权利要求29的系统,其中该电热器包括在加热器井的至少部 分地无套管的区段中排列的至少一种长条导电体元件。 36.权利要求35的系统,其中流体供给管被设置在加热器井内以 便在导电体元件的表面上注入清洗流体如空气,从而在使用过程中抑 制燃烧产物在至少一个长条导电体元件上或在其附近的沉积。 37.权利要求36的系统,其中该长条导电体元件借助于一系列绝 缘的定中心器的作用来通过流体供给管支承,并且导管包括接近长条 导电体元件的一系列流体注入孔。 38.根据权利要求21-37中任何一项的系统,其中在至少一个加热 器井中的电加热器和/或其它加热器经过构型设计,以在使用过程中产 生在0.5和1.5KW/每米长度的相关加热器井之间的累积辐射热。 39.包括低于10wt%的烯烃和具有低于35的碳数的热解产物。 40.权利要求39的热解产物,具有低于30的平均碳数。 41.权利要求39的热解产物,具有低于25的平均碳数。 42.权利要求39的热解产物,包括包含碳数低于5的烃类的不凝结 组分;并且其中碳数为2-4的烃类与甲烷的重量比大于1。 43.权利要求39的热解产物,具有折干计算的低于1wt%的元素氮 含量;折干计算的低于1wt%的元素氧含量,和折干计算的低于1wt%的 元素硫含量。
44: 权利要求39的热解产物,具有含氨的组分,其中含氨组分在 产品中的重量百分数大于0.5%。
45: 权利要求39或42的热解产物,包括可凝结组分,其中可凝结 组分的烯烃含量低于可凝结组分的9wt%。
46: 权利要求39的热解产物,包括烃类组分,其中在烃类组分当 中低于5wt%的化合物具有大于20的碳数。 47.权利要求39的热解产物,具有低于1wt%的元素氮含量;低于 1wt%的元素氧含量,和低于1wt%的元素硫含量。 48.权利要求45的热解产物,其中可凝结组分的芳烃含量高于可 凝结组分的30wt%。 49.权利要求39的热解产物,包括: 包括1,2,3或4个碳原子的烃类,或它们的混合物,和其中C2-4 组分与甲烷的重量比大于1,其中C2-4被定义为含有2,3和4个碳原子 的烃类的总和;和 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; H 2 含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 50.权利要求39的热解产物,包括: 烃类组分,其中在烃类组分当中低于5%的化合物具有大于20的碳 数; 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; 氢气(H 2 )含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 51.权利要求39的热解产物,包括可凝结组分,后者具有占可凝 结组分的0.1wt%-5wt%的烯烃含量;和占可凝结组分的0wt%-0.1wt% 的该烃类液体的萘含量。 52.权利要求39的热解产物,包括可凝结流体,它包括在0.1%到 2%范围内的烯烃的重量百分数;和低于2%的三芳族烃的重量百分数。 53.权利要求39的热解产物,包括: H 2 的重量百分数大于10%; 氨的重量百分数大于0.5%;和 多于2个碳原子的烃类与甲烷的重量比大于0.4。 54.根据权利要求39到53中任何一项的热解产物,其中该热解产 物可通过权利要求1-16中任何一项所要求的方法获得。 55.根据权利要求54的热解产物,其中该热解产物是通过权利要 求1-16中任何一项所要求的方法获得的。
47: 084。 16.根据权利要求1-6中任何一项所要求的方法,其中A等于 11118和B等于23.156。 17.生产合成气的方法,该方法包括 -提供含烃地层,其根据现场处理含烃地层并从地层生产烃流体 的方法进行了处理,该方法包括在从地层生产烃流体的过程中将地层 中存在的流体热解,其中应用了压力/温度控制以使得该压力是至少对 应于所选择温度计算的压力,或温度是至多对应于所选择压力计算的 温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关,和 -随后让处理过的含烃地层的至少一部分与合成气产生流体进行 反应。 18.生产烃类的方法,它包括提供根据权利要求17生产的合成气 并将合成气转化成烃类。 19.根据权利要求18的方法,其中该合成气通过费-托烃合成法被 转化成链烷烃并将该链烷烃在加氢裂化器中进行转化。 20.产生能量的方法,包括提供根据权利要求17生产的合成气并将 合成气膨胀和/或燃烧,或在燃料电池中使用该合成气。 21.用于根据权利要求1到16中任何一项的方法的系统,该系统包 括一个或多个热注入井和一个或多个烃流体生产井,该生产井各自与 该一个或多个热注入井相距一种或多种所选择的距离来设置并且提供 了压力控制设备,该设备用于在一个或多个热注入井和一个或多个生 产井之间的地层的加热部分中保持所升高的流体压力(P),以使得该压 力是至少对应于所选择温度计算的压力,或该温度是至多对应于所选 择压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。 22.权利要求21的系统,其中各烃流体生产井提供有压力控制设 备,该设备将生产井的井眼的至少一部分内的压力保持在预先设定的 值,该值是相对于在热解区内的所分析温度来确定的,来自热解区中 的现场热解的烃流体流过地层进入到生产井的井眼中。 23.权利要求21的系统,其中多个热注入井以一种或多种所选择 的距离并且大体上以三角形排列图案围绕着各生产井设置。 24.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界平行钻探的。 25.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界正交钻探的。 26.权利要求21的系统,其中至少一个热注入井包括: 氧化性流体供给管,在使用过程中从氧化性流体源中提供氧化性 流体到地层中的反应区中,并且其中该氧化性流体被选择来在使用过 程中将靠近井眼区的地层中的烃类的至少一部分氧化,使得在反应区 中产生热量;和 燃烧气体排放管,用于将燃烧气体从反应区排放到地表面,在使 用过程中让热量基本上通过传导方式从反应区中转移到该地层的所选 择区段中。 27.权利要求26的系统,其中该氧化剂注入管和燃烧气体排放管 装有压力调节设备,该设备控制在加热器井中的压力以使得在反应区 中产生的燃烧气体的至少一大部分经过燃烧气体排放管被排放到地表 面。 28.权利要求26或27的系统,其中氧化剂注入管和燃烧气体排放 管彼此同轴地从加热器井的井头延伸到含烃地层中,氧化剂注入管从 燃烧气体排放管的下端伸出穿过横贯该含烃地层的反应区,并且氧化 剂注入管的伸出的下面部分装有一排氧化剂注射孔以便将氧化剂注入 到在氧化剂注入管和反应区之间的环形空间中。 29.根据权利要求21到28中任何一项的系统,其中至少一个加热 器井包括电热器。 30.权利要求29的系统,其中电热器包括: 设置在贯穿含烃地层的加热器井的井眼的无套管区段内的矿物绝 缘电缆,其中该矿物绝缘电缆经过构型设计后在使用过程中为地层的 至少一部分提供辐射热;和 其中该系统经过构型设计后可以在使用过程中让热量从矿物绝缘 电缆转移到该地层的区段中。 31.权利要求30的系统,其中该矿物绝缘电缆包括包含铜-镍合金 的导体,该导体位于绝缘矿物材料之内,后者包括位于包括抗腐蚀材 料的鞘体中的氧化镁和/或其它矿物颗粒。 32.权利要求29的系统,其中该电热器包括位于被设置在加热器 井内的第一导管中的第一导电体。 33.权利要求32的系统,进一步包括联接于第一导体和/或第一导 管的滑动电连接器并且其中流体位于第一导管内,其中该流体经过构 型设计后保持第一导管内的压力基本上可以在使用过程中防止第一导 管的变形。 34.权利要求32的系统,进一步包括设置在位于第一导管之外的 环形开孔之内的管,并且该管经过构型设计后可以除去从地层的至少 加热部分中生产的蒸汽,以使得在第一导管和开孔之间保持压力平衡 以大体上防止在使用过程中第一导管的变形。 35.权利要求29的系统,其中该电热器包括在加热器井的至少部 分地无套管的区段中排列的至少一种长条导电体元件。 36.权利要求35的系统,其中流体供给管被设置在加热器井内以 便在导电体元件的表面上注入清洗流体如空气,从而在使用过程中抑 制燃烧产物在至少一个长条导电体元件上或在其附近的沉积。 37.权利要求36的系统,其中该长条导电体元件借助于一系列绝 缘的定中心器的作用来通过流体供给管支承,并且导管包括接近长条 导电体元件的一系列流体注入孔。 38.根据权利要求21-37中任何一项的系统,其中在至少一个加热 器井中的电加热器和/或其它加热器经过构型设计,以在使用过程中产 生在0.5和1.5KW/每米长度的相关加热器井之间的累积辐射热。 39.包括低于10wt%的烯烃和具有低于35的碳数的热解产物。 40.权利要求39的热解产物,具有低于30的平均碳数。 41.权利要求39的热解产物,具有低于25的平均碳数。 42.权利要求39的热解产物,包括包含碳数低于5的烃类的不凝结 组分;并且其中碳数为2-4的烃类与甲烷的重量比大于1。 43.权利要求39的热解产物,具有折干计算的低于1wt%的元素氮 含量;折干计算的低于1wt%的元素氧含量,和折干计算的低于1wt%的 元素硫含量。 44.权利要求39的热解产物,具有含氨的组分,其中含氨组分在 产品中的重量百分数大于0.5%。 45.权利要求39或42的热解产物,包括可凝结组分,其中可凝结 组分的烯烃含量低于可凝结组分的9wt%。 46.权利要求39的热解产物,包括烃类组分,其中在烃类组分当 中低于5wt%的化合物具有大于20的碳数。 47.权利要求39的热解产物,具有低于1wt%的元素氮含量;低于 1wt%的元素氧含量,和低于1wt%的元素硫含量。
48: 权利要求45的热解产物,其中可凝结组分的芳烃含量高于可 凝结组分的30wt%。
49: 权利要求39的热解产物,包括: 包括1,2,3或4个碳原子的烃类,或它们的混合物,和其中C2-4 组分与甲烷的重量比大于1,其中C2-4被定义为含有2,3和4个碳原子 的烃类的总和;和 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; H 2 含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 50.权利要求39的热解产物,包括: 烃类组分,其中在烃类组分当中低于5%的化合物具有大于20的碳 数; 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; 氢气(H 2 )含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 51.权利要求39的热解产物,包括可凝结组分,后者具有占可凝 结组分的0.1wt%-5wt%的烯烃含量;和占可凝结组分的0wt%-0.1wt% 的该烃类液体的萘含量。 52.权利要求39的热解产物,包括可凝结流体,它包括在0.1%到 2%范围内的烯烃的重量百分数;和低于2%的三芳族烃的重量百分数。 53.权利要求39的热解产物,包括: H 2 的重量百分数大于10%; 氨的重量百分数大于0.5%;和 多于2个碳原子的烃类与甲烷的重量比大于0.4。 54.根据权利要求39到53中任何一项的热解产物,其中该热解产 物可通过权利要求1-16中任何一项所要求的方法获得。 55.根据权利要求54的热解产物,其中该热解产物是通过权利要 求1-16中任何一项所要求的方法获得的。
50: 676。 10.根据权利要求9所要求的方法,其中A等于16947和B等于 33.603。 11.根据权利要求1-6中任何一项所要求的方法,其中A等于 57379和B等于83.145。 12.根据权利要求1-6中任何一项所要求的方法,其中A等于 5492.8和B等于14.234。 13.根据权利要求1-6中任何一项所要求的方法,其中A等于 38360和B等于60.53。 14.根据权利要求1-6中任何一项所要求的方法,其中A等于 6613.1和B等于16.364。 15.根据权利要求1-6中任何一项所要求的方法,其中A等于 28554和B等于47.084。 16.根据权利要求1-6中任何一项所要求的方法,其中A等于 11118和B等于23.156。 17.生产合成气的方法,该方法包括 -提供含烃地层,其根据现场处理含烃地层并从地层生产烃流体 的方法进行了处理,该方法包括在从地层生产烃流体的过程中将地层 中存在的流体热解,其中应用了压力/温度控制以使得该压力是至少对 应于所选择温度计算的压力,或温度是至多对应于所选择压力计算的 温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关,和 -随后让处理过的含烃地层的至少一部分与合成气产生流体进行 反应。 18.生产烃类的方法,它包括提供根据权利要求17生产的合成气 并将合成气转化成烃类。 19.根据权利要求18的方法,其中该合成气通过费-托烃合成法被 转化成链烷烃并将该链烷烃在加氢裂化器中进行转化。 20.产生能量的方法,包括提供根据权利要求17生产的合成气并将 合成气膨胀和/或燃烧,或在燃料电池中使用该合成气。 21.用于根据权利要求1到16中任何一项的方法的系统,该系统包 括一个或多个热注入井和一个或多个烃流体生产井,该生产井各自与 该一个或多个热注入井相距一种或多种所选择的距离来设置并且提供 了压力控制设备,该设备用于在一个或多个热注入井和一个或多个生 产井之间的地层的加热部分中保持所升高的流体压力(P),以使得该压 力是至少对应于所选择温度计算的压力,或该温度是至多对应于所选 择压力计算的温度,根据以下方程式 P = 0.07 * e - A T + 273 + B ]]> 其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质 的预定参数,该性质与所生产的烃流体的量、组成和/或质量有关。 22.权利要求21的系统,其中各烃流体生产井提供有压力控制设 备,该设备将生产井的井眼的至少一部分内的压力保持在预先设定的 值,该值是相对于在热解区内的所分析温度来确定的,来自热解区中 的现场热解的烃流体流过地层进入到生产井的井眼中。 23.权利要求21的系统,其中多个热注入井以一种或多种所选择 的距离并且大体上以三角形排列图案围绕着各生产井设置。 24.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界平行钻探的。 25.权利要求21的系统,其中热注入井和生产井中的至少一个是 基本上与含烃地层的上下边界正交钻探的。 26.权利要求21的系统,其中至少一个热注入井包括: 氧化性流体供给管,在使用过程中从氧化性流体源中提供氧化性 流体到地层中的反应区中,并且其中该氧化性流体被选择来在使用过 程中将靠近井眼区的地层中的烃类的至少一部分氧化,使得在反应区 中产生热量;和 燃烧气体排放管,用于将燃烧气体从反应区排放到地表面,在使 用过程中让热量基本上通过传导方式从反应区中转移到该地层的所选 择区段中。 27.权利要求26的系统,其中该氧化剂注入管和燃烧气体排放管 装有压力调节设备,该设备控制在加热器井中的压力以使得在反应区 中产生的燃烧气体的至少一大部分经过燃烧气体排放管被排放到地表 面。 28.权利要求26或27的系统,其中氧化剂注入管和燃烧气体排放 管彼此同轴地从加热器井的井头延伸到含烃地层中,氧化剂注入管从 燃烧气体排放管的下端伸出穿过横贯该含烃地层的反应区,并且氧化 剂注入管的伸出的下面部分装有一排氧化剂注射孔以便将氧化剂注入 到在氧化剂注入管和反应区之间的环形空间中。 29.根据权利要求21到28中任何一项的系统,其中至少一个加热 器井包括电热器。 30.权利要求29的系统,其中电热器包括: 设置在贯穿含烃地层的加热器井的井眼的无套管区段内的矿物绝 缘电缆,其中该矿物绝缘电缆经过构型设计后在使用过程中为地层的 至少一部分提供辐射热;和 其中该系统经过构型设计后可以在使用过程中让热量从矿物绝缘 电缆转移到该地层的区段中。 31.权利要求30的系统,其中该矿物绝缘电缆包括包含铜-镍合金 的导体,该导体位于绝缘矿物材料之内,后者包括位于包括抗腐蚀材 料的鞘体中的氧化镁和/或其它矿物颗粒。 32.权利要求29的系统,其中该电热器包括位于被设置在加热器 井内的第一导管中的第一导电体。 33.权利要求32的系统,进一步包括联接于第一导体和/或第一导 管的滑动电连接器并且其中流体位于第一导管内,其中该流体经过构 型设计后保持第一导管内的压力基本上可以在使用过程中防止第一导 管的变形。 34.权利要求32的系统,进一步包括设置在位于第一导管之外的 环形开孔之内的管,并且该管经过构型设计后可以除去从地层的至少 加热部分中生产的蒸汽,以使得在第一导管和开孔之间保持压力平衡 以大体上防止在使用过程中第一导管的变形。 35.权利要求29的系统,其中该电热器包括在加热器井的至少部 分地无套管的区段中排列的至少一种长条导电体元件。 36.权利要求35的系统,其中流体供给管被设置在加热器井内以 便在导电体元件的表面上注入清洗流体如空气,从而在使用过程中抑 制燃烧产物在至少一个长条导电体元件上或在其附近的沉积。 37.权利要求36的系统,其中该长条导电体元件借助于一系列绝 缘的定中心器的作用来通过流体供给管支承,并且导管包括接近长条 导电体元件的一系列流体注入孔。 38.根据权利要求21-37中任何一项的系统,其中在至少一个加热 器井中的电加热器和/或其它加热器经过构型设计,以在使用过程中产 生在0.5和1.5KW/每米长度的相关加热器井之间的累积辐射热。 39.包括低于10wt%的烯烃和具有低于35的碳数的热解产物。 40.权利要求39的热解产物,具有低于30的平均碳数。 41.权利要求39的热解产物,具有低于25的平均碳数。 42.权利要求39的热解产物,包括包含碳数低于5的烃类的不凝结 组分;并且其中碳数为2-4的烃类与甲烷的重量比大于1。 43.权利要求39的热解产物,具有折干计算的低于1wt%的元素氮 含量;折干计算的低于1wt%的元素氧含量,和折干计算的低于1wt%的 元素硫含量。 44.权利要求39的热解产物,具有含氨的组分,其中含氨组分在 产品中的重量百分数大于0.5%。 45.权利要求39或42的热解产物,包括可凝结组分,其中可凝结 组分的烯烃含量低于可凝结组分的9wt%。 46.权利要求39的热解产物,包括烃类组分,其中在烃类组分当 中低于5wt%的化合物具有大于20的碳数。 47.权利要求39的热解产物,具有低于1wt%的元素氮含量;低于 1wt%的元素氧含量,和低于1wt%的元素硫含量。 48.权利要求45的热解产物,其中可凝结组分的芳烃含量高于可 凝结组分的30wt%。 49.权利要求39的热解产物,包括: 包括1,2,3或4个碳原子的烃类,或它们的混合物,和其中C2-4 组分与甲烷的重量比大于1,其中C2-4被定义为含有2,3和4个碳原子 的烃类的总和;和 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; H 2 含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。 50.权利要求39的热解产物,包括: 烃类组分,其中在烃类组分当中低于5%的化合物具有大于20的碳 数; 水含量大于0.1wt%; 硫化氢含量低于1.5wt%; 氢气(H 2 )含量低于20wt%; 烯烃含量低于10wt%;和 可凝结组分,其中可凝结组分的芳烃含量大于30wt%。
51: 权利要求39的热解产物,包括可凝结组分,后者具有占可凝 结组分的0.1wt%-5wt%的烯烃含量;和占可凝结组分的0wt%-0.1wt% 的该烃类液体的萘含量。
52: 权利要求39的热解产物,包括可凝结流体,它包括在0.1%到 2%范围内的烯烃的重量百分数;和低于2%的三芳族烃的重量百分数。
53: 权利要求39的热解产物,包括: H 2 的重量百分数大于10%; 氨的重量百分数大于0.5%;和 多于2个碳原子的烃类与甲烷的重量比大于0.4。
54: 根据权利要求39到53中任何一项的热解产物,其中该热解产 物可通过权利要求1-16中任何一项所要求的方法获得。
55: 根据权利要求54的热解产物,其中该热解产物是通过权利要 求1-16中任何一项所要求的方法获得的。

说明书


处理含烃地层的方法和系统

    本发明涉及通过热解地层中存在的烃类来现场处理含烃地层并从地层生产烃流体的方法和系统。

    从地下地层获得的烃类常常用作能源、作为化工原料、和作为消费品。对于可利用的油气资源消耗的顾虑导致人们对可利用的油气资源的更高效回收、加工和利用的方法的开发。现场工艺方法可用于从地下地层中取出烃原料。在地下地层内的烃原料地化学和/或物理性能需要加以改变,让烃原料更容易从地下地层开采出来。该化学和物理变化可以包括产生可取出流体的现场反应、在地层内烃原料的溶解度变化、相变、和/或粘度变化。流体可以是,但不限于,气体,液体,乳液,淤浆和/或具有类似于液体流的流动特征的固体颗粒流。

    利用井下加热器的现场生产方法的例子已描述在US-A-2634961,US-A-2732195,US-A-2780450,US-A-2789805,US-A-2923535和US-A-4886118中。

    例如,油页岩层的加热已描述在US-A-2923535和US-A-4886118中。这里,对油页岩层加热可使油页岩层内的干酪根发生热解。该热量也使地层破裂以提高地层的渗透性。增大的渗透性允许烃流体迁移到生产井,在生产井中将流体从油页岩层中分出。在US-A-2923535中通过关闭全部出气口阀门施加压力,以试验地层的孔隙度和对于油气和蒸汽来说的渗透率。US-A-2923535对于在油气和蒸汽的生产中保持升高的压力却支字未提。

    人们已经付出了很多的努力去开发从含烃地层中经济地生产烃类、氢气、和/或其它产品的方法和系统。然而,现在仍然有许多的含烃地层,从它们不能经济地生产烃类、氢气、和/或其它产品。因此仍然需要从各种含烃地层生产烃类、氢气、和/或其它产品的改进方法和系统。

    现已发现,在热解中生产的烃流体的量、组成和质量能够通过与所施加的温度相关地控制压力来得到控制,反之亦然。在这方面,烃流体的量、组成和质量可由一种或多种相关性质来确定,如API比重,烯烃与链烷烃比率,元素碳与氢比率,所生产的等效液体(气体和液体),所生产的液体,费歇分析法(Fischer Assay)的百分比以及碳数大于25的烃类在烃流体中的存在。对于所选择温度的压力,或对于所选择压力的温度(它们可得到具有相关性质的烃流体),可通过以下形式的方程式即下文的“方程式1”来测定:P=0.07*e-AT+273+B]]>

    其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及相关性质并能够由实验测定的参数。系数0.07和参数A和B的量纲应该符合P和T的量纲。

    在很多情况下,温度/压力控制的应用将牵涉到在热解过程中升高的压力的应用。现在已经知道,升高的压力的应用具有许多出乎意料的优点。这些优点的获得与目前的温度/压力控制的应用无关。

    在地层中升高的压力会导致改进的烃流体的生产。随着地层内压力的增大,从地层生产的烃流体包括大部分的不可凝结的组分。以这种方式,大量(例如主要量)的在该压力下生产的烃流体将包括比在较低压力下生产的烃流体具有更轻和更高质量的可凝结组分。

    在加热的地层中维持升高的压力已发现会显著抑制碳数大于例如约25的烃流体和/或多环烃化合物的产生。也已知道,在加热的地层中保持升高的压力会导致从地层生产的烃流体的API比重的提高。因此,较高的压力会提高较短链烃流体的产生,它具有较高的API比重值。

    此外,在地层内维持升高的压力会抑制地层沉陷。在地层内维持升高的压力也倾向于减少用于运输可凝结组分的收集管的所需尺寸。在地层内维持升高的压力也可有利于从所生产的不可凝结的流体来发电。例如,所生产的不可凝结的流体可通过汽轮机来发电。

    因此,本发明提供了现场处理含烃地层并从地层中生产烃流体的方法,该方法包括通过压力/温度控制的应用,在从地层中生产烃流体的过程中将在地层中存在的烃类热解,要求该压力是至少对于所选择温度计算的压力,或温度是至多对于所选择的压力计算的温度,根据以下方程式P=0.07*e-AT+273+B]]>

    其中P是压力(巴,绝对),T是温度(℃),以及A和B是涉及到性质的预定参数,该性质与所生产的烃流体的量、组成或质量有关。

    本发明也提供了生产合成气的方法,该方法包括提供已根据本发明进行热处理的含烃地层并让含烃地层与合成气产生流体进行反应。

    本发明也提供生产烃类的方法,包括通过合成气(该合成气是根据本发明生产的)并将合成气转化成烃类。

    本发明也提供产生能量的方法,包括提供合成气(该合成气是根据本发明生产的)并将合成气膨胀和/或燃烧。

    本发明还提供了用于本发明的方法中的热注入和烃流体生产井的系统,和可由本发明的现场热解法和系统获得的具有低烯烃含量(例如<10wt%)和低平均碳数(例如<35)的热解产物。

    US-A-5236039公开了使用用于将地层加热到热解温度的射频加热源来现场处理含烃地层的方法。在这一文件中没有给出有关压力对方法或它的结果的影响的一般性教导。然而,还有50psi与最高达575°F的热解温度相结合的附带公开,其与该发明所涉及的模拟相关(参见该专利的表1)。在高达301.7℃(575°F)的温度下3.52巴(50psi)的压力与射频加热的应用相结合在发明的处理方法中的应用已从本发明的某些实施方案的保护范围中排除。

    除非另外指明,该术语“压力”在这里被理解为指绝对压力。在从地层中生产烃流体的过程中或在合成气产生过程中具备的温度和压力被认为是在生产井中、在地层的进行热解或合成气生产的相关部分的直接邻近处测得。该压力因此基本上对应于在发生热解的区域中在地层中的孔隙压力。若不测量该温度,可以根据加热器井(heaterwells)产生的热输入和由地层的热解和/或其它反应产生和/或消耗的热量和地层的性质来分析该温度。

    优选用于本发明中的含烃地层含有干酪根(kerogen)。干酪根是由有机物质组成的,后者因为熟化过程而已转化。包括干酪根的含烃地层是例如含有煤炭的地层和含有油页岩的地层。优选,该干酪根所具有的镜质体反射为0.2%到3%,优选高于0.25%和更优选高于0.4%和优选低于2%和更优选低于1.2%和/或氢含量为至少2wt%,优选至少3wt%。另外地,含烃地层可以进行处理,它不包括干酪根,例如,含有重质烃类的地层(例如,焦油砂矿)。

    可基于地层的至少一部分的性质来为现场处理选择含烃地层,由此它可以从地层生产高质量流体。例如,基于干酪根的镜质体反射,为了处理来分析或选择包括干酪根的含烃地层。镜质体反射常常与干酪根的元素氢与碳比率、和干酪根的元素氧与碳比率有关。优选该镜质体反射是在0.2%到3.0%,更优选0.5%到2.0%的范围内。这一范围的镜质体反射率倾向于表明将可从地层生产出较高质量的烃流体。

    可基于含烃地层的元素氢含量,为处理来选择含烃地层。例如,处理含烃地层的方法可以典型地包括选择供处理用的含烃地层,它的元素氢含量大于2wt%,尤其大于3wt%或尤其大于4wt%(以干基、无灰分测量)。优选,该含烃地层具有在0.5至2,尤其0.70至1.7的范围内元素氢与碳比率。该元素氢含量可以显著地影响所生产的烃流体的组成,例如通过分子氢的形成。因此,如果在地层中存在太少的氢,则所生产的流体的量和质量会受到负面影响。理想的是维持氢分压,如果自然存在的氢太少,则可将氢气或另一种还原性流体加入到地层中。

    地层可以典型地具有低于20%,尤其低于15%,和尤其低于10%的元素氧重量百分数(以干基、无灰分测量)。典型地,元素氧与碳比率低于0.15。以这种方式,在含烃原料的现场转化过程中二氧化碳和其它氧化物的产生可以减少。常常,该元素氧与碳比率是在0.03到0.12范围内。

    加热该含烃地层通常包括为处于地层内的加热源提供大量能量。含烃地层可以含有水。在含烃地层中存在的水将倾向于进一步需要增加为加热该含烃地层所需要的能量的量,因为需要大量的能量从地层中蒸发水。所以,需要过量的热量和/或时间来加热具有高水分含量的地层。优选地,含烃地层的水含量低于15wt%,更优选低于10wt%。

    经历热解的含烃地层或它的一部分可具有例如至少0.5m,或至少1.5m,或至少2.4m,或甚至至少3.0m的宽度。该宽度可以是高达100m,或高达1000m,或甚至更高2000m,或更多。进行热解的该含烃地层或它的一部分可具有例如至少2m,更典型地在4m至100m之间,更典型地6m到60m之间的层厚度。含烃地层的上覆盖地层可具有例如至少10m,更典型地在20m至800m之间或高达1000m或更多的厚度。

    含烃地层可以根据现有技术中已知的方法,利用被放置在加热器井中的一种或多种热源被加热至足以使地层中存在的烃类热解的温度。

    该加热器井可以位于含烃地层的附近,或优选在其内部。优选使用多个热源,以使得含烃地层的大部分可以被加热,和优选使得从热源产生的热量的重叠(叠加)发生。热量的叠加可以减少达到热解温度所需要的时间。热量的叠加允许在相邻的热源之间有较大的间距,这进而提供了含烃地层的较缓慢加热速率。热量的叠加也提供了均匀加热,以使得可以在遍及含烃地层的(大部分)被加热部分中控制温度来产生具有所需性质的流体。

    在热源之间的间距典型地是在5m到20m,优选8m到12m之间。与其它图案如六边形相比而言,按三角形图案的等距离热源的布置是优选的,因为它倾向于为地层提供更均匀的加热。另外,与其它图案如六边形相比,三角形图案倾向于更快速地加热热到预定温度。

    任何常规的热源都可以使用。优选的是应用适合于传导加热的热源,例如任何类型的电热器或任何类型的燃烧加热器。不太优选的是应用射频加热的热源。

    因为在加热的地层中渗透性和/或孔隙度较快速地增加,所产生的蒸汽可以以相当长距离流过具有较小压差的地层。由于水分的蒸发、烃类的取出、和/或破裂的形成,被加热部分的质量(mass)的减少导致了渗透性增加。为了烃流体的回收,可以提供生产井,优选在地层的上表面附近。在含烃地层内产生的流体可以作为蒸汽以长距离迁移通过含烃地层。该长距离可包括例如50m到1000m。该蒸汽跨越该长距离可有较小的压降,归因于地层的被加热部分的渗透性。由于该渗透性,生产井仅仅需要提供在每缝一个其它单元的热源中或每缝三个、四个、五个、六个单元的热源中,它各自包括多个加热器井,例如两个、三个或六个。该生产井可以是已下套管的井,它具有生产筛管或射孔套管。另外,该生产井可被沙或砂砾包围,最大程度减少进入套管中的流体的压降。

    另外,抽水井或真空井可被构型设计以从含烃地层中除去液态水。例如,多个水井可以包围被加热的地层的全部或一部分。

    所产生的烃流体是在其分子结构中含有碳和氢的原料。它也可包括其它元素,如卤素元素,金属元素,氮,氧和硫。

    该含烃地层被加热至能够发生热解的温度。该热解温度范围可以包括高达例如900℃的温度。主要的烃流体是在250℃到400℃,更优选在260℃至375℃之间的热解温度范围内产生。足以热解在具有较低渗透性的含烃地层中的重质烃类的温度可以在270℃到300℃的范围内。在其它实例中,足以热解重质烃类的温度可以在300℃至375℃范围内。如果含烃地层被加热到整个热解温度范围,则向着热解温度范围的上限,地层可能仅仅生产少量的氢气。在可用氢被消耗后,可从地层中产生较少的烃。

    优选,被指定热解的该含烃地层或它的各个部分是在较低加热速率下加热的。通常该加热速率是至多50℃/天。典型地,该加热速率是低于10℃/天,更典型地低于3℃/天,尤其低于0.7℃/天。常常该加热速度超过0.01℃/天,尤其超过0.1℃/天。尤其,该低的加热速率是在热解温度范围内应用。更尤其,含烃地层的被加热部分能够在该速率下加热一段时间,该时间大于为了跨越热解温度范围所需要的时间的50%,优选大于为了跨越热解温度范围所需要的时间的75%,或更优选大于为了跨越热解温度范围所需要的时间的90%。

    含烃地层被加热的速率会影响从含烃地层生产的烃流体的量和质量。例如,在高加热速率下的加热可以从含烃地层中生产大量的流体。然而,此类方法的产品具有比使用较低加热速率加热时低得多的质量。此外,控制加热速率低于3℃/天一般导致在含烃地层内温度的更好控制。

    对于加热速率的本发明的教导是可应用的,与本发明的温度/压力控制的应用无关。

    含烃地层加热到该热解温度范围可以在已经在含烃地层中产生较大渗透性之前进行。渗透性的最初缺乏会阻止所产生的流体从地层内的热解区中的运输。以这种方式,因为热量最初从热源转移到含烃地层,在含烃地层内的流体压力靠近该热源会增加。

    由地层中产生的烃流体或其它流体的膨胀所产生的压力最初会提高,因为到达生产井的开放通路或任何其它压力降可能还没有存在于地层中。另外,该流体压力可以超过岩石静压力,结果,在含烃地层中的破裂会从热源形成到生产井。由于通过生产井的烃流体的生产,在被加热部分内破裂的产生降低了压力。

    为了维持在烃流体的生产过程中含碳地层内的压力,在该生产井中保持背压(back pressure)。该压力可利用阀门和/或通过注射气体到含烃地层中来控制,例如氢气,二氧化碳,一氧化碳,氮或甲烷,或水或蒸汽。注射氢气是特别优选的。

    阀门可经过构型设计用于保持、改变和/或控制该含烃地层内的压力。例如,在含烃地层内设置的热源可以连通到阀门。该阀门可经过构型设计用于通过热源从地层中释放流体或用于将气体注入含烃地层中。另外地,压力阀可连通到生产井。由阀门释放的流体被收集和运输到地表面装置中以作进一步加工和/或处理。

    根据本发明,在热解过程中和在从地层生产热解烃流体的过程中控制压力和温度,用以实现与烃流体的量、组成和质量相关的某些性质的控制。在方程式1中的参数A和B的值能够通过实验测定。通常,参数A的值可以在5000到60000范围内和参数B的值可以在10至90范围内。下面给出一些实施例。

    为了生产具有低含量(例如低于25wt%)的具有25或25个以上碳数的烃类的热解烃流体,优选的是,该压力是至少对于所选择的温度计算的压力,或温度是至多对于所选择的压力计算的温度,根据方程式1计算,其中A等于大约14000和B等于大约25。优选A等于14206和B等于25.123,更优选A等于15972和B等于28.442,尤其A等于17912和B等于31.804,更尤其A等于19929和B等于35.349,最尤其A等于21956和B等于38.849。在实践中常常足够的是该压力是至多对于选定温度所计算的压力,或温度是至少对于选定压力的温度,从方程式1计算,其中A等于24146和B等于43.349。

    为了生产其可凝结烃类具有高API比重(例如至少30)的烃流体,优选的是该压力至少是对于选定温度的压力,或温度至多是对于选定压力的温度,从方程式1计算,其中A等于30864和B等于50.676,更优选A等于21719和B等于37.821,尤其A等于16895和B等于31.170。在实践中常常足够的是该压力是至多对于选定温度所计算的压力,或温度是至少对于选定压力所计算的温度,从方程式1计算,其中A等于16947和B等于33.603。这里使用的术语“可凝结烃类”是在1巴下具有至少25℃的沸点的烃类。

    为了生产具有低乙烯/乙烷比率(例如至多0.1)的烃流体,优选的是该压力是至少对于选定温度从方程式1计算的压力,或温度是至多对于选定压力从方程式1计算的温度,其中A等于57379和B等于83.145,更优选A等于16056和B等于27.652,尤其A等于11736和B等于21.986。在实践中常常足够的是该压力是至多对于选定温度所计算的压力,或温度是至少对于选定压力所计算的温度,从方程式1计算,其中A等于5492.8和B等于14.234。

    为了生产其可凝结烃类具有高的元素氢与碳比率(例如至少1.7)的烃流体,优选的是该压力至少是从方程式1计算的对于选定温度的压力,或温度至多是从方程式1计算的对于选定压力的温度,其中A等于38360和B等于60.531,更优选A等于12635和B等于23.989,尤其A等于7953.1和B等于17.889。在实践中常常足够的是该压力是至多对于选定温度所计算的压力,或温度是至少对于选定压力所计算的温度(从方程式1计算)其中A等于6613.1和B等于16.364。

    从含烃的原料生产的烃流体的总潜在量可通过费歇分析法测定。费歇分析法是包括加热含烃的原料的样品到大约500℃、收集从加热的样品生产的产品和定量该产品的一种标准方法。为了从含烃地层生产高数量的烃流体,例如由费歇分析法显示的至少60%的该值,优选的是该压力是至多对于选定温度所计算的压力或温度是至少对于选定压力所计算的温度,以便施加一定压力(它是至多从方程式1计算的压力)或施加一定温度(它是至少从方程式1计算的温度),其中A等于11118和B等于23.156,更优选A等于13726和B等于26.635,尤其A等于20543和B等于36.191。在实践中常常足够的是该压力是至少对于选定温度所计算的压力,或温度是至多对于选定压力所计算的温度(从方程式1计算),其中A等于28554和B等于47.084。

    在某些情况下,最有利的是控制该压力和温度,以使得它们属于代表了较低水平的上述参数的各种条件的A和B的值。这是当希望有产品数量、组成和质量的某些组合时的情况。因此,上述公开内容也包括全部可能的子区间,后者可通过所公开的A和B的各组相结合来定义。尤其,理想的是在烃流体的生产过程中保持相关性质恒定,这可通过在参数A和B的恒定值下操作来实现。在热解过程中和在从地层生产烃流体的过程中压力可以选择在宽的范围内。典型地,采用至少1.5巴,更典型地至少1.6巴,尤其至少1.8巴的压力。常常,当热解温度是至少300℃,可以采用至少1.6巴的压力,和低于300℃时,采用至少1.8巴的压力。压力的上限可通过上覆盖地层(overburden)的强度和重量来测定。常常,在实际的条件下,该压力是低于70巴,更常常低于60巴或甚至低于50巴。该压力可以有利地被控制在2巴到18巴或20巴的范围内,或另外在20巴到36巴的范围内。

    在优选实施方案中,如以上所指明的那样维持氢分压。典型地该分压是至少0.2巴,优选至少0.45巴,和至多35巴,或至多50巴,更典型地在0.6巴至20巴之间,尤其在1巴到10巴范围内,更尤其在5巴至7巴之间。保持地层内的氢分压尤其会提高所生产的烃流体的API比重并减少长链烃流体的生产。

    本发明对于氢分压的教导是适用的,与本发明的温度/压力控制的应用无关。

    含烃地层的初始总有机碳含量中的至少20%,典型地至少25%,优选至少35%,或其中已进行热解的部分,可以转变成烃流体。在实践中常常含烃地层的总有机碳含量中的至多90%,或其中进行热解的部分,可以转变成烃流体,更常见它是至多80%或至多70%或至多60%。

    在某些实施方案中,在热解之后,合成气可以从保持在含烃地层内的烃类生产。该热解可以产生了贯穿含烃地层或它的热解部分的较高的、基本上均匀的渗透性。这一较高的、基本上均匀的渗透性允许合成气的产生,但没有在合成气中产生显著量烃流体。该部分也具有大的表面积和/或大的表面积/体积。大的表面积可使在合成气产生过程中合成气生产反应基本上处于平衡条件下。与没有热解的含烃地层中的合成气产生相比而言,较高的、基本上均匀的渗透性能够导致合成气的较高的采收率。这一教导是普遍适用的,与本发明的温度/压力控制的应用无关。

    至少一些含烃原料的热解可以在一些实施方案中将最初可利用的碳当中的20%加以转化。合成气产生可以将至少另外10%和典型地至多另外70%的最初可利用的碳加以转化。以这种方式,从含烃地层现场生产合成气可以允许在该部分内最初可用碳的更多地转化。

    在从地层生产烃流体之前或之后可以从地层中生产合成气。该合成气,虽然通常被定义为氢气(H2)和一氧化碳(CO)的混合物,但还可以包括附加的组分如水,二氧化碳(CO2),甲烷和其它气体。

    在烃流体生产下降到不经济的水平之前和/或之后,开始合成气产生。以这种方式,为热解所提供的热量也可用于产生合成气。例如,如果在热解之后该地层的部分是375℃,则一般需要较少的附加热量来加热该部分到足以支持合成气产生的温度。在某些情况下,可以从一个或多个热源提供热量来加热地层到足以允许合成气产生的温度(例如在400℃至1200℃范围内或更高)。在温度范围的上端,所产生的合成气可以包括大部分H2和CO,例如按照1∶1摩尔比。在该温度范围的下端,所产生的合成气具有较高的H2与CO比率。

    用于热解和从地层生产烃流体的在地层内的加热井、加热源和生产井可以在合成气生产过程中用作注入井以便引入合成气生产流体、用作生产井、或用作热源来加热该地层。合成气生产的热源可包括前面所公开的热源当中的任何一种。另外地,加热可以包括从在地层中的多个井眼内流动的热传导流体(例如来自燃烧器的蒸汽或燃烧产物)中转移热量。

    合成气产生流体,例如液态水,蒸汽,二氧化碳,空气,氧,烃类,和它们的混合物可以提供给该地层。例如,合成气产生流体混合物可以包括蒸汽和氧。该合成气产生流体可以包括由该地层的另一部分内的含烃原料的热解所产生的含水流体。此外,提供该合成气产生流体可以包括提升地层的潜水面让水流入其中。合成气产生流体也可通过注射井眼提供。该合成气产生流体一般与地层中的碳反应形成H2,水(作为液体或作为蒸汽),CO2和/或CO。

    二氧化碳可从合成气中分离并与合成气产生流体一起再注入到地层中。利用占优势的化学平衡反应的移动,被加入到合成气产生流体中的二氧化碳可以显著抑制在合成气产生过程中二氧化碳的进一步产生。该二氧化碳也可与地层中的碳反应产生一氧化碳。

    烃类如乙烷可加入到该合成气产生流体中。当被引入该地层中时,该烃类可以裂解而形成氢气和/或甲烷。甲烷在所生产的合成气中的存在会提高它的热值。

    合成气产生反应典型地是吸热反应。在合成气生产过程中可以将热量添加到地层中以保持地层温度在所希望的水平。可以从热源中和/或从引入比地层的温度具有更高温度合成气产生流体中添加热量。作为一种替代方案,可以将氧化剂加入到合成气产生流体中,例如空气,富氧空气,氧气,过氧化氢,其它氧化性流体,或它们的结合。该氧化剂可以与地层内的碳反应产生热量,并且导致CO2和/或CO的生产。在优选的实施方案中,氧和水(或蒸汽)被提供给地层,例如按照1∶2到1∶10,优选1∶3到1∶7,例如1∶4的摩尔比。

    该含烃地层可以在合成气生产过程中保持在较高的压力下。合成气可以在宽的压力范围内产生,例如在1巴和100巴之间,更典型地在2巴和80巴之间,尤其在5巴和60巴之间。高的操作压力可以导致H2的更多产生。高的操作压力可让所产生的合成气通过汽轮机来发电,并且它们允许使用较小的收集导管来运输所生产的合成气。

    该合成气可以在宽的温度范围,如在400℃和1200℃之间,更典型地在600℃和1000℃之间产生。在较低的合成气产生温度下,生产出具有高H2与CO比率的合成气。较高的地层温度可以生产出H2与CO比率接近1的合成气,并且该气流包括大部分(和有时候基本上只有)H2和CO。在大约700℃的地层温度下,地层可以生产出H2与CO比率为2的合成气。典型地产生一种合成气,它具有在1∶4至8∶1之间,更典型地在1∶2至4∶1之间,尤其在1∶1至2.5∶1之间的H2与CO摩尔比。某些实例可以包括掺混第一合成气与第二合成气,生产具有所需组成的合成气。第一和第二合成气可以从地层的不同部分中产生。

    已经进行热解和任选进行合成气产生的含烃地层或它的部分可以冷却或被冷却形成冷却了的、枯竭的地层。

    在烃流体和/或合成气的生产之后,流体(例如,二氧化碳)可以在该地层内隐退(sequester)。为了在地层中贮存大量的流体,地层的温度常常需要低于100℃,例如低至20℃。水被引入该地层中产生蒸汽和降低地层的温度。该蒸汽可从地层中分出。该蒸汽可用于不同的目的,例如用于加热该地层的另一部分,用于在地层的邻近部分中产生合成气,或用作储油层中的蒸汽驱(steam flood)。在地层被冷却后,流体可以增压和在该地层中隐退。将流体隐退在地层中会导致释放到环境中的流体的明显减少或除去,这归因于在该现场方法中的操作。枯竭的地层尤其可用于这一目的,因为它具有高孔隙度和对于流体(尤其气体)有高渗透性的一种结构。

    需要隐退的该流体可以在压力下,例如在5巴至50巴之间,被注入冷却了的、枯竭的地层中并被吸收到该地层中的含烃材料上。水随后被加入到地层中会抑制二氧化碳的解吸。使二氧化碳隐退的方法的实例被描述在US-A-5566756中。

    这里描述的合成气可以转化成烃类,它包括甲醇,或转化成其它产品,如氨。例如,Fischer-Tropsch烃类合成方法经过构型设计后用来将合成气转化成链烷烃。该合成气也可用在催化甲烷化方法中来生产甲烷。另外地,该合成气可用于甲醇,汽油和柴油机燃料,氨,和中间馏分的生产。

    合成气也可用作能源。例如,它可用作燃料,加热含烃地层或制造蒸汽,然后驱动汽轮机来发电。合成气可用来通过在汽轮机中降低合成气的压力、或通过利用合成气的温度制造蒸汽和然后驱动汽轮机来发电。合成气也可用于能源产生装置中,如熔融碳酸盐燃料电池,固体氧化物燃料电池,或其它类型的燃料电池中。

    用作费-托反应(Fischer-Tropsch reaction)的原料气的合成气的H2与CO摩尔比典型地是大约2∶1。费一托法典型地生产支化和未支化的链烷烃,它然后通过氢化裂解被转化,生产出烃类产品,后者包括例如柴油,喷气燃料和石脑油产品。在费-托法中将合成气转化成烃类的方法的例子被描述在US-A-4096163,US-A-4594468,US-A-6085512和US-A-6172124中。

    希望所生产的合成气(可用作催化甲烷化方法的原料气)的组成具有3∶1到4∶1的H2与CO摩尔比。催化甲烷化方法的例子被描述在US-A-3992148,US-A-4130575和US-A-4133825中。

    从合成气生产甲醇的方法的例子被描述在US-A-4407973,US-A-4927857和US-A-4994093中。

    生产发动机燃料的方法的例子被描述在US-A-4076761,US-A-4138442和US-A-4605680中。

    下面实施例用于说明本发明。实施例1

    美国科罗拉多的绿河(Green River)油页岩沉积物的各种样品在各种温度和压力下热解以测定热解温度和压力对于所生产的烃流体的质量和数量的影响。

    不锈钢压力容器经构型设计后用于容纳油页岩样品。该容器和连接于该容器的出油管(flow line)用电热带包裹以便在整个容器和出油管上提供基本上均匀的加热。该出油管包括用于测试升高的压力的背压阀门。在通过该阀门后,该产品在常规的实验室玻璃冷凝器中在大气压力下冷却并进行分析。实验数据通过利用前面列出的方程式1和参数A和B,用于确定产品的特定质量和产率方面的压力/温度关系。结果显示,通过提高压力,具有25或更多的碳数的烃类的含量会减少,API比重增大,乙烯/乙烷比率下降,H/C比率提高以及相对于费歇分析法而言烃类产率会减少。

    附图的简述

    在阅读下面的优选实施方案的详细说明和参考附图之后,本发明的其它优点对于本技术领域中的普通技术人员来说是显而易见的,其中:

    图1描绘了加热含烃地层的各阶段的说明;

    图2描绘了含烃地层的性质的图;

    图3描绘了热源排列图案的实例;

    图3a-3c描绘了热源的实例;

    图4描绘了位于含烃地层中的加热器井的实例;

    图5描绘了在含烃地层中加热器井的布井图案的实例;

    图6描绘了含烃地层的被加热部分的实例;

    图7描绘了含烃地层中热量的重叠的实例;

    图8和图9描绘了在含烃地层中热源和生产井的布井图案的实例;

    图10描绘了自然分布的燃烧器热源的实例;

    图11描绘了有热源的地层的上覆盖地层的一部分;

    图12和图13描绘了自然分布的燃烧器加热器的实例;

    图14和图15描绘了用于加热地层的系统的实例;

    图16-21描绘了绝缘导体热源的几个实例;

    图22和图23a-23b描绘了定中心器的若干实例;

    图24描绘了在地层中导管内导体(conductor-in-conduit)热源的实例;

    图25描绘了地层中热源的实例;

    图26描绘了地面燃烧器热源的实例;

    图27描绘了热源用的导管的实例;

    图28描绘了无焰燃烧器热源的实例;

    图29描绘了使用热解水在地层中产生合成气的实例;

    图30描绘了地层中合成气生产的实例;

    图31描绘了地层中连续合成气生产的实例;

    图32描绘了地层中间歇合成气生产的实例;

    图33描绘了用从含烃地层生产的合成气来产生能量的实例;

    图34描绘了用从含烃地层生产的热解流体来产生能量的实例;

    图35描绘了从地层中的合成气生产的实例;

    图36描绘了在含烃地层中热解过程中所产生的二氧化碳的隐退的实例;

    图37描绘了用从含烃地层生产的合成气来产生能量的实例;

    图38描绘了使用从含烃地层生产的合成气的费-托法的实例;

    图39描绘了使用从含烃地层生产的合成气的Shell中间馏分方法的实例;

    图40描绘了使用从含烃地层生产的合成气的催化甲烷化方法的实例;

    图41描绘了使用从含烃地层生产的合成气来生产氨和尿素的实例;

    图42描绘了使用从含烃地层生产的合成气来生产氨的实例;

    图43描绘供氨生产工艺用的原料流的制备的实例;

    图44-48描绘了处理相对渗透的地层的几个实例;

    图49和图50描绘了在相对渗透的地层中热源的实例;

    图51-57描绘了在相对低渗透性地层中热源的几个实例;

    图58-70描绘了热源和生产井布井图案的几个实例;

    图71描绘了处理地层流体的地面设施的实例;

    图72描绘了催化无焰分布式燃烧器的实例;

    图73描绘了处理地层流体的地面设施的实例;

    图74描绘了热源和生产井的方形图案的实例;

    图75描绘了热源和生产井排列图案的实例;

    图76描绘了热源的三角形排列图案的实例;

    图76a描绘了热源的方形排列图案的实例;

    图77描绘了热源的六边形排列图案的实例;

    图77a描绘了热源的12至1排列图案的实例;

    图78描绘了热源的三角形排列图案的温度分布图;

    图79描绘了热源的方形排列图案的温度分布图;

    图79a描绘了热源的六边形排列图案的温度分布图;

    图80描绘了在平均井网(pattern)温度和对于热源的各种排列图案在最冷点的温度之间的对比曲线;

    图81描绘了在平均井网温度和在热源的三角形和六边形排列图案内各点的温度之间的对比曲线;

    图81a描绘了在平均井网温度和在热源的方形排列图案内各点的温度之间的对比曲线;

    图81b描绘了在热源的各排列图案的最冷点的温度之间的对比曲线;

    图82描绘了随着时间的推移,在加热的地层中反应区的延伸;

    图83和图84描绘了在地层中传导传热与辐射传热的比率;

    图85-88描绘了在地层中导体、导管和开口的温度-对-地层面的温度;

    图89描绘了干馏和收集系统;

    图90描绘了在热解过程中在含有油页岩的地层中压力/温度关系;

    图91描绘了从含有油页岩的地层中生产的油的质量;

    图92描绘了从含有油页岩的地层中生产的乙烯与乙烷比率与温度和压力的关系;

    图93描绘了从含有油页岩的地层中生产的流体的产率与温度和压力的关系;

    图94描绘了从处理含有油页岩的地层生产的油产量的曲线图;

    图95描绘了从处理含有油页岩的地层生产的油的产量;

    图96描绘了从含有油页岩的地层中生产的烃凝结物的氢/碳比率与温度和压力的关系;

    图97描绘了从含有油页岩的地层中生产的烃凝结物的烯烃/链烷烃比率与压力和温度的关系;

    图98描绘从含有油页岩的地层生产的烃流体的各性质之间的相互关系;

    图99描绘了从含有油页岩的地层生产的油的数量与H2分压的关系;

    图100描绘了从含有油页岩的地层中生产的流体的乙烯与乙烷比率与温度和压力的关系;

    图101描绘了从含有油页岩的地层中生产的流体的氢/碳原子比与温度和压力的关系;

    图102描绘了油桶(drum)试验用的装置的实例;

    图103描绘了乙烯/乙烷比率对氢气浓度的曲线;

    图104描绘了在含有油页岩的地层中野外试验的热源和生产井排列图案;

    图105描绘了野外试验的剖视图;

    图106描绘了在野外试验过程中在含有油页岩的地层内的温度的曲线;

    图107描绘了在野外试验过程中在含有油页岩的地层内的压力;

    图108描绘了在野外试验中从含有油页岩的地层生产的流体的API比重与时间之间的曲线;

    图109描绘了在野外试验中从含有油页岩的地层生产的流体的平均碳数与时间之间的关系;

    图110描绘了在野外试验中从含有油页岩的地层生产的流体的密度与时间的关系;

    图111描绘了在野外试验中从含有油页岩的地层生产的流体内烃类的wt%的曲线;

    图112描绘了在野外试验中从含有油页岩的地层生产的油的平均产量的曲线;

    图113描绘了从油页岩上实验室试验获得的实验数据;

    图114描绘了从含有油页岩的地层生产的流体的总烃生产和液相分数与时间的关系;

    图115描绘了链烷烃的wt%与镜质体反射的关系;

    图116描绘了在产出油中环烷烃的wt%与镜质体反射的关系;

    图117描绘了在产出油中链烷烃和环烷烃的重量百分数与镜质体反射的关系;

    图118描绘了在产出油中酚wt%与镜质体反射的关系;

    图119描绘了在产出油中芳族烃wt%与镜质体反射的关系;

    图120描绘了链烷烃和脂肪族烃与芳族烃的比率对于镜质体反射的关系;

    图121描绘了链烷烃的产率与镜质体反射的关系;

    图122描绘了环烷烃的产率与镜质体反射的关系;

    图123描绘了环烷烃和链烷烃的产率与镜质体反射的关系;

    图124描绘了酚的产率与镜质体反射的关系;

    图125描绘了API比重与镜质体反射的关系;

    图126描绘了从含煤的地层中开采的油的产率与镜质体反射的关系;

    图127描绘了从具有不同镜质体反射的煤炭获得的CO2产率;

    图128描绘了含煤的地层的CO2产率对O/C原子比;

    图129描绘了煤炭立方体(cube)实验的示意图;

    图130描绘了电阻加热器和天然分散燃烧加热器的现场温度分布;

    图131描绘了从煤炭立方体的实验获得的平衡气相组成;

    图132描绘了气体的累计产量与通过加热煤炭立方体所产生的温度的关系;

    图133描绘了累积的可凝结烃类和水与通过加热煤炭立方体所产生的温度的关系;

    图134描绘了当处理各种品级的煤炭时所生产的可凝结烃类的组成;

    图135描绘了煤的导热性与温度的关系;

    图136描绘了现场实验现场试验的剖视图;

    图137描绘了在实验现场试验中的热源和井的定位;

    图138和图139描绘了在实验现场试验中温度与时间的关系;

    图140描绘了从实验现场试验中生产的油的体积与时间的关系;

    图141描绘了从实验现场试验中生产的流体的碳数分布;

    图142描绘了从对于1野外试验场的煤炭所作的两个实验室试验生产的烃的wt%与碳数分布的关系;

    图143描绘了由费歇分析法处理的以及通过在煤炭立方体实验中缓慢加热所处理的煤油(coal oils)的分离的分数;

    图144描绘了从含煤炭的地层中生产的乙烯/乙烷百分比与在实验现场试验中的加热速率的关系;

    图145描绘了从含煤炭的地层中生产的流体的产品质量与在实验现场试验中的加热速率的关系;

    图146描绘了从含煤炭的地层中生产的各种流体的重量百分数与在实验现场试验中的各种加热速率的关系;

    图147描绘了在实验现场试验中在三个不同位置生产的CO2与时间的关系;

    图148描绘了在实验现场试验中从含有煤炭的地层生产的挥发物与累积内能的关系;

    图149描绘了从实验现场试验的含有煤炭的地层生产的气体的体积与时间的关系;

    图150描绘了从实验现场试验的含有煤炭的地层生产的油的体积与能量输入量的关系;

    图151描绘了从实验现场试验的含有煤炭的地层中的合成气生产与总进水量的关系;

    图152描绘了由于注射的蒸汽,从实验现场试验的含有煤炭的地层中的额外合成气生产;

    图153描绘了甲烷注入加热的地层中的效果;

    图154描绘了乙烷注入加热的地层中的效果;

    图155描绘了丙烷注入加热的地层中的效果;

    图156描绘了丁烷注入加热的地层中的效果;

    图157描绘了从地层生产的气体的组成与时间的关系;

    图158描绘了合成气转化率与时间的关系;

    图159描绘了对于煤炭与水反应的计算的平衡气体干燥摩尔分数(equilibrium gas dry mole fractions);

    图160描绘了对于煤炭与水反应的计算的平衡气体湿摩尔分数(equilibrium gas wet mole fractions);

    图161描绘了在含有煤炭的地层中热解和合成气生产阶段的实例;

    图162描绘了低温现场合成气生产的实例;

    图163描绘了高温现场合成气生产的实例;

    图164描绘了在含烃地层中现场合成气生产的实例;

    图165描绘了累计吸收的甲烷和二氧化碳对于含有煤炭的地层中压力的曲线;

    图166描绘了与费-托法整合的现场合成气生产的实施方案;

    图167描绘了在所生产的合成气组成(composition)的数值模拟数据和实验现场试验数据之间的对比与时间的关系;

    图168描绘了从含重质烃的地层生产的碳化合物的重量百分数与碳数的关系;

    图169描绘了从含重质烃的地层生产的碳化合物的重量百分数与加热速率和压力的关系;

    图170描绘了在含重质烃的地层中油开采量与时间的曲线;

    图171描绘了从含重质烃的地层生产的流体的热含量与热输入的比率对于时间的关系;

    图172描绘了从含重质烃的地层生产的重量百分数的数值模拟数据度与碳数分布的关系;

    图173描绘了在从重质烃油桶(drum)试验中生产的气体中的H2mol%;

    图174描绘了从重质烃油桶试验生产的液体的API比重;

    图175描绘了对于现场野外试验的烃类液体生产与时间的曲线;

    图176描绘了对于现场野外试验的烃类液体,气体,和水的曲线;

    图177描绘了井头的压力与数值模拟的时间的关系;

    图178描绘了二氧化碳和甲烷的生产速率与数值模拟的时间的关系;

    图179描绘了所生产的累积甲烷和所注入的净二氧化碳与数值模拟的时间的关系;

    图180描绘了井头的压力与数值模拟的时间的关系;

    图181描绘了二氧化碳的生产速率与数值模拟的时间的关系;和

    图182描绘了所注入的累积净二氧化碳与数值模拟的时间的关系。

    虽然本发明允许有各种改进和供选择的形式,但是本发明的特定实例是在附图中举例来显示并在这里详细描述。附图可以不按照比例尺。然而,应该理解的是,附图和详细说明不希望限定本发明到所公开的具体形式,但相反,应当覆盖在由所附权利要求书中定义的本发明的精神和范围内的全部改进、等同物和其它供选择物。

    本发明的详细说明

    下列描述涉及处理含烃地层(例如,含有煤炭(包括褐煤、腐泥煤等)的地层,油页岩,碳质页岩,不纯石墨,干酪根,油,在低渗透性基岩内的干酪根和油,重质烃类,沥青岩,天然矿物蜡,其中干酪根是其它烃类的成块产物(blocking production)的一种地层,等等)的系统和方法。此类地层经过处理可获得较高质量的烃类产品,氢气,和其它产品。

    这里使用的“处理含烃地层的方法”可以与“烃类的现场转化方法”互换使用。“烃类”一般被定义为在它们的分子结构中含有碳和氢的有机物质。烃类也可包括其它元素,比如但不限于,卤素元素,金属元素,氮,氧,和/或硫。烃类可以是,但不限于,干酪根,沥青,焦沥青,和油。烃类可以处于地球的矿物基岩(mineral matrices)内或在矿物基岩附近。基岩可包括,但不限于,水成岩,沙,硅质生物岩,碳酸盐,硅藻土,和其它多孔介质。

    “干酪根”通常被定义为固体、不溶性的烃,后者已通过天然降解作用(例如,通过成岩作用)被转化并且主要含有碳,氢,氮,氧,和硫。煤炭和干酪根是含有干酪根的原料的典型实例。“沥青”通常被定义为基本上可溶于二硫化碳中的非晶态固体状或粘性烃原料。“油”通常被定义为含有可凝结烃类的复杂混合物的流体。

    术语“地层流体”和“产出流体”通常指从含烃地层中取出的流体并包括热解流体,合成气,流动烃,和水(蒸汽)。该术语“流动流体”通常是指因为地层的热处理而能够流动的在地层内的流体。地层流体可以包括烃流体以及非烃流体。这里使用的“烃流体”通常指主要包括氢和碳的化合物。烃流体可能包括除氢和碳之外的其它元素,但并不限于,氮,氧,和硫。非烃流体可包括,但不限于,氢气(“H2”),氮气(“N2”),一氧化碳,二氧化碳,硫化氢,水,和氨气。

    “碳数”通常指在分子内碳原子的数目。这里所述的碳数分布是通过真实沸点分布和气液色谱法测定的。

    “热源”通常被定义为经构型设计后用于加热地层的至少一部分的任何系统。例如,热源可以包括电热器如绝缘导体,拉长的元件,和位于导管内的导体,如在这里的实施方案中所述。热源也可包括通过在地层之外或之内燃烧燃料产生热量的热源,如表面燃烧炉,无焰分布燃烧器,和天然分布式燃烧器,如在这里的实施方案中所述。另外,可以想象,在一些实施方案中被提供给一个或多个热源或在一个或多个热源中产生的热量可以由其它能量源供应。其它能源可以直接加热地层,或能量可供应给传热介质,后者直接或间接加热地层。需要理解的是,将热量施加于地层的一个或多个热源可以使用不同的热源。因此,例如,对于给定的地层来说一些热源可以从电阻加热器中供热,一些热源可以从燃烧提供热量,而一些热源可以从一个或多个其它能源例如化学反应、太阳能、风能或其它可再生能源中提供热量)。化学反应可包括放热反应,比如但不限于,在地层的至少一部分中发生的氧化反应。热源也可包括加热器,后者经过构型设计后用于提供热量给靠近加热位置(如加热器井)和/或包围加热位置的区域中。加热器可以是,但不限于,电热器,燃烧炉,和天然分布式燃烧器。

    “加热器”通常被定义为经过构型设计在井中或在井眼区域附近产生热量的任何系统。“热源单元”是指形成模板的热源的最小数目,该模板可以重复以便在地层内产生热源的排列图案。例如,加热器可以通过在地层之外或之内燃烧燃料来产生热量,如表面燃烧炉,无焰分布式燃烧器,和天然分布式燃烧器,如这里的实施方案中所述。

    术语“井眼”通常指通过钻井获得的在地层中的孔。井眼可以具有基本上圆形的截面,或其它形状的横截面(例如,圆,椭圆,正方形,矩形,三角形,狭缝,或其它规则的或不规则的形状)。当涉及到地层中的开孔时,这里使用的术语“井”和“开孔”可以与术语“井眼”互换使用。

    这里使用的短语“天然分布式燃烧器”通常指使用氧化剂来氧化在地层中的至少一部分的碳以产生热量的加热器,和其中氧化在井眼的附近处发生。在天然分布式燃烧器中产生的燃烧产物的大部分通过井眼除去。

    这里使用的术语“孔”通常描述了具有各种尺寸和横截面形状的开孔,形状包括但不限于圆,椭圆,正方形,矩形,三角形,狭缝,或其它规则的或不规则的形状。

    这里使用的“反应区”通常指发生化学反应如氧化反应的一定体积的含烃地层。

    这里使用的术语“绝缘导体”通常指可以导电并且全部或部分地被电绝缘材料包覆的任何长条形材料。术语“自控制”通常指控制加热器的输出额,但不需要任何类型的外部控制。

    “热解”一般被定义为由于热的应用而使化学键断裂。例如,热解可以包括只由热将化合物转化成一种或多种其它物质。在本专利的上下文中,热解用的热可在氧化反应中产生和然后将热量转移到地层的区段中以引起热解。

    这里使用的“热解流体”或“热解产物”通常指基本上在烃类的热解过程中产生的流体。这里使用的“热解区”通常指已反应或经过反应形成热解流体的一定体积的含烃地层。

    “裂解”通常指牵涉到有机化合物的分解和分子重组的方法,其中一定数量的分子变得更大。在裂解中,发生一系列反应,伴随着在分子之间氢原子的转移。裂解从根本上改变分子的化学结构。例如,石脑油可以经历热裂解反应而形成乙烯和H2。

    该术语“热量的重叠”通常被定义为从至少两个热源提供热量到地层的该部分的所选择区域中,以使得至少在两个井之间的一个位置上的地层的温度受到至少两个热源的影响。

    该术语“指进(fingering)”通常指注入流体绕过地层的一些部分,因为运输特性(例如,渗透性)的变化。

    “导热性”通常被定义为材料的一种性质,它描述了在材料的两个表面之间,对于在两个表面之间的给定温差,在稳态下热量流动的速率。

    “流体压力”通常被定义为由地层内的流体产生的压力。“岩石静压力”有时被称为岩石静应力和通常被定义为在地层内的压力,等于重量/每单位面积的上覆地层块体(overlying rock mass)。“静水压力”通常被定义为由水柱施加的在地层内的压力。

    “可凝结烃类”是指在25℃和一个绝对大气压压力下凝结的烃类。可凝结烃类可以包括具有大于4的碳数的烃类的混合物。“不凝烃类”是指在25℃和一个绝对大气压压力下不凝结的烃类。不凝烃类可以包括具有低于5的碳数的烃类。

    “烯烃”通常被定义为具有一个或多个非芳族碳-碳双键的不饱和烃。

    “尿素”通常由NH2-CO-NH2的分子式描述。尿素能用作肥料。

    “合成气”通常被定义为用于合成各种各样的化合物的包括氢气和一氧化碳的混合物。合成气的附加组分可以包括水,二氧化碳,氮,甲烷和其它气体。合成气可利用各种方法和原料来产生。

    “重整”通常被定义为通过加热和加压,烃气体或低辛烷值的石油馏分的分解或裂解。重整可以在没有催化剂(热成型)或有催化剂(例如钼,铂)的情况下进行。天然气的蒸汽重整会从甲烷和水产生H2和一氧化碳。

    “隐退”通常指贮存属于该过程中的副产物的气体,但不是将该气体排向大气。

    该术语“倾斜”通常被定义为从平行于地球表面的一平面向下倾斜,假设该平面是平的(即,“水平”面)。“倾角”通常被定义为地层或类似构造与水平面形成的角度。“陡峭倾斜”含烃地层通常指与水平面构成至少20°的角度的含烃地层。这里使用的“向下倾角”通常指沿着平行于地层中的倾角(dip)的方向的向下。这里使用的“向上倾角”通常指沿着平行于地层中的倾角(dip)的方向的向上。“地层走向(Strike)”是指与倾角的方向正交的烃原料的取向或走向。

    术语“沉陷”通常被定义为地层的一部分相对于该表面的初始海拔而言的向下运动。

    层的“厚度”是指层的横截面的厚度,其中横截面与层面正交。

    “取岩芯”通常被定义为一种方法,该方法通常包括钻孔到地层中并从孔中取出地层的基本上固体岩体。

    “地面装置”通常被定义为外部处理装置。

    “中间馏分”通常指沸点范围基本上与在石油原料的普通常压蒸馏中获得的煤油和汽油馏分的沸点范围对应的烃类混合物。该中间馏分沸点范围可以包括在大约150℃和大约360℃之间的温度,具有在大约200和大约360℃之间的馏分沸点。中间馏分可称作汽油。

    “沸点截取馏分”通常被定义为一种液态烃馏分,当烃类液体被加热至该馏分的沸点范围时该馏分可以与烃类液体分离。

    术语“选择的流动区段”是指在流动温度范围内的平均温度下有相对可渗透性的地层的区段。术语“选择的热解区段”是指在热解温度范围内的平均温度下有相对可渗透性的地层的区段。

    “富氧空气”通常指比大气中的空气具有更大的氧摩尔分数的空气。空气的氧富集典型地进行后可提高它的助燃能力。

    “重质烃类”通常被定义为粘性烃流体。重质烃类可以包括高度粘性的烃流体,如重柴油,焦油,和/或沥青。重质烃类可以包括碳和氢,以及低浓度的硫,氧,和氮。其它附加元素也痕量存在于重质烃类中。重质烃类可由API比重分类。重质烃类通常具有低于约20℃的API比重。重油,例如,通常具有大约10-20℃的API比重,而焦油通常具有低于大约10℃的API比重。重质烃类的粘度通常在15℃下大于约300厘泊。焦油通常具有在15℃下大于约10,000厘泊的粘度。重质烃类也可包括芳族烃,或其它复杂环烃类。

    重质烃类可以在相对可渗透性地层中见到。该相对可渗透性地层可以包括例如在砂或碳酸盐中夹含的重质烃类。“相对可渗透性”被定义为,对于地层或它的各个部分,10毫达西或更多(例如,10或100毫达西)的平均渗透度。“相对低渗透性”被定义为,对于地层或它的各个部分,低于约10毫达西的平均渗透度。一个达西(Darcy)等于约0.99平方微米。不渗透层通常具有低于大约0.1毫达西的渗透性。

    术语“提高等级”是指提高重质烃类的API比重。

    该短语“非峰值”时间通常指操作时间,在这一时间中能量一般较少使用和因此价格比较低廉。

    术语“低粘度区”通常指地层中流体的至少一部分是流动的的区段。

    在地层的砂中含有的焦油一般被称为“沥青砂地层”。

    “热致破裂”是指由地层和/或在地层内的流体的膨胀或收缩所引起的在地层内产生的破裂,它进而由于提高/降低地层和/或地层内流体的温度,和/或由于加热而提高/降低地层内流体的压力所引起。

    “垂直水力压裂”指沿着地层中的垂直面至少部分地增长的破裂,其中该破裂是通过流体注入地层中产生的。

    在地层中的烃类能够以各种方式处理以产生许多不同的产品。在某些实施方案中,此类地层可以分阶段处理。图1说明了加热含烃地层的几个阶段。图1也描绘了来自含烃地层中的地层流体的产量(石油当量桶数/每吨)(y坐标)对该地层的温度(℃)(x坐标)的一个例子。

    在图1的阶段1加热过程中发生甲烷的解吸和水的蒸发。例如,当含烃地层最初被加热时,在地层中的烃类会解吸被吸收了的甲烷。解吸的甲烷可从该地层生产。如果该含烃地层进一步加热,在该含烃地层内的水会汽化。另外,该汽化的水可以从地层产生。贯穿阶段1的地层加热在许多情况下优选尽可能快地进行。

    在阶段1加热以后,该地层可以进一步加热,以使地层内的温度(至少)达到初始热解温度(例如,在阶段2所示的温度范围的下端的温度)。热解温度范围可以根据地层内的烃类的类型来改变。例如,热解温度范围可以包括在大约250℃和大约900℃之间的温度。在供选择的实施方案中,热解温度范围可以包括在大约270℃到大约400℃之间的温度。该地层内的烃类可以在整个阶段2中热解。

    包括热解流体的地层流体可以从地层产生。该热解流体可包括,但不限于,烃类,氢气,二氧化碳,一氧化碳,硫化氢,氨,氮气,水和它们的混合物。随着地层温度的升高,所产出的地层流体的可凝结烃类倾向于减少,并且该地层将在许多情况下倾向于主要生产甲烷和氢气。如果在整个热解范围加热含烃地层,则向着热解温度范围的上限,地层可以生产仅仅少量的氢气。在全部的可用氢被采尽之后,则典型地出现从该地层中最少量流体的生产。

    在烃类的热解后,大量的碳和一些氢气仍然存在于该地层中。在该地层中的大部分剩余碳能够以合成气的形式从地层生产。合成气产生可以在图1所示的阶段3加热的过程中发生。阶段3可以包括将含烃地层加热到足以允许合成气产生的温度。例如,合成气可以在大约400℃到大约1200℃的温度范围内生产。当合成气产生流体被引入到地层中时,地层的温度在许多情况下决定在地层内生产的合成气的组成。如果合成气产生流体在足以允许合成气产生的温度下被引入到地层中,则在地层内产生合成气。产生的合成气可从地层中取出。在合成气产生过程中可生产出大体积的合成气。

    取决于所生产的流体的量,从含烃地层生产的流体的总内能(energy content)在许多情况下可以在整个热解和合成气产生中保持相对恒定。例如,在热解期间,在较低的地层温度下,主要比例的产出流体可能是具有高内的可凝结烃类。然而,在较高的热解温度下,较少的地层流体包括可凝结烃类,并且可生产出更多的不凝结的地层流体。如此,每单位体积的该产出流体的内能可在占优势的不凝结的地层流体的产生过程中稍微地衰减。在合成气产生过程中,与热解流体的内能相比,每单位体积的生产合成气的内能会显著衰减。然而,所生产的合成气的体积在许多情况下会大量增加,因此补偿了减少的内能。

    正如以下所解释的,在图2中所示的van Krevelen图描绘了对于各种类型的干酪根,氢/碳原子比率(y坐标)对氧/碳原子比率(x坐标)的曲线。这一图解显示了在地质时期由于温度、压力和生化降解所典型出现的各种类型的干酪根的熟化层序。该熟化可通过在控制的速率和/或控制的压力下现场加热来促进。

    van Krevelen图解可用于选择为了实施这里所述的各种实施方案(参见以下讨论)所用的资源。处理在区域5中的含有干酪根的地层将在许多情况下生产出,例如二氧化碳、不凝结的烃类、氢气、和水、还有较少量的可凝结烃类。处理在区域7中的含有干酪根的地层将在许多情况下生产出,例如,碳可凝结和不凝结烃类、二氧化碳、氢气、和水。处理在区域9中的含干酪根的地层将在许多情况下生产出,例如,甲烷和氢气例如在许多情况下选择在区域7中的含有于酪根的地层进行处理,因为这样做将倾向于生产大量有价值的烃类和较低量的不需要的产品如二氧化碳和水,这是由于该区域7干酪根早已在地质时期发生了脱水和/或脱羧。另外,区域7干酪根还可以进一步处理以制造其它有用的产品(例如,甲烷,氢气,和/或合成气),这是由于此类干酪根转变成区域9干酪根。

    如果选择在区域5或7中的含有干酪根的地层进行处理,则依据这里所述的某些实施方案的处理将在处理过程中引起此类干酪根转变到(参见图2中的箭头)具有更高号数的区域中(例如,区域5干酪根能够转变成区域7干酪根和可能然后转变成区域9干酪根,或区域7干酪根能够转变成区域9干酪根)。因此,这里所述的某些实施方案会引起干酪根的加速熟化,从而使得生产出有价值的产品。

    如果处理例如区域5干酪根,则由于在地层中烃类的脱羧作用而产生大量的二氧化碳。另外,处理区域5干酪根也可生产一些烃类(例如主要甲烷)。处理区域5干酪根也可生产大量的水,这是由于地层中干酪根的脱水。此类化合物从地层中的生产会使残留烃类相对富集碳。烃类的氧含量将在许多情况下比此类化合物的生产过程中烃类的氢含量下降得更快。所以,如图2中所示,此类化合物的生产可以导致氧/碳原子比率的下降多于氢/碳原子比率的下降(参见图2中的区域5的箭头,它描绘成相对垂直运动更加水平运动)。

    如果处理区域7干酪根,则典型地在地层中烃类的至少一些被热解而生产可凝结和不凝结烃类。例如,处理区域7干酪根可以导致从烃类生产出油,以及一些二氧化碳和水(虽然二氧化碳和水一般比处理区域5干酪根时所生产的要少)。所以,当区域7中的干酪根被处理时,干酪根的氢/碳原子比率将在许多情况下快速下降。然而,区域7干酪根的氧/碳原子比率将在许多情况下比区域7干酪根的氢/碳原子比率减少得更缓慢。

    在区域9中的于酪根可以经过处理而产生甲烷和氢气。例如,如果此类干酪根是经原来处理(例如,它是原来区域7干酪根)的,则在热解之后烃类的较长烃链可能早已从地层中裂解和生产出来。然而碳和氢可能仍然存在于该地层中。

    如果在区域9中的干酪根被加热到合成气产生温度并且合成气产生流体(例如,蒸汽)被加入到区域9的干酪根中,则在地层中的剩余烃类的至少一部分能够以合成气形式从地层产生。对于区域9干酪根,随着温度升高,在烃类中的氢/碳原子比率和氧/碳原子比率会显著下降。如此,在地层中的烃类可以转变成在区域9中的较纯碳。加热区域9干酪根到更高的温度将倾向于将此类干酪根转变成石墨11。

    含烃地层可具有许多性质,例如取决于地层内至少一些烃类的组成。此类性质倾向于影响从含烃地层生产的产品的组成和量。所以,含烃地层的性质可用于确定是否和/或如何最佳地处理含烃地层。

    干酪根是由有机物质组成的,后者因为熟化过程而已转化。包括干酪根的含烃地层包括,但不限于,含有煤炭的地层和含有油页岩的地层。包括干酪根的含烃地层的例子是含有重质烃类的地层(例如,焦油砂)。该熟化过程可以包括两个阶段:生物化学阶段和地球化学阶段。该生物化学阶段典型地包括有机材料被需氧和厌氧的生物的降解。地球化学阶段典型地包括由于温度变化和显著大的压力所引起的有机物质的转化。在熟化期间,当干酪根的有机物质转化时会产生油和气。

    图2中示出的van Krevelen图解将干酪根的各种天然沉积物分类。例如,干酪根可以分成四个不同组:类型I,类型II,类型III,和类型IV,它们由van Krevelen图解的四个分支来说明。这一附图显示了干酪根的熟化层序,它是在地质时期中由于温度和压力所引起发生的。该类型取决于干酪根的前体原料。该前体原料随着时间的推移而转变成煤素质(macerals),它们是具有以衍生出它们的前体原料为基础的不同结构和性质的显微结构。油页岩可描述为干酪根类型I或类型II和可以主要地含有来自类脂(liptinite)组中的煤素质。类脂组是由植物(具体地说富含脂质和树脂状部分)衍生而来。在类脂组内氢气的浓度高达9wt%。另外,类脂(liptinite)具有较高的氢/碳原子比率和较低氧/碳原子比率。类型I干酪根也可进一步分类为藻煤(alginite),因为类型I干酪根可以主要包括藻类基体。类型I干酪根可以从湖环境中形成的沉积物产生。类型II干酪根可以从海洋环境中沉积的有机物质形成。

    类型III干酪根可以通常包括镜质组煤素质。镜质组是从细胞壁和/或木质组织(例如,植物的茎,分枝,叶子和根)衍生的。类型III干酪根可存在于大部分的腐殖煤中。类型III干酪根可以从沼泽中沉积的有机物质形成。类型IV干酪根包括该惰质体型煤素质组。这一组是由植物原料如叶子、树皮和树干组成,它们在埋藏成岩作用的早期泥炭阶段中发生氧化作用。它在化学上类似于镜质体组但具有高的碳含量和低的氢含量。因此,它被认为是惰性的。

    图2中的虚线对应于镜质体反射。该镜质体反射是熟化的量度。随着干酪根发生熟化作用,干酪根的组成通常发生变化。例如,随着干酪根经历熟化作用,干酪根的挥发物倾向于减少。干酪根的等级分类指明了干酪根成熟到何种程度。例如,随着干酪根经历熟化作用,干酪根的等级提高。所以,随着等级提高,干酪根的挥发物倾向于减少。另外,随着等级提高,干酪根的水分含量通常减少。然而,在较高等级下,该水分含量可以变得相对恒定。例如,经历充分的熟化作用的较高等级干酪根,如半无烟煤或无烟煤,倾向于具有比低等级干酪根如褐煤更高的碳含量和更低的挥发物含量。例如,含煤地层的煤级阶段包括下列分类,它们按照类型III干酪根的提高等级和成熟度的顺序列出:木材,泥煤,褐煤,亚烟煤,高挥发性沥青煤,中等挥发性烟煤,低挥发烟煤,半无烟煤,和无烟煤。另外,随着等级提高,干酪根倾向于表现出芳香性的提高。

    含烃地层可以基于地层的至少一部分的性质加以选择进行现场处理。例如,可以基于地层的富含度,厚度,和深度(即覆盖层厚度)来选择地层。另外,地层可以加以选择,使得可以从地层生产出较高质量的流体。在某些实施方案中,所生产的流体的质量可以在处理之前进行分析,从而产生大量的成本节省,因为可以仅仅选择更佳的地层进行处理。可用于分析地层中的烃类的那些性质包括,但不限于,倾向于从烃类中生产的烃类液体的量,所生产的烃类液体的可能的API比重,倾向于从烃类中生产的烃气的量,和/或倾向于从烃类中生产的二氧化碳和水的量。

    可用于分析从某些含有干酪根的地层生产的流体的质量的另一性质是镜质体反射率。此类地层包括,但不限于,含有煤炭的地层和含有油页岩的地层。包括干酪根的含烃地层能够典型地为了处理而基于干酪根的镜质体反射进行分析/选择。镜质体反射常常与干酪根的氢/碳原子比和干酪根的氧/碳原子比有关,如图2中的虚线所示。例如,van Krevelen图解可用于为现场转化过程选择资源。

    含烃地层中干酪根的镜质体反射率倾向于指明在加热之后从地层中产生什么流体。例如,大约0.5%到大约1.5%的镜质体反射倾向于表明在加热之后将生产出在以上区域7中所述的流体的干酪根。所以,如果具有此类干酪根的含烃地层被加热,则由该加热产生的大量(例如,主要量)的流体常常包括油和其它此类烃流体。另外,大约1.5%到3.0%的镜质体反射可能指明在如上所述的区域9中的干酪根。如果具有此类干酪根的含烃地层被加热,则由该加热生产的大量(例如,主要量)的流体可以包括甲烷和氢气(和合成气,如果例如该温度足够高并且蒸汽被注入)。在实施方案中,为现场处理所选择的含烃地层的至少一部分具有在大约0.2%和大约3.0%之间的镜质体反射。另外地,为了处理所选择的含烃地层的至少一部分具有大约0.5%到大约2.0%的镜质体反射,并且在一些情况下,该镜质体反射可以是大约0.5%到1.0%。这一范围的镜质体反射倾向于表明,从地层生产出较高质量的地层流体。

    在一个实施方案中,以地层中烃类的氢含量为基础,选择含烃地层进行处理。例如,处理含烃地层的方法可以包括为了处理来选择含有烃类的含烃地层的一部分,该烃类的氢含量大于大约3wt%、3.5wt%或4wt%,当基于干燥、无灰分进行测量时。另外,含烃地层的所选择的区段可以包括氢/碳原子比率落在大约0.5到大约2范围内和在许多情况下在大约0.70到大约1.65范围内的烃类。

    含烃地层的氢含量显著地影响从地层生产的烃流体的组成。例如,在被加热的部分内至少一些烃类的热解可以产生包括双键或基团的烃流体。地层内的氢气将还原双键变成单键。如此,所产生的烃流体彼此之间的反应和/或与地层中其它附加组分的反应基本上被抑制。例如,所产生的烃流体的双键还原成单键可以减少所产生的烃类的聚合。此类聚合倾向于减少所生产的流体的量。

    另外,在地层内的氢气也会中和在所产生的烃流体中的基团。如此,在地层中存在的氢气通过将烃链段转化成较短链烃流体来显著抑制烃链段的反应。该烃流体可以进入蒸汽相并可从地层生产。蒸汽相中烃流体的增加会显著减少在地层的所选择区段中生产不太需要的产物的潜力。

    可以相信,如果太少氢气存在于地层中,则所生产的流体的量和质量会受到负面影响。如果天然存在太少的氢气,则在一些实施方案中氢气或其它还原性流体被加入到该地层中。

    当加热含烃地层的一部分时,在该部分中的氧可以形成二氧化碳。可能希望减少二氧化碳和其它氧化物的生成。在一个实施方案中,二氧化碳的生产可通过选择和处理具有大于约0.5%的镜质体反射的一部分含烃地层而得以减少。另外,从地层生产的二氧化碳的量例如依含烃地层的被处理部分的氧含量来变化。某些实施方案因此包括选择和处理地层的一部分,它具有原子氧wt%低于约20%,15%,和/或10%的干酪根。另外,某些实施方案可以包括选择和加工含有氧/碳原子比率低于大约0.15的干酪根的地层。另外地,在为了处理所选择的地层的一部分中至少一些烃类可具有大约0.03到大约0.12的氧/碳原子比率。以这种方式,从烃类的现场转化过程生成的二氧化碳和其它氧化物可以减少。

    加热含烃地层可以包括为处于地层内的加热源提供大量能量。含烃地层可以含有水。存在于含烃地层中的水将倾向于进一步提高为加热含烃地层所需要的能量的用量。如此,水倾向于阻止地层的高效加热。例如,需要大量的能量从含烃地层中蒸发水。因此,温度升高的初始速率将因为在地层中水的存在而减慢。所以,需要过量的热量和/或时间来加热具有高水分含量的地层到足以使地层内的至少一些烃类热解的温度。在一个实施方案中,烃类的现场转化方法可以包括为了处理来选择含烃地层的一部分,后者具有低于大约15%的初始含水量(在一些实施方案中脱水井可用于减少地层的水含量)。另外地,烃类的现场转化方法包括为了处理来选择含烃地层的一部分,后者具有低于大约10wt%的初始含水量。

    在一个实施方案中,含烃地层可以根据附加因素如地层内的含烃层的厚度和所分析的液体生产含量来为处理进行选择。例如,含烃地层可以包括多层。此类层可包括含烃层,以及无烃或具有很低量的烃类的层。含烃层的每一层所具有的厚度将根据例如形成含烃层的条件来变化。所以,如果地层包括其厚度足以允许地层流体的经济生产的至少一个含烃层,则该含烃地层将通常被选择进行处理。如果间距小的几个层的厚度足以允许地层流体的经济生产的话,则也可选择该地层。根据土壤内烃资源的丰度也可选择其它地层,即使该资源的厚度相对较薄。

    另外,含烃地层的一层可以根据含烃层的厚度,和/或在地层内含烃层的总厚度加以选择进行处理。例如,烃类的现场转化方法包括选择和处理厚度大于约2m,3m,和/或5m的含烃地层的一层。如此,因转移到在烃层上下的那些层中而导致的热损失(作为全部注入的热量的一部分)可以低于从烃类的薄层中的这种热损失。然而,以上所述的方法也包括选择和处理各层,这些层包括基本上无烃类的层和烃类薄层。

    含烃层中的每一层也可具有潜在的地层流体产量,该产量将根据例如形成含烃层的条件,该层中烃类的量和/或该层中烃类的组成来变化。潜在的地层流体产量例如通过费歇分析法来测量。该费歇分析法是包括在1小时内加热含烃层的样品到大约500℃、收集从加热的样品生产的产品和定量所生成的产品量的一种标准方法。含烃层的样品可通过诸如钻取岩芯之类的方法或任何其它取样方法从含烃地层中获得。

    图3显示用于处理含烃地层的现场转化系统的一部分的一个实施方案的示意图。热源100可放置在含烃地层的至少一部分内。热源100可以包括,例如,电热器如绝缘导体,导管内装导体的加热器,地表面燃烧炉,无焰分布式燃烧器,和/或天然分布式燃烧器。热源100也可能包括其它类型的加热器。热源100经过构型设计之后用于为含烃地层的至少一部分提供热量。能量可通过供应线102提供给热源100。供应线将根据用于加热地层的热源或多种热源的类型而在结构上不同。热源的供应线可以为电热器传输电力,可以为燃烧器运输燃料,或可以输送在地层内循环的热交换流体。

    生产井104可用于从地层中除去地层流体。从生产井104生成的地层流体可通过收集管道106被运输到处理设备108。地层流体也可从热源100生产。例如,流体可从热源100生产,以控制在与热源邻近的地层内的压力。从热源100生产的流体可以通过管道或管线运输到收集管106中或该产出流体可通过管道或管线直接输送到处理设备108中。处理设备108可以包括分离装置,反应装置,等级提升装置,燃料电池,汽轮机,存储容器,和用于加工所产出的地层流体的其它系统和装置。

    用于处理烃类的现场转化系统可以包括脱水井110(以附图标记110显示的井在一些实施方案中是捕获和/或分离井)。脱水井110或真空井可经过构型设计后用于从被加热的含烃地层的一部分中或从被加热的地层中除去液态水并抑制液态水进入它们之中。多个水井可以包围被加热的地层的全部或一部分。在图3中所描绘的实施方案中,该脱水井110被显示仅仅沿着热源100的一侧延伸,但是脱水井典型地环绕已用于或被用于加热地层的全部热源100。

    脱水井110能够以包围该地层的所选择部分的一个或多个环的形式设置。当被现场转化方法处理的区域面积扩大时,需要配制新的脱水井。最外一排的脱水井可以阻止大量的水流入已加热或需要加热的地层部分中。从最外一排的脱水井生产的水应该基本上纯净,并且在释放之前需要较少的处理或不需要处理。最内一排的脱水井可以阻止绕过最外一排井的水流入被加热或需要加热的地层部分中。最内一排的脱水井也可抑制蒸汽从地层的加热部分中向外迁移到该地层的周围部分中。由最内一排的脱水井生产的水可包括一些烃类。该水在被释放之前需要处理。另外,有烃类的水可以被贮存并用于在现场转化方法的合成气阶段中从地层的一部分生产合成气。该脱水井可以将减少热量损失到地层的周围部分中,可以增大蒸汽从加热部分中的生产,并且抑制与地层的加热部分接近的地下水位的污染。

    在另一供选的实施方案中,流体(例如,液体或气体)可在最内一排井注入,使得在热解区中或在热解区周围保持所选择的压力。另外,这一流体可以用作在最外井和热解流体之间的隔离屏障,因此改进了脱水井的效率。

    需要处理的烃类可以位于大面积区域之下。该现场转化系统可用于处理地层的小部分,而该地层的其它区段可随着时间的推移被处理。在处理含有油页岩的地层的系统的一个实施方案中,对于24年的开发所建立的野外观测系统可以分成代表各个钻井年代的24个标绘图(plot)。各标绘图可以包括120个“瓦型模板(tile)”(重复的矩阵模式),其中各瓦型模板由6行×20列组成。各瓦型模板(tile)包括1个生产井和12或18个加热器井。这些加热器井可以按照等边三角形图案设置,例如具有大约12m的井间距。生产井可以位于加热器井的等边三角形的中心,或该生产井可以位于大致在两个相邻加热器井之间的中点。

    在某些实施方案中,热源将设置在含烃地层内所形成的加热器井之内。该加热器井可以包括开孔,它穿过地层的上覆地层并进入到地层的至少一个含烃区段中。另外地,如图3a中所示,加热器井224可以包括在地层222内的开孔,它具有基本上类似于螺旋形或螺旋线形的形状。加热器井的螺旋形构型可以在一些实施方案中增加热量从热源中的转移和/或在加热时允许热源膨胀,但没有弯折或其它破坏模式。在一些实施方案中,这些加热器井也可包括穿过上覆地层220的基本上直的区段。穿过该上覆地层的直的加热器井的使用可以减少热损失到上覆地层中。

    在供选择的一个实施方案,如图3b中所示,热源可放入加热器井224中,后者包括具有基本上类似于“U”的形状的在地层222中的开孔(该“U”的“腿”可以或宽或窄,这取决于所使用的实施方案)。加热器井224的第一部分226和第三部分228可以与地层222的上表面基本上垂直地排列。另外,加热器井的第一和第三部分可以基本上垂直延伸穿过上覆地层220。加热器井224的第二部分230可以与地层的上表面大体上平行。

    另外,多个热源(例如,2,3,4,5,10个热源或更多)可以在一些情况下从加热器井中延伸出来。例如,如图3c中所示,热源232、234和236可以从加热器井224贯穿上覆地层220进入地层222中。当地表考虑因素(例如,美观性,地表土地利用条件,和/或地表附近的不利土壤条件)使得希望在较少的几个位置集中地面设备时,会遇到这些情况。例如,在土壤冻结和/或多沼地的区域中,在更集中的位置中放置地面设备更加成本有效。

    在某些实施方案中,加热器井的第一部分可从地面延伸,穿过上覆地层,并到达含烃地层中。加热器井的第二部分可以包括在含烃地层中的一个或多个加热器井。一个或多个加热器井可按不同角度位于含烃地层之内。在一些实施方案中,加热器井中至少一个基本上与含烃地层的边界平行。在另一实施方案中,加热器井的至少一个基本上垂直于含烃地层。另外,该一个或多个加热器井中的一个能够以在垂直于地层中的层和平行于该层之间的一种角度设置。

    图4说明了处于相对于地面204的上表面而言的基本上接近水平的角度的含烃地层200的实施方案。然而,含烃地层200的角度可以变化。例如,含烃地层200可以陡峭倾斜。使用目前可利用的矿山开采法,对陡峭倾斜式含烃地层的经济上有前途的生产是不可能的。然而,相对陡峭倾斜的含烃地层可以进行这里所述的现场转化方法。例如,单组的产气井可以在陡峭倾斜的含烃地层的顶部附近设置。这种地层可通过加热在含烃地层的顶部附近的该地层的一部分和然后顺序加热该含烃地层的较低区段来进行加热。气体可以从含烃地层中生产,这通过以最低压力损失来输送气体穿过预先热解的烃类来实现。

    在一个实施方案中,烃类的现场转化方法可以包括为在几个区段中倾斜的含烃地层的至少一部分提供热量。例如,地层的一部分可以包括一倾斜部分(dip),后者包括该部分的最小深度。生产井可以位于靠近该最小深度的该含烃地层的该部分中。在该部分中不需要附加的生产井。例如,当热传递穿过含烃地层和在该部分中的至少一些烃类发生热解时,在该部分中形成的热解流体会流过含烃地层的热解区段到达该生产井。正如这里所述,由于含烃地层的现场处理而导致的增大渗透性可以提高蒸汽穿过地层的被处理部分的转移作用。所以,为了从地层生产混合物所需要的生产井的数目可以减少。减少为生产所需要的生产井的数目将会提高现场转化方法的经济可行性。

    在陡峭倾斜的地层中,定向钻进可用来在地层中为加热器井形成开孔。定向钻进包括钻探一钻孔,其中钻孔的路径/走向可以在钻探之前计划好。该钻孔通常用旋转钻进设备来钻探。在定向钻进中,钻孔的路径/走向可通过造斜楔子等控制。

    钻探加热器井202也包括利用装有可转向的发动机和加速度计(经过构型设计可以跟随含烃地层200)的钻探设备在地层中钻探出钻孔。例如,可转向的发动机经过构型设计可在该钻孔的整个钻探操作中在加热器井202和含烃地层200的边界之间保持基本上恒定的距离。加热器井202利用可转向的发动机和加速度计来钻探是比较经济的。

    另外地,地下转向的(geosteered)钻探操作可用于将加热器井202钻探到含烃地层200中。地下转向的钻探可以包括利用传感器来测定或估测从含烃地层200的边缘到加热器井202的距离。该传感器可包括,但不限于,经过构型设计用于测定从含烃地层200的边缘到加热器井202的距离的那些传感器。另外,这些传感器经过构型设计可用于测定和检测在含烃地层200的特征上的变化。这种传感器可包括,但不限于,经构型设计后可使用电阻、γ射线、声波脉冲和/或其它设备测量烃薄层(seam)的特征的那些传感器。地下转向的钻探也可包括用包括可转向的发动机的钻探装置为加热器井形成钻孔。马达经控制以保持与含烃地层的边缘的预定距离。在另外的实施方案中,在地层中加热器井或任何其它井的钻探也可包括声钻法。

    图5说明了在含烃地层212中形成的多个加热器井210的实例。含烃地层212可以是陡峭倾斜地层。一个或多个加热器井210可以在地层中形成,以使得加热器井中的两个或多个基本上彼此平行,和/或使得至少一个加热器井基本上与含烃地层212平行。例如,一个或多个加热器井210可通过磁导向法在含烃地层212中形成。磁导向法的例子已在授权于Kuckes的美国专利No.5,676,212中进行说明,它被引入本文供参考就如同在本文中全文列出一样。磁导向法包括与相邻加热器井平行地钻探加热器井210。相邻的井已预先钻探好。另外,磁导向方法包括通过感测和/或确定在相邻加热器井中产生的磁场来引导钻探。例如,通过让电流流过在相邻加热器井中放置的绝缘的可载电流的测井电缆线,在相邻加热器井中产生磁场。另外地,一个或多个该加热器井210可通过另外在这里描述的方法来形成。在加热器井210之间的间距可根据这里所述的任何实施方案来测定。

    在一些实施方案中,加热的部分310可以基本上沿着径向从热源300延伸,如图6中所示。例如,在从热源300径向延伸的方向上加热部分310的宽度是大约0m到大约10m。然而,加热部分310的宽度可以根据例如由热源300提供的热量和地层的特征来变化。由热源300提供的热量将典型地转移穿过该加热部分,在该加热部分内产生温度梯度。例如,靠近加热器井的温度一般高于靠近该加热部分的外侧边界的温度。然而在该加热部分内的温度梯度将在该加热部分内根据例如地层的热传导率来变化。

    当热量转移通过含烃地层的加热部分310时,在加热部分的至少一个区段内的温度可以在热解温度范围内。如此,当热量从热源中转移出时,发生热解的前端将在许多情况下从热源向外推进。例如,来自该热源的热量转移到加热部分的所选择区段中,以使得来自该热源的热量导致所选择区段内的至少一些烃类热解。照这样,在加热部分的所选择区段315内发生热解,在所选择区段中从烃类产生热解流体。所选择区段315的内侧边界可在径向上与该热源分隔。例如,所选择区段315的内侧边界将在径向上与热源间隔大约0m到大约1m。另外,所选择区段315可具有从所选择区段的内侧边界沿径向延伸的宽度。例如,所选择区段的宽度可以是至少大约1.5m,至少大约2.4m,或甚至至少大约3.0m。然而,所选择区段的宽度也可大于约1.5m和低于约10m。

    在所选择区段的部分中烃类的热解完成之后,在热源附近产生枯竭的烃类317的区段。

    在一些实施方案中,多个加热部分可以存在于一个单元的热源中。热源的单元是指形成模板的热源的最小数目,该模板可以重复以便在地层内形成热源的排列图案。该热源可以位于地层内,以使得从热源产生的热量的重叠(叠加)是有效的。例如,如图7中所说明,热量从两个或更多个热源330中的转移会导致在由热源的单元所限定的区域内热量332的重叠是有效的。重叠在由两个,三个,四个,五个,六个或更多个热源所限定的区域内部也是有效的。例如,其中热量332的重叠是有效的区域包括被该热源单元中的两个或多个热源转移大量热量进去的区域。其中热量的重叠是有效的区域可根据例如在热源之间的间隔来变化。

    热量的重叠可以将地层的至少一部分中的温度提高到足以使该部分内的烃发生热解的温度。如此,热量332的重叠倾向于提高地层中可热解的烃的量。照这样,在热解温度范围内的多个区域可以在该热源单元内存在。所选择区段334可以包括由于从仅仅一个热源中的热传递而处于热解温度范围的区域,以及由于热量的重叠而处于热解温度范围的区域。

    另外,热源的排列图案常常包括多个热源单元。典型地可以在热源的排列图案内有多个加热的部分,和所选择区段。多个的加热部分和所选择区段可以按这里所述来构型设置。在热源的排列图案内热量的重叠可减少为在多个加热部分内达到热解温度所需要的时间。热量的叠加允许在相邻的热源之间有较大的间距,这进而提供了含烃地层的较缓慢加热速率。在某些实施方案中,热量的重叠也从含烃地层的加热部分产生大体上均匀的流体。

    在某些实施方案中,当所选择区段处于距离热源的大约0m到大约25m的范围中时,产生主要量的热解流体。

    如图3中所示,除了热源100外,一个或多个生产井102将典型地位于含烃地层的该部分中。生产井102可进行构型设计,使得通过该生产井可生产出包括地层流体的混合物。生产井102也可包括热源。如此,地层流体在整个生产过程中保持在所选择的温度下,从而使更多或全部的地层流体是作为蒸汽来生产。所以,液体从生产井中的高温泵抽会有所减少或充分削减,进而降低生产成本。在生产井中进行加热或穿过生产井进行加热将倾向于:(1)当该产出液在靠近上覆地层的生产井中流动时,防止产出液的冷凝和/或回流,(2)增加输入到地层中的热量,和/或(3)提高在生产井中或附近的地层渗透性。

    因为在加热的地层中渗透性和/或孔隙度增加,所产生的蒸汽可以相当长距离地流过具有较小压差的地层。所以,在一些实施方案中,可以在地层的上表面附近提供生产井。由于水分的蒸发,烃类的分出,和/或破裂的形成,被加热部分的质量(mass)的减少导致了渗透性增加。如此,流体可以更容易地流过该加热部分。

    例如,在含烃地层内产生的流体可以作为蒸汽以长距离迁移通过含烃地层。该长距离可包括例如大约50m到大约1000m。该蒸汽跨越该长距离具有较小的压降,归因于地层的被加热部分的渗透性。另外,由于这种渗透性,仅仅需要在每缝一个其它热源单元中或每缝三个、四个、五个、六个热源单元中提供生产井。此外,如图4所示,生产井206可以在加热部分208的顶部附近贯穿含烃地层。

    生产井102的实施方案可包括经过构型设计用于改变、保持和/或控制该地层的至少一部分的阀门。该生产井可以是已下套管的井,它具有与生产区邻近的生产筛管或射孔套管。另外,该生产井可被靠近生产区的砂、砂砾或其它填充材料所包围。此外,生产井102可以连通到处理区段108中,如图3中所示。处理区段108可以包括这里所述的任何地面设备。

    另外,抽水井或真空井被构型设计从被加热的含烃地层的一部分中除去液态水。从地层排出的水可在地表面上使用,和/或监测水质。例如,多个水井可以包围被加热的地层的全部或一部分。多个水井可以作为包围该地层的该部分的一个或多个环形式来构型设置。最外一排的水井可以阻止大量的水流入被加热的地层部分中。最内一排的水井可以阻止绕过最外一排井的水流入被加热的地层部分中。最内一排的水井也可抑制蒸汽从地层的加热部分中向外迁移到该地层的周围部分中。如此,水井可以减少热量损失到地层的周围部分中,可以增大蒸汽从加热部分中的生产,并且抑制与地层的加热部分接近的地下水位的污染。在一些实施方案中,在脱水井的相继的各排之间的压差可以最大程度地减少(例如保持为0或接近0)以便在各排之间产生“无或低流动性”边界。

    在某些实施方案中,最初用于一个目的的井可以随后用于一个或多个其它目的,从而降低了项目成本和/或减少为完成某些任务所需要的时间。例如,生产井(和在一些情况下加热器井)可以最初用作脱水井(例如,在加热开始之前和/或当加热最初启动时)。另外,在一些情况下脱水井能够随后用作生产井(和在一些情况下用作加热器井)。照这样,该脱水井可以设置和/或设计,以便这种井能够随后用作生产井和/或加热器井。加热器井可以设置和/或设计,以便这种井能够随后用作生产井和/或脱水井。生产井可以设置和/或设计,以便这种井能够随后用作脱水井和/或加热器井。类似地,注入井可以是最初用于其它目的(例如,加热,生产,脱水,监测,等)的井,并且注入井随后可用于其它目的。类似地,监测井可以是最初用于其它目的(例如,加热,生产,脱水,监测,等)的井,并且监测井随后可用于其它目的。

    图8说明了经过构型设计可用于处理含烃地层的热源400和生产井402的排列图案。热源400可在热源单元中排列,如三角形图案401。然而,热源400能够以各种排列图案排列,这些图案包括但不限于,正方形,六边形,和其它多边形。该图案可以包括正多角形以促进在地层的至少一部分(其中放置了热源)中的均匀加热。该图案也可是直线驱井网(line drive pattern)。直线驱井网通常包括第一线性排列的加热器井,第二线性排列的加热器井,和在第一和第二线性排列的加热器井之间的生产井或线性排列的生产井。

    从多边形的节点到多边形的中心的距离对于三个边的多边形来说是最小的,并随着多边形的边数增加而增大。等边三角形的从节点到中心的距离是(边长度/2)/(平方根(3)/2)或0.5774×边长。对于正方形,从节点到中心的距离是(边长度/2)/(平方根(2)/2)或0.7071×边长。对于六边形,从节点到中心的距离是(边长度/2)(1/2)或边长。在热源和从它到第二热源的中点之间的距离(长度/2)与从热源到等边形图案的中心的距离(0.5774×长度)的差异,对于等边三角形图案来说显著低于任何高阶多边形图案。这一小的差异意味着热量的叠加可以更快速地进行,在热源之间的地层通过使用等边三角形图案而不是更高阶多角形图案可获得更加均匀的温度。

    三角形图案倾向于为地层的一部分提供更均匀的加热,与其它图案如正方形和/或六边形相比。三角形图案倾向于更快速地加热热到预定温度,与其它图案如正方形和/或六边形相比。三角形图案也可导致较少体积的过热的部分。多个的热源单元如三角形图案401可以基本上彼此相邻地排列,使得在地层的区域上形成这些单元的重复图案。例如,三角形图案401可通过相邻三角形401的方向的反转,按照这些单元的重复图案,彼此基本上相邻地排列。热源400的其它图案也可排列成使较小的图案彼此相邻地排列以形成更大的图案。

    生产井可按照这些单元的重复图案设置在地层中。在某些实施方案中,生产井402可设置在该图案中排列的每缝三个三角形401的中心附近。然而,生产井402可设置在每一三角形401中或仅仅几个三角形内部。生产井可布置在每一13,20,或30加热器井三角形中。例如,在这些单元的重复图案中的热源与在这些单元的重复图案中的生产井的比率可超过大约5(例如,超过6,7,8,或9)。另外,生产井402的布局可以根据由一个或多个热源400产生的热量和地层的特征(如渗透性)来变化。此外,三个或更多个生产井可以位于由这些单元的重复图案所确定的区域内。例如,如图8中所示,生产井410可以位于由单元412的重复图案所确定的区域内。生产井410可位于生产井的单元中的地层内。例如,生产井的单元可以是三角形图案。然而,生产井410可以按照另一布井图案设置在单元412的重复布井图案内。

    另外,一个或多个注入井可位于单元的重复布井图案中。该注入井按照以上所述进行构型设计。例如,如图8中所示,注入井414可以位于由单元416的重复布井图案所确定的区域内。注入井414也可位于注入井单元中的地层内。例如,注入井单元可以是三角形布井图案。然而注入井414可以按照以上所述的任何其它布井图案来设置。在某些实施方案中,一个或多个生产井和一个或多个注入井可按照这些单元的重复图案来设置。例如,如图8中所示,生产井418和注入井420可以位于由单元422的重复图案所确定的区域内。生产井418可以位于生产井单元中的地层内,它们按照第一个三角形图案排列。另外,注入井420可以位于生产井单元中的地层中,它们可按照第二个三角形图案来排列。第一个三角形图案可以基本上不同于第二个三角形图案。例如,由第一个和第二个三角形图案确定的区域可以基本上不同。

    另外,一个或多个监测井可位于单元的重复布井图案中。该监测井按照以上所述进行构型设计。例如,这些井可以与测量温度、压力和/或流体性质的一种或多种设备来进行构型设计。在一些实施方案中,测井工具被放入监测井井眼中以测量地层内的性质。根据需要,该测井工具可移动到其它监测井井眼中。该监测井井眼可以是下套管或未下套管的井眼。如图8中所示,监测井424可以位于由单元426的重复图案所确定的区域内。监测井424可以位于监测井的单元中的地层内,它们按照三角形布井图案排列。然而,监测井424可按照这里所述的其它布井图案当中的任何一种来设置,在单元426的重复图案之内。

    需要理解的是,热源400和生产井402的几何布井图案是这里举例所描述的。热源和生产井的布井图案将在许多情况下根据例如被处理的含烃地层的类型来变化。例如,对于较薄的层,加热井可以沿着一个或多个层排列成行,而这些层沿着地质走向或沿着倾角。对于较厚的层,热源可与一个或多个层成一定角度(例如直角或对角)来构型设计。

    热源的三角形图案可经过构型设计来处理具有大约10米或更多的厚度的含烃地层。对于较薄的含烃地层,例如,大约10米厚或更少厚度,热源的成排和/或交错排列图案可经过构型设计来处理含烃地层。

    对于某些较薄的地层,可以接近地层的边缘布置加热井(例如,按交错的线,代替在层的中心设置的线),以提高每单位能量输入所生产的烃类的量。所输入热能的一部分可以加热非含烃的地层,但是交错图案可以允许热量的叠加来加热大部分的烃地层到热解温度。如果通过沿着厚度的中心设置在地层中来加热薄的地层,则含烃地层的大部分不会被加热至热解温度。在一些实施方案中,将加热器井与地层边缘接近放置可以增加每单位能量输入所发生热解的地层的体积。

    另外,生产井402在热源400的图案内的布局例如可通过例如含烃地层的所希望的加热速率,热源的加热速率,所使用热源的类型,含烃地层的类型(和它的厚度),含烃地层的组成,从地层生产的所希望的组成,和/或所想望的生产率来确定。加热器井、生产井等的精确布局将取决于为地层所特定的各种变量(例如层的厚度,层的组成,等),工程项目经济性,等等。在某些实施方案中,加热器井可以基本上是水平的,而生产井是垂直的,或反之亦然。

    任何这里所述的井可以沿着倾角或地质走向校直排列,或以在倾角和地质走向之间的角度取向。

    在热源之间的间距也可根据许多因素来变化,这些因素包括,但不限于,含烃地层的类型,所选择的加热速率,和/或需要在加热部分中获得的所选择的平均温度。例如,在热源之间的间距可以是在大约5m到大约25m范围内。另外地,在热源之间的间距可以是在大约8m到大约15m范围内。

    在热源之间的间距可以影响从含烃地层生产的流体的组成。在一个实施方案中,计算机-辅助测量方法可用于确定在含烃地层内的最佳热源间距。例如,通常测量含烃地层的一部分的至少一种性质。所测量的性质可包括,但不限于,镜质体反射,氢含量,氢/碳原子比率,氧含量,氧/碳原子比率,水含量,含烃地层的厚度,和/或含烃地层进入岩石和烃类的隔离层中的层化的量。

    在某些实施方案中,计算机-辅助测量方法可包括为计算机系统提供至少一种所测量的性质。在地层中的一组或多组热源间距也可提供到计算机系统中。例如,在热源之间的间距可以低于大约30m。另外地,在热源之间的间距可以低于大约15m。该方法也可包括确定从该部分生产的流体的性质与每一组热源间距之间的关系。所生产的流体包括,但不限于,地层流体如热解流体和合成气。测定的性质可包括,但不限于,API比重,碳数分布,烯烃含量,一氧化碳含量,和/或二氧化碳含量。所测定组的产出流体的性质与一组产出流体的所选择性质对比。如此,可以确定与该组的所选择性质匹配的那些组的性质。此外,热源间距可以匹配到与所需性质相关的热源间距。

    单元格(Unit cell)404常常包括设置在各生产井402周围的地层中的多个热源400。单元格404的区域可通过与连接两生产井402的直线等距离并且垂直该直线的中线406来确定。单元格的顶点408可以处于在生产井402之间的两中线406的交点。热源400能够以任何排列方式设置在单元格404的该区域内。例如,热源400可以位于该地层内,使得在各热源之间的距离变化了低于约10%,20%,或30%。另外,可以设置热源400成使得在各个热源之间存在相等的间距。然而,热源400在单元格404内的其它排列都可以使用,这取决于例如各个热源的加热速率。热源400与生产井402的比率可通过计数在单元格404内或在整个油气田中热源400和生产井402的数目来测定。

    图9说明了单元格404的实例。单元格404包括热源400和生产井402。单元格404具有六个完全热源400a和六个部分热源400b。完全热源400a比部分热源400b更接近生产井402。另外,完全热源400每一个的全部都位于单元格404内。部分热源400b部分地位于单元格404内。只有设置在单元格404内的热源400b的一部分可以经过构型设计成为设置在单元格404内的含烃地层的一部分提供热量。位于单元格404之外的热源400b的剩余部分可以经过构型设计成为单元格404之外的含烃地层的剩余部分提供热量。所以,为了确定在单元格404内热源的数目,部分热源400b可以算作完全热源400的一半。在其它单元格实例中,非1/2的分数(例如1/3)可以更准确地描述从部分热源施加于一部分中的热量的量。

    在单元格404中热源400的总数可以包括各自算作一个热源的六个完全热源400a,和各自算作热源的一半的六个部分热源400b。所以,在单元格404中热源400与生产井402的比率可以确定为9∶1。然而,热源与生产井的比率可以根据例如含烃地层的所希望的加热速率,热源的加热速率,热源的类型,含烃地层的类型,含烃地层的组成,产出流体的所希望的组成,和/或所想望的生产率来变化。每单位面积提供更多的热源可以允许所选择部分的更快速加热并因此加快了生产的启动,但是更多的热源一般花费更多的金钱去安装。热源与生产井的合适比率也可包括大于约5∶1的比率,和大于约7∶1的比率。在一些实施方案中热源与生产井的合适比率可以是大约10∶1,20∶1,50∶1或更大。如果使用更大的比率,则项目成本倾向于减少,这是因为需要较少的井和设备。

    “所选择区段”通常是在由最外热源的位置(假设从上往下看地层)确定的圆周(perimeter)内地层的体积。例如,如果四个热源位于具有大约100m2的面积的单个正方形图案中(每个热源位于正方形的一角),和如果在整个这一区域中地层具有大约5m的平均厚度,则所选择区段将是大约500m3的体积(即,面积乘以整个区域中平均地层厚度)。在许多工业应用中,可以想象出许多(例如,几百或几千)热源可以彼此邻接来加热所选择区段,所以在此情况下仅仅最外(即“边缘”)热源将限定所选择区段的圆周。

    热源包括,但不限于电热器或燃烧加热器。电热器包括绝缘导体,放置在开(钻)孔内的长条元件,和/或放置在导管内的导体。此类电热器可根据这里所述实施方案中的任何一种来构型设计。

    在一个实施方案中,含烃地层可用位于地层内的天然分布式燃烧器系统来加热。产生的热量可以传递到地层的所选择区段以加热它。

    足够支持氧化的温度可以是,例如,至少大约200℃或250℃。足够支持氧化的温度倾向于根据例如在含烃地层中烃类的组成,地层的水含量,和/或氧化剂的类型和量来变化。在加热之前,一些水从该地层中除去。例如,通过脱水井从地层泵抽该水。地层的加热部分可以接近或基本上邻接在含烃地层中的开孔。在地层内的开孔可以是在地层中形成的加热器井。该加热器井可在这里所述的任何实施方案中形成。含烃地层的加热部分可沿径向方向从开孔延伸到大约0.3m至大约1.2m的宽度。然而,该宽度也可低于大约0.9m。加热部分的宽度可以改变。在某些实施方案中该变化取决于,例如,为在碳的氧化过程中产生足够的热量以便维持氧化反应而无需从另一种热源提供热量所需要的宽度。

    在地层的该部分达到了足以支持氧化的温度之后,可将氧化性流体提供到开孔中以便在地层内的氧化区或热源区中氧化该烃类的至少一部分。烃类的氧化将在反应区中产生热量。在大多数实施方案中,所产生的热量将从反应区中转移到在地层内的热解区中。在某些实施方案中,所产生的热量将以在沿着反应区的深度方向测量的大约650瓦特/每米,和/或沿着反应区的深度方向测量的1650瓦特/每米之间的速率传递。在地层中至少一些烃类的氧化之后,为了最初加热为加热器提供的能量可以减少或削减。照这样,能量输入成本会显著减少,因此为加热该地层提供了大为有效的系统。

    在一个实施方案中,可以在开孔中设置导管以便将氧化性流体提供到开孔中。该导管具有流量孔,或其它流量控制机构(即,狭缝,文丘里流量计,阀门,等)以便让氧化性流体进入开孔中。术语“孔”包括具有各种尺寸和横截面形状的开孔,形状包括但不限于圆,椭圆,正方形,矩形,三角形,狭缝,或其它规则的或不规则的形状。在一些实施方案中该流量孔是临界流量孔。该流量孔经过构型设计后可将氧化性流体的基本恒定流量提供到开孔中,无需考虑开孔中的压力。

    在一些实施方案中,流量孔的数目(在导管中形成或连接到导管)可受到孔的直径以及对于一定长度导管在开孔之间的所需间距的限制。例如,随着孔的直径减少,流量孔的数目增多,反之亦然。另外,随着所需的间距的增大,流量孔的数目可以减少,反之亦然。孔的直径可通过例如在导管中的压力和/或流过孔的所需流速来确定。例如,对于大约1.7标准立方米每分钟的流速和大约7巴(绝对)的压力,孔直径可以是大约1.3mm,孔之间的间距为大约2m。

    较小直径的孔比较大直径的孔更容易堵塞,这归因于例如在开孔中流体的污染或在开孔内或接近开孔处固体物沉积。在一些实施方案中,孔的数目和直径经选择后使得在开孔内沿着地层的深度方向获得了更均衡或几乎均匀的加热分布。例如,希望具有大致均匀加热分布的加热地层的深度可以大于约300m,或甚至大于约600m。然而,该深度可以根据例如需要加热的地层的类型和/或希望的生产率来改变。

    在一些实施方案中,流量孔可以沿着开孔内导管以螺旋形排列图案设置。该流量孔可以按照螺旋形排列图案在孔之间间隔大约0.3m到大约3m。在一些实施方案中,间距可以是大约1m到大约2m或,例如,大约1.5m。

    氧化性流体流入到开孔中的流速可以加以控制,以便控制在反应区中的氧化速率。在引入的氧化剂和流出的氧化产物之间的热传递可加热氧化性流体。热传递也可维持导管低于导管的最高工作温度。

    图10说明了经过构型设计来加热含烃地层的天然分布式燃烧器的实例。导管512可以放入地层516内的开孔514中。导管512可具有内部导管513。氧化性流体源508可将氧化性流体517提供到内部导管513中。内部导管513沿着其长度方向具有临界流量孔515。临界流量孔515可沿着开孔514内一定长度的内部导管513以螺旋形排列图案(或任何其它图案)设置。例如临界流量孔515可按照螺旋形排列图案排列,在相邻孔之间有大约1m到大约2.5m的距离。临界流量孔515可进一步按照以上所述进行构型设计。内部导管513在底部被密封。氧化性流体517经过内部导管513的临界流量孔515被提供到开孔514中。

    临界流量孔515经过设计,使得可以通过各临界流量孔提供基本上相同流速的氧化性流体517。临界流量孔515也可沿着一定长度的导管提供氧化性流体517的基本均匀流速。该流速可以沿着导管512的长度方向提供地层516的基本上均匀加热。

    填充材料542可以包覆在地层的上覆地层540中的导管512。填充材料542可以基本上抑制流体从开孔514流入表面550。填充材料542可以包括任何材料,后者可经过结构布置之后抑制流体流入表面550如水泥,砂,和/或砂砾。典型地,保留在填充材料中的导管或开孔,以便为氧化产物提供到达该表面的通路。

    氧化产物519典型地从开孔514进入导管512中。氧化产物519可以包括二氧化碳,氮的氧化物,硫的氧化物,一氧化碳,和/或从氧与烃类和/或碳的反应获得的其它产物。氧化产物519可通过导管512转移到表面550。氧化产物519可以沿着开孔514内的反应区524的层面流动,一直到接近开孔514的上端,在这里氧化产物519流入导管512中。氧化产物519也可通过在开孔514和/或地层516中设置的一个或多个导管被除去。例如,氧化产物519可通过在开孔514中设置的第二导管被除去。经导管除去氧化产物519可基本上抑制氧化产物519流入在地层516中设置的生产井中。临界流量孔515也可经过构型设计可以基本上抑制氧化产物519进入导管513中。

    氧化产物519的流速可以与氧化性流体517的流速保持平衡,以使得在开孔514保持基本上恒定的压力。对于100m长度的加热区段,氧化性流体的流速可以在大约0.5标准立方米/每分钟到大约5标准立方米/每分钟,或大约1.0标准立方米/每分钟到大约4.0标准立方米/每分钟之间,或是,例如,大约1.7标准立方米/每分钟。氧化性流体进入地层中的流速可以在使用过程中逐渐增加,以适应反应区的膨胀。开孔内的压力可以是例如大约8巴(绝对)。氧化性流体517可以在氧化区524中氧化在含烃地层516的加热部分518中烃类的至少一部分。加热部分518最初已通过电热器(如图14中所示)或通过这里所述的任何其它合适系统或方法被加热至足以支持氧化的温度。在一些实施方案中,电热器可放置在导管内部或捆绑到导管的外部。

    在某些实施方案中,有利的是控制开孔514内的压力,以使氧化产物和/或氧化流体被阻止流入地层的热解区中。在一些情况下,这样做,开孔514内的压力将与地层内的压力保持平衡。

    虽然来自氧化的热量被转移到地层,但是氧化产物519(和过量氧化流体如空气)可基本上被阻止流过地层和/或流入地层516内的生产井中。另外,氧化产物519(和过量氧化流体)被除去(例如,通过导管如导管512),按照这里所述。如此,热量从氧化中转移到地层中,但是热解区与氧化产物519和/或氧化流体的接触可以基本上抑制和/或防止。

    在某些实施方案中,除了碳外,在反应区524附近的一些热解产物也可在反应区524中氧化。在反应区524中热解产物的氧化可提供地层516的额外加热。当热解产物发生氧化时,希望按照这里所述的方法在反应区附近将来自氧化的氧化产物除去(例如,通过导管如导管512),从而抑制在地层中的其它热解产物被氧化产物所污染。

    导管512可经过构型设计用于从地层516中的开孔514中除去氧化产物519。照这样,在内部导管513中的氧化性流体517可通过在上覆地层区段540中与导管512内的氧化产物519热交换而被加热。氧化产物519可通过将热量转移到氧化性流体517中而被冷却。如此,在地层516内烃类的氧化具有更高的热效率。

    氧化性流体517可以通过气相扩散和/或对流被输送穿过反应区524,或热源区。氧化性流体517穿过反应区524的扩散作用在较高氧化温度下可以更加有效。氧化性流体517的扩散可以抑制在地层中局部过热和指进(fingering)的形成。氧化性流体517穿过地层516的扩散过程通常是质量转移过程。在没有外力存在下,氧化性流体517的扩散速率可以取决于在地层516内氧化性流体517的浓度,压力,和/或温度来变化。该扩散速率还取决于氧化性流体517穿过地层516的扩散系数。该扩散系数可通过基于气体动力学理论的测量或计算方法来测定。通常,氧化性流体517的不规则运动可以将氧化性流体517转移穿过地层516,从高浓度的区域到低浓度的区域。

    随时间的推移,当烃类被氧化时,反应区524可以慢慢地沿径向从孔514延伸到更大直径。反应区524可以,在许多实施方案中,保持相对恒定的宽度。例如,对于含烃地层,反应区524能够以低于大约0.91m/每年的速率沿径向延伸。例如,对于含有煤炭的地层,反应区524能够以大约0.5m/每年到大约1m/每年之间的速率沿径向延伸。对于含有油页岩的地层,反应区524在第一年中沿径向延伸大约2m和随后在后续的年代中以较低速率延伸,这归因于当反应区524径向延伸时反应区524的体积增大。该较低速率可以是大约1m/每年到大约1.5m/每年。反应区524对于富含烃类的地层(例如煤炭)来说以较缓慢速率延伸和对于在其中含有更多无机材料的地层(例如油页岩)来说以较快速率延伸,因为每体积有更多的烃类可用于在富含烃类的地层中的燃烧。

    当反应区524的直径提高到保持每单位体积的氧化速率在基本上稳态时,氧化性流体517进入开孔514中的流速会增大。因此,在反应区524内的温度可在一些实施方案中保持基本上恒定。在反应区524内的温度可以在大约650℃到大约900℃之间或例如大约760℃。该温度被保持低于可导致氮氧化物(NOx)产生的那一温度。

    在反应区524内的温度可取决于例如所选择区段526的所希望的加热速率来变化。通过分别提高或降低氧化性流体517进入开孔514中的流速,可以提高或降低反应区524内的温度。导管512、内部导管513和/或在开孔514内的任何冶金材料的温度典型地不超过材料的最高工作温度。维持该温度低于材料的最高工作温度可以抑制材料的过分变形和/或腐蚀。

    反应区524的直径的增加可允许含烃地层516的较快速加热。当反应区524的直径增大时,在反应区524中每单位时间产生的热量也会增加。提高反应区中每单位时间所产生的热量将在许多情况下在一段时间中提高地层516的加热速率,即使没有提高反应区中的温度或导管513的温度。因此,无需安装附加的热源和无需提高邻近井眼的温度,就可经过一段时间实现增大的加热。在一些实施方案中,加热速率可以增大,同时允许温度下降(让温度下降常常延长所使用设备的寿命)。

    通过利用地层中的碳作为燃料,天然分布式燃烧器可以显著节约能源成本。因此,为加热地层提供了经济的工艺方法,而该地层可能通过其它方法在经济上不适合。同时,可将较少量的加热器放置在地层516的延伸区域中。这可以减少与加热地层516有关的设备成本。

    在反应区524产生的热量可通过热传导被转移到地层516的所选择区段526中。另外,产生的热量可以在较少程度上通过对流传热方式从反应区转移到所选择区段中。所选择区段526,有时称作“热解区”,基本上靠近反应区524。因为氧化产物(和过量的氧化流体如空气)典型地从反应区中除去,该热解区能够接受来自反应区的热量但不接触到在反应区中的氧化产物或氧化剂。氧化产物和/或氧化流体可以引起所不希望有的地层产品的形成,如果它们存在于该热解区中。例如,在某些实施方案中希望在还原环境中进行热解。因此,常常有用的是让热量从反应区转移到热解区,同时抑制或防止氧化产物和/或氧化流体到达热解区。

    烃类的热解,或其它热控制的过程,可以在所选择区段526中发生。所选择区段526可以处在用于热解的在大约270℃到大约400℃之间的温度。所选择区段526的温度可通过从反应区524中的热传递而提高。温度提高的速率可以与在任何这里所述的实施方案中一样来选择。在地层516,所选择区段526,和/或反应区524中的温度加以控制,以使得氮氧化物的产生得到基本上抑制。氮氧化物常常在高于约1200℃的温度下产生。

    开孔514内的温度可用放置在开孔514内的热电偶来监测。另外地,热电偶可以放置在导管512上和/或放置在反应区524的层面上,因此需要监测温度。地层中的温度可通过热电偶来监测,以及引入地层中的功率输入或氧化剂可根据所监测的温度来控制,以使所监测的温度被保持在所选择的范围内。所选择的范围可以依据例如地层516的所需加热速率来变化。在一个实施方案中,监测温度可通过提高或降低氧化性流体517的流速被保持在所选择范围内。例如,如果开孔514内的温度降至所选择温度范围以下,则氧化性流体517的流速提高以增加燃烧和因此提高开孔514内的温度。

    在某些实施方案中,一个或多个天然分布燃烧器可以沿着地质走向和/或水平方向设置。这样做将倾向于减少沿着井的加热长度的压差。压差的不存在可以将沿着一定长度的加热器所产生的温度控制得更均匀和更容易控制。

    在一些实施方案,可以监测空气或氧(O2)在氧化产物519中的存在。另外地,可以监测在氧化产物519中氮气,一氧化碳,二氧化碳,氮的氧化物,硫的氧化物等的量。监测氧化产物519的组成和/或量可用于热平衡,用于工艺过程诊断,工艺控制等。

    图11说明了具有如图10中所述的天然分布燃烧器的上覆地层的区段的实例。上覆地层套管541可以放置在地层516的上覆地层540中。上覆地层套管541可以基本上被那些充分抑制上覆地层540的加热的材料(例如绝热材料如水泥)包围。上覆地层套管541可由金属材料制成,该材料比如是,但不限于,碳钢,或304不锈钢。

    上覆地层套管可放置在上覆地层540的增强材料544中。增强材料544可以是例如水泥,砂,混凝土等。填充材料542可以位于在地层中的上覆地层套管541和开孔514之间。填充材料542可以是任何基本上无孔的材料(例如,水泥,混凝土,石砂浆等)。填充材料542可以抑制流体流出到导管512之外和在开孔514和表面550之间流动。内部导管513可以使流体进入地层516中的开孔514中。导管512可以从地层516中的开孔514中除去燃烧产物(或过量的氧化流体)。导管512的直径可通过在天然分布式燃烧器中的氧化所生产的燃烧产物的量来决定。例如,较大的直径是由天然分布式燃烧器加热器所产生的较大量的排出燃烧产物所需要的。

    在一个供选择的实施方案中,地层的至少一部分被加热至一种温度,该温度使得含烃地层的至少一部分可以转化成焦炭和/或炭。焦炭和/或炭可以在高于大约400℃的温度下和在高的加热速率(例如上,高于大约10℃/天)下形成的。在氧化性流体存在下,该焦炭或炭将氧化。从焦炭或炭的氧化产生热量,与任何这里所述的实施方案中一样。

    图12说明了天然分布燃烧器加热器的实例。绝缘导体562可以连接到导管532和被放入地层516中的开孔514中。绝缘导体562可以设置在导管532内部(因此允许该绝缘导体562收回),或另外,连接到导管532的外表面。这种绝热材料可以包括,例如,矿物,陶瓷,等等。导管532可具有在开孔514内沿着导管长度方向设置的临界流量孔515。临界流量孔515可按照这里所述进行构型设计。电流被提供给绝缘导体562,在开孔514中产生辐射热。导管532可经过构型设计后用作电流的回路。绝缘导体562经过构型设计后用于加热地层的部分518到足以支持烃类氧化的一种温度。部分518,反应区524,和所选择区段526具有这里所述的特征。该温度可以包括如以上所述的温度。

    氧化性流体源508可将氧化性流体提供到导管532中。氧化性流体经过导管532的临界流量孔515被提供到开孔514中。氧化性流体可以氧化在反应区524中含烃地层的至少一部分。反应区524可具有这里所述的特征。在反应区524中产生的热量可通过例如对流、辐射和/或传导方式将热量转移到所选择区段526中。氧化产物可以经过在开孔514内放置的单独的导管或经过在上覆地层套管541中的开孔543被除去。单独的导管按照这里所述进行构型设计。填充材料542和增强材料544可以按照这里所述进行构型配置。

    图13说明了具有补加的燃料导管的一种天然分布式燃烧器加热器的实例。燃料导管536可以设置到开孔514中。在某些实施方案中,它基本上靠近导管533来设置。燃料导管536可具有在开孔514内沿着导管长度方向设置的临界流量孔535。导管533可具有在开孔514内沿着导管长度方向设置的临界流量孔515。临界流量孔515可按照这里所述进行构型设计。临界流量孔535和临界流量孔515可分别布置在燃料导管536和导管533上,使得经燃料导管536提供的燃料流体和经导管533提供的氧化性流体在反应时可基本上不加热燃料导管536和/或导管533。例如,该燃料流体和该氧化性流体可以彼此接触进行反应,从而从反应产生热。来自该反应的热量可将燃料导管536和/或导管533加热到足以在燃料导管536和/或导管533中基本上开始熔化冶金材料的一种温度,如果在靠近燃料导管536和/或导管533处发生反应的话。所以,可以提供在燃料导管536上设置临界流量孔535和在导管533上设置临界流量孔515的一种设计,以使得燃料流体和氧化性流体在靠近导管时基本上不进行反应。例如,导管536和533可以在空间上连接,以使得螺旋形环绕该导管的孔在相反的方向上取向。

    燃料流体和该氧化性流体的反应可以产生热量。该燃料流体可以是例如天然气,乙烷,氢气或合成气,它们是在地层的另一部分中的现场方法中产生的。所产生的热量经过构型设计后用于加热部分518到足以支持烃类氧化的一种温度。在加热部分518到足够支持氧化的温度之后,燃料流体进入开孔514中的流动可以降低或停止。另外地,在地层的加热过程中继续供应燃料,从而利用在碳中储存的热量保持开孔514中的温度高于燃料的自燃温度。

    该氧化性流体可以在反应区524中氧化烃类的至少一部分。产生的热量可通过例如对流、辐射和/或传导方式将热量转移到所选择区段526中。氧化产物可以经过在开孔514内放置的单独的导管或经过在上覆地层套管541中的开孔543被除去。

    图14说明了经过构型设计来加热含烃地层的系统的实例。电热器510可以设置在含烃地层516中的开孔514内。形成开孔514,它穿过上覆地层540进入地层516中。开孔514具有至少大约5厘米直径。开孔514例如具有大约13厘米的直径。电热器510可以加热含烃地层516的至少一部分518到足以支持氧化的温度(例如,大约260℃)。部分518可具有大约1m的宽度。氧化性流体(例如,液体或气体)经过导管512或任何其它合适的流体输送机构提供到开孔中。导管512可具有沿着一定长度的导管设置的临界流量孔515。临界流量孔515可按照这里所述进行构型设计。

    例如,导管512可以是经过构型设计从氧化性流体源508提供氧化性流体到开孔514中的管道或管路。例如,导管512可以是不锈钢管。该氧化性流体可以包括空气或任何其它含氧的流体(例如,过氧化氢,氮氧化物,臭氧)。可以使用氧化性流体的混合物。氧化性流体混合物可以包括,例如,包含50%氧和50%氮的流体。在一些实施方案中,该氧化性流体也可包括当加热时释放出氧的化合物如过氧化氢时。该氧化性流体可以在地层中氧化该烃类的至少一部分。

    在一些实施方案中,在地层以外设置的热交换器可经过构型设计用于加热氧化性流体。加热的氧化性流体可以从热交换器(直接或间接)提供到开孔中。例如,加热的氧化性流体可以经过设置在开孔中并连接到热交换器的导管从热交换器中提供到开孔中。在一些实施方案中该导管可以是不锈钢管。加热的氧化性流体可经过构型设计来加热,或至少有助于加热,地层的至少一部分到足以支持烃类的氧化的温度。在加热的部分达到该温度后,在热交换器中氧化性流体的加热可以减少或停止。

    图15说明了经过构型设计来加热含烃地层的系统的另一实例。热交换器520可以设置在含烃地层516中的开孔514外部。可穿过上覆地层540进入地层516中来形成开孔514。热交换器520可以从另一表面方法提供热量,或它可包括加热器(例如电加热器或燃烧加热器)。氧化性流体源508可以提供氧化性流体到热交换器520中。热交换器520可以加热氧化性流体(例如,高于200℃或足以支持烃类的氧化的温度)。加热的氧化性流体经过导管521提供到开孔514中。导管521可具有沿着一定长度的导管设置的临界流量孔515。临界流量孔515可按照这里所述进行构型设计。加热的氧化性流体可经过构型设计来加热,或至少有助于加热,地层的至少一部分518到足以支持烃类的氧化的温度。该氧化性流体可以在地层中氧化该烃类的至少一部分。

    在另一个实施方案中,燃料流体可以在处于含烃地层以外的加热器中氧化。该燃料流体可用加热器内的氧化性流体加以氧化。作为一个例子,该加热器可以是点火式加热器。燃料流体可以包括经过构型设计与氧反应的任何流体。燃料流体可以是,但不限于,甲烷,乙烷,丙烷,其它烃类,氢气,合成气,或它们的结合物。该氧化性燃料流体可以经过导管从加热器中提供到开孔中,而氧化产物和未反应的燃料可以经过在上覆地层中的另一导管返回到地表。这些导管可以在上覆地层内连接。在一些实施方案中这些导管可以同心放置。氧化的燃料流体可经过构型设计来加热,或至少有助于加热,地层的至少一部分到足以支持烃类的氧化的温度。在达到该温度后,氧化的燃料流体被氧化性流体置换。该氧化性流体可以在地层内的反应区中氧化烃类的至少一部分。

    电热器经过构型设计后可用于加热含烃地层的一部分到足以支持烃类氧化的一种温度。该部分可以靠近或基本上接近于该地层内的开孔。该部分也可以从开孔沿径向延伸低于约1m的宽度。然而,该部分的宽度可以依据例如提供给加热器的功率来变化。氧化性流体可以提供给开孔以用于烃类的氧化。烃类的氧化可以经过构型设计后在天然分布燃烧的方法中加热含烃地层。提供给电热器的电流随后可以减少或关闭。因此,与使用电热器相比,天然分布燃烧可以经过构型设计,与电热器结合,提供了加热该含烃地层的一种减少输入能量成本的方法。

    绝缘导体加热器可以是热源的加热器元件。在绝缘导体加热器的一个实例中,绝缘导体加热器是矿物绝缘电缆或棒条。绝缘导体加热器可以放置在含烃地层内的开孔中。该绝缘导体加热器可以放入含烃地层内的无套管的开孔中。在含烃地层内的无套管的开孔内放置加热器可以允许通过辐射和传导方式从加热器到地层的热传递。另外,使用无套管的开孔也可允许加热器从井中收回(如果必要的话),并且可以省去了套管的成本。另外,该绝缘导体加热器可以放入地层内的套管中;可以用水泥固结在地层内;或用砂、砂砾或其它充填材料填塞在开孔内。该绝缘导体加热器可以支持在位于开孔内的支承构件上。该支承构件可以是电缆,棒条,或导管(例如,管道)。支承构件可以由金属,陶瓷,无机材料,或它们的结合物制成。支承构件的各个部分在使用过程中会暴露于地层流体和热中,这样该支承构件需要耐化学品性和耐热性。

    连杆(ties)、点焊和/或其它种连接器可用于在沿着一定长度的绝缘导体加热器的各种位置上将绝缘导体加热器连接于支承构件上。该支承构件可以在地层的上表面上附着于井头。在绝缘导体加热器的另一实施方案中,该绝缘导体加热器经过设计具有足够的结构强度,以使得不需要支承构件。该绝缘导体加热器当加热或冷却时在许多情况下具有抑制热膨胀损害的一些灵活性。

    在某些实施方案中,绝缘导体加热器可以放入井眼中,而没有支承构件和/或定中心器。如果绝缘导体具有耐热性、长度、厚度(直径)和冶金学(在使用中抑制绝缘导体的破坏)的合适组合,则可为加热器所实现。在一个实施方案中,被加热到约700℃的工作温度的绝缘导体具有低于约150米的长度,并在没有绝缘导体的支承构件的情况下使用3毫米直径镍铬耐热合金导体。

    图16描绘了绝缘导体加热器562的一个实例的末端的透视图。绝缘导体加热器可具有任何所需的截面形状,比如但不限于圆形(如图16中所示),三角形,椭圆形,矩形,六边形或不规则形状。绝缘导体加热器可以包括导体575,电绝缘体576和鞘体577。该导体575是耐热的,当电流流过导体时。交流或直流电用于加热该导体575。在一个实施方案中,可以使用60周的交流电流。

    在一些实施方案中,该电绝缘体576可以抑制电流渗漏和可以抑制在鞘体577上形成电弧。该电绝缘体576也可将导体575中产生的热量热传导至鞘体577。该鞘体577可以辐射或传导热量到地层中。绝缘导体加热器562可具有1000m或1000m以上的长度。在绝缘导体加热器的一个实例中,该绝缘导体加热器562可具有大约15m到大约950m的长度。更长或更短的绝缘导体也可用于满足特定的应用需要。在绝缘导体加热器的实例中,购买的绝缘导体加热器具有大约100m到500m的长度(例如,230m)。在某些实例中,绝缘导体的鞘体和/或导体的尺寸在形成后应使得甚至在高的工作温度下绝缘导体具有足够强度而能够自支持。这种绝缘电缆可以从井头或位于上覆地层和含烃地层之间的界面附近的支承件悬挂下来,无需支承构件与绝缘导体一起延伸到烃地层中。

    在一个实施方案中较高频率的电流可用于利用某些金属中的趋肤效应(the skin effect)。在一些实施方案中,60周交流电流可与由显示出突出的趋肤效应的金属制成的导体相结合使用。例如,铁磁性金属象铁合金和镍可以显示出趋肤效应。趋肤效应将电流限制于接近导体的外表面的区域,据此有效地增大了导体的电阻。希望较高的电阻来减少工作电流,最大程度减少在地面电缆中的欧姆损耗,以及最大程度减少地面设备的成本。

    如图17中所示,绝缘导体加热器562将在许多情况下被设计在高达约1650瓦/米的功率水平下运转。当加热地层时,该绝缘导体加热器562可以典型地在大约500瓦/米和大约1150瓦/米之间的功率水平下运行。可以设计绝缘导体加热器562使得在典型的操作温度下的最高电压水平不致于引起电绝缘体576的相当大的热破坏和/或电击穿。可以设计绝缘导体加热器562使得鞘体577不超过会导致鞘体材料的耐腐蚀性的明显下降的温度。

    在绝缘导体加热器562的实例中,该导体575可以设计达到大约650℃到大约870℃之间范围内的温度,并且该鞘体577可以设计达到大约535℃到大约760℃之间范围内的温度。可以形成具有其它工作范围的绝缘导体以满足专项使用要求。在绝缘导体加热器562的一个实例中,该导体575被设计成在大约760℃下操作,该鞘体577被设计成在大约650℃下操作,和绝缘导体加热器被设计成耗散大约820瓦/米。

    绝缘导体加热器562可具有一个或多个导体575。例如,单个绝缘导体加热器可在被鞘体包围的电绝缘体内具有三根导体。图16描绘了具有单个导体575的绝缘导体加热器562。该导体可由金属组成。用于形成导体的材料包括,但不限于,镍铬耐热合金,镍,以及从纯铜到合金30,合金60,合金180和蒙乃尔铜镍合金的逐渐增大镍浓度的从铜和镍制得的多种合金。铜和镍的合金理想地具有比基本上纯镍或铜更好的电阻性质。

    在一个实施方案中,该导体经选择具有一定直径和在操作温度下的电阻,这样它的电阻(从欧姆定律推导)对于所选择的功率耗损/每米,加热器的长度,和/或流过导体的最高电压而言使它呈现电和结构稳定性。在另一备选的实施方案中,可以使用马克斯韦尔方程来设计导体,利用在导体之中和/或之上的趋肤效应加热。

    该导体可由沿着一定长度的绝缘导体加热器的不同材料组成。例如,第一段导体可以由比第二段导体具有低得多的电阻的材料制成。第一段可以放置在地层的附近,它不需要加热到与接近第二段的第二地层同样高的温度。导体的各段的电阻可通过具有可变的直径和/或具有由不同材料制成的导体段来调节。

    导体575的直径典型地是在大约1.3毫米到大约10.2毫米之间。更小或更大的直径也可用于让导体具有所需电阻特性。在绝缘导体加热器的一个实例中,该导体是由具有大约5.8毫米的直径的合金60制成。

    如图16中所说明,绝缘导体加热器562的电绝缘体576可由各种材料制成。利用压力在导体575和体鞘577之间放置电绝缘体粉末。粉末和/或鞘体和导体的低流动特性和其它性质可以抑制粉末从鞘体中流出。常用的粉末可包括,但不限于,MgO,Al2O3,氧化锆,BeO,尖晶石类的不同化学品变种,和它们的结合物。MgO可以提供良好的导热性和电绝缘性能。所需的电绝缘性能包括低电流和高绝缘强度。低泄漏电流减少了热击穿的可能性并且高绝缘强度减少跨越绝热体产生电弧的可能性。如果泄漏电流引起绝热体温度逐渐升高,并导致跨越该绝热体产生电弧,则能够发生热击穿。在电绝缘体粉末中杂质578的量可加以调节以提供所需的绝缘强度和低的泄漏电流。所添加的杂质578可以是,但不限于,CaO,Fe2O3,Al2O3,和其它金属氧化物。电绝缘的低孔隙率倾向于降低泄漏电流和增大绝缘强度。低孔隙率可通过在制造过程中增加MgO粉末的填充或通过用其它颗粒状材料例如Al203填充MgO粉末中的孔隙空间来实现。

    被加入到电绝缘体粉末中的杂质578可具有比粉末状电绝缘体的粒度小的粒度。小颗粒占据了在电绝缘体的较大颗粒之间的孔隙空间,这样电绝缘体的孔隙度减少了。用于形成电绝缘体576的粉末状电绝缘体的例子是由Idaho Laboratories Corporation(Idaho Falls,Idaho)制造的“H”混合物,或由Pyrotenax Cable Company(Trenton,Ontario)用于高温应用的标准MgO。另外,其它粉末状电绝缘体也可使用。

    绝缘导体加热器562的鞘体577可以是外金属层。该鞘体577可与热的地层流体接触。该鞘体577需要由在高温下具有高度耐腐蚀性的材料制成。可在鞘体的所需工作温度范围中使用的合金包括,但不限于,304不锈钢,310不锈钢,镍铬铁高温合金(Incoloy)800,和铬镍铁合金600。鞘体的厚度足以在热和腐蚀性环境中持续三到十年。鞘体的厚度通常可以在大约1毫米和大约2.5毫米之间变化。例如,1.3毫米厚的310不锈钢外层提供了一种鞘体577,后者能够为地层的加热区中的硫蚀提供良好的耐化学性达到3年以上的一段时期。更大或更小的鞘体厚度可用于满足特定的应用要求。

    在制造之后绝缘导体加热器需要测试。该绝缘导体加热器要求在所选择的操作温度下承受2-3倍的工作电压。同时,生产的绝缘导体加热器的所选择样品要求在760℃下承受1000 VAC达1个月。

    如图17a中所说明,短的柔性转变导体571可使用在现场的加热器安装过程中所形成的连接569被连接到引入导体572。该转变导体571可以是例如被橡胶或聚合物绝热体包围的柔性、低电阻、股绞铜电缆。转变导体571可以典型地在大约1.5m和大约3m之间,虽然更长或更短的转变导体也可用于适应具体的需要。热稳定的电缆可用作转变导体571。该转变导体571也可连接到绝缘导体加热器的短长度(shortlength),即电阻比绝缘导体加热器的主要的加热区段低。绝缘导体加热器的低电阻部分可称作“冷销(cold pin)”568。

    冷销568可以设计来耗散每单位长度的功率的大约十分之一到大约五分之一,当在主要的加热区段的单位长度中耗散时。冷销可以典型地在大约1.5m到大约15m之间,虽然更短的或更长的长度也可用于适应特定应用需要。在一个实施方案中,冷销区段的导体是具有大约6.9mm直径和9.1m长度的铜。该电绝缘体与在主要的加热区段中使用的绝热体属于相同类型。冷销的鞘体可由铬镍铁合金600组成。在冷销区域中发生氯化物腐蚀开裂,因此耐氯化物腐蚀的金属如铬镍铁合金600可用作该鞘体。

    如图17a中所说明,小的、环氧树脂填充的金属罐(canister)573可用于在转变导体571和冷销568之间产生连接。冷销568可以通过“接头”567连接到绝缘导体562的主要的加热段中。冷销568的长度足以显著降低绝缘导体加热器562的温度。绝缘导体加热器562的加热器段可在大约530℃到大约760℃下操作,该接头567也可以在大约260℃到大约370℃下,以及连接与冷销的前导段电缆的温度可以是大约40℃到大约90℃。除了在绝缘导体加热器的顶端处的冷销,冷销也可放置在绝缘导体加热器的底端。底端的冷销在许多情况下可使底端更容易制造。

    接头材料可以承受等于目标区操作温度的一半的温度。在接头中电绝缘体的密度应该在许多情况下是足够的高,以承受所要求的温度和工作电压。

    接头567要求在480℃下承受1000 VAC。接头材料可以是由IdahoLaboratories Corporation制造或由Pyrotenax Cable Company制造的高温接头。接头可以是内部型的接头或外部接头。内部接头典型地是没有焊接,在绝缘导体加热器的鞘体上形成。不在鞘体上焊接可以避免在绝缘电缆加热器上的潜在脆弱点(机械和/或电的)。外部接头是将两个绝缘导体加热器的鞘体连接在一起的焊接点。在将绝缘电缆加热器插入地层中之前,外部接头需要检漏试验。激光器焊接或轨道TIG(钨极惰性气体)焊接可用于形成外部接头。附加的应变消除组件可布置在外部接头周围以改进接头的抗弯能力和保护外部接头以抵抗部分或全部分裂。

    绝缘导体组件可以包括加热段,冷销,接头,和末端金属罐和柔性转变导体。在将绝缘导体组件安装在地层内的开孔中之前,需要检查和电子试验该绝缘导体组件。需要检查组件胜任的焊接并确信沿着整个加热器(包括加热段,冷销,接头和末端罐)在鞘体中没有孔。需要进行商购产品的定期X射线抽样检查(spot checking)。在电试验之前,全部电缆可以浸于水中。组件的电试验需要在水浸泡之后在500VAC和室温下显示超过2000的兆欧姆。另外,该组件需要连接到1000VAC和在室温下显示出低于大约10微安/每米的抗泄漏电流。同时,在大约760℃下泄漏电流的检查需要显示出低于大约0.4毫安/每米。

    还有许多制造绝缘导体加热器的公司。这些制造厂家包括,但不限于,MI Cable Technologies(Calgary,Alberta),Pyrotenax CableCompany(Trenton,Ontario),Idaho Laboratories Corporation(Idaho Falls,Idaho),和Watlow(St.Louis,MO)。例如,绝缘导体加热器可以从Idaho Laboratories公司作为具有铬镍铁合金600鞘体的电缆型号355-A90-310-“H”30’/750’/30’订购,对于冷销、三相Y构型和底部结合的导体。除了这里所述的优选模式技术规格,对于加热器的所需技术规格还包括1000 VAC,1400°F质量电缆。该牌号355表示电缆OD(0.355″),A90表示导体材料,310表示加热区鞘体合金(SS310),“H”表示MgO混合物,30’/750’/30’表示具有大约9m长度的冷销顶和底的大约230m加热区。使用高温标准纯度MgO电缆的相同技术规格的类似部件号码可以从Pyrotenax Cable Company定购。

    一个或多个绝缘导体加热器可以放入地层中的开孔内以形成热源。电流流过在开孔内的各绝缘导体加热器以加热该地层。另外,电流可以流过在开孔内的所选择的绝缘导体加热器。不用的导体也可以是备用加热器。绝缘导体加热器能够以任何方便的方式与电源实现电连通。绝缘导体加热器的每一端可以连接到穿过井头的引线电缆。这种构型典型地在热源底部附近具有180°弯曲(“发夹式”弯曲)或弯折。包括180°弯曲或弯折的绝缘导体加热器不需要底部终端,但是180°弯曲或弯折是加热器中的电和/或结构薄弱之处。各绝缘导体加热器能够以串联,并联,或串联和并联结合的方式实现电连接。在热源的一些实例中,电流可以流入绝缘导体加热器的导体中并且通过在热源底部让导体575连接于鞘体577上从而经过绝缘导体加热器的鞘体返回。

    在图17中描绘的热源的实例中,三个绝缘导体加热器562按照3相Y构型与电源实现电连接。电源可以将60周交流电流提供给导电体。对于绝缘导体加热器不需要底部连接。另外,三相电路的全部三个导体可以在热源孔的底部附近连接在一起。该连接可以直接在绝缘导体加热器的加热部分的末端或在绝缘导体加热器的底部连接于加热部分的冷销的末端进行。底部连接可用绝热体填充的和密封的金属罐或用环氧树脂填充的金属罐来进行。该绝热体可具有与用作电绝缘体的绝热体相同的组成。

    在图17中描绘的三个绝缘导体加热器可以使用定中心器566来联接到支承构件上。另外地,三个绝缘导体加热器可通过使用金属带条直接捆绑到支承管上。定中心器566经过构型设计可以保持绝缘导体加热器562定位于支承构件564上。定中心器566可以由例如金属,陶瓷或它们的结合物制成。该金属可以是不锈钢或能够经受住腐蚀和热环境的任何其它类型的金属。在一些实施方案中,定中心器566可以是在短于大约6米的距离处焊接到支承构件上的一种简单的弓形金属条。在定中心器566中使用的陶瓷可以是,但不限于,Al2O3,MgO或其它绝热体。定中心器566可以经过构型设计以保持绝缘导体加热器562定位在支承构件564上,这样在绝缘导体加热器的操作温度下基本上抑制了绝缘导体加热器的移动。绝缘导体加热器562还多少有些柔性以便在加热过程中承受支承构件564的膨胀。定中心器566也可以按照任何这里所述的实施方案中所述进行构型设计。

    支承构件564,绝缘导体加热器562,和定中心器566被放入含烃地层516中的开孔514中。绝缘导体加热器562可以使用冷销转变导体568联接于底部导体连接点570上。底部导体连接点570可以将各绝缘导体加热器562彼此实现电联接。底部导体连接点570可包括导电的但在开孔514中遇到的温度下不熔化的材料。冷销转变导体568可以是具有比绝缘导体加热器562更低电阻的绝缘导体加热器。如图17a中所说明,冷销568可以联接于转变导体571和绝缘导体加热器562上。冷销转变导体568可以在转变导体571和绝缘导体加热器562之间提供温度转变。

    引入导体572可以联接到井头590,为绝缘导体加热器562提供电力。井头590按图18中所示和按照任何这里所述的实施方案所述进行构型设计。引入导体572可以由较低电阻的导体制成,要求电流通过引入导体572时很少或基本上不产生热量。例如,该引入导体可包括,但不限于,橡胶绝缘的股绞铜丝,但引入导体也可以是具有铜芯线的矿物绝缘导体。引入导体572可以通过位于上覆地层540和表面550之间的密封法兰,在表面550上联接于井头590上。密封法兰590c可按图18中所示和按照任何这里所述的实施方案所述进行构型设计。密封法兰可以基本上抑制流体从开孔514逃逸到表面550。

    填充材料542(参见图17)可以任选被放置在上覆地层套管541和开孔514之间。上覆地层套管541可以包括经过构型设计基本上含有水泥544的任何材料。在加热器源的一个实例中,上覆地层套管是7.6厘米(3英寸)直径碳钢,标号(schedule)40管。填充材料542可以经过构型设计后抑制流体从开孔514流入表面550。上覆地层套管541可以放置在地层516的上覆地层540中的水泥544中。水泥544可以包括,例如,与石英粉(为了获得改进的高温性能),矿渣或石英粉,和/或它们的混合物(例如,大约1.58克/每立方厘米炉渣/硅石粉)混合的G类或H类波特兰水泥。在所选择的热源实例中,水泥544沿径向延伸大约5厘米到大约25厘米的宽度。在一些实例中,水泥544沿径向延伸大约10厘米到大约15厘米的宽度。在一些其它的实施方案中,水泥544可以设计来抑制热量从导体564传递到上覆地层内的地层540中。

    在某些实施方案中提供一个或多个导管以便将附加组分(例如,氮气,二氧化碳,还原剂如含氢的气体,等)供应到地层孔中,排出流体,和/或控制压力。地层压力倾向于在热源附近是最高的,因此常常有益的是让压力控制设备贴近该热源。在一些实施方案中,在热源附近添加还原剂有助于提供更有用的热解环境(例如,较高氢分压)。因为渗透性和孔隙度倾向于靠近该热源更快速地提高,常常最佳的是靠近热源添加还原剂,这样还原剂更容易运动到地层中。

    在图17中,例如,导管5000被提供来将气体从气源5003,经由阀门5001加入到开孔514中(开孔5004被提供于填充材料542中以便让气体进入开孔514中)。导管5000和阀门5002也可在不同的时间使用以排放压力和/或控制开孔514附近的压力。在图19中,例如,导管5010被提供来将气体从气源5013,经由阀门5011加入到开孔514中(开孔被提供于水泥544中以便让气体进入开孔514中)。导管5010和阀门5012也可在不同的时间使用以排放压力和/或控制开孔514附近的压力。需要理解的是,这里所述的任何热源也可装有导管,以便供应附加的组分,排放流体,和/或控制压力。

    支承构件564和引入导体572可以在地层516的表面550上联接于井头590上。表面导体545可以包围起水泥544并可以联接于井头590。加热器源表面导体545的实例可以具有大约10.16厘米到大约30.48厘米的直径,或例如大约22厘米的直径。地面套管的实例可以延伸大约3m至大约515m的深度而进入地层的开孔内。另外地,地面套管可以延伸大约9m的深度而进入开孔内。电流可以从电源供应到绝缘导体加热器562中以便由于导体575的电阻而产生热量,如图16中所示。例如,大约330伏特的电压和大约266安培的电流被供应给绝缘导体562而在绝缘导体加热器562中产生大约1150瓦/米的热量。从三个绝缘导体加热器562产生的热量可以在开孔514内传递(例如,通过辐射)以加热地层516的至少一部分。

    绝缘导体加热器的合适构型设计可通过以加热器的长度、每米导体所需要的功率、和所需要的工作电压为基础,优化加热器的材料成本来确定。另外,工作电流和电压可以选择来优化输入电能的成本连同绝缘导体加热器的材料成本。例如,随着输入电能增加,为了承受高电压所需要的材料成本也提高。绝缘导体加热器可以经过构型设计来产生大约650瓦/米导体到大约1650瓦/米导体的辐射热。该绝缘导体加热器可以在地层内在大约530℃和大约760℃之间的温度下操作。

    由绝缘导体加热器产生的热量可以加热含烃地层的至少一部分。在一些实施方案中,基本上通过所生产的热量辐射到地层中来将热量转移到地层中。由于在开孔内存在的气体,一些热量可通过热量的传导或对流来转移。开孔可以是无套管的开孔。无套管的开孔省去了与加热器用水泥热封于地层中有关的成本,与套管有关的成本,和/或将加热器填塞在开孔内的成本。另外,通过辐射的热转移一般比通过传导的热转移更高效,这样加热器将在较低温度下在开放井眼中操作。传导式传热可通过在开孔内添加压力高达约27巴(绝对)的气体来增强。该气体包括,但不限于,二氧化碳和/或氦气。再一优点是加热组件可以随意地经历热膨胀。另一优点是加热器可以置换。

    按照这里的那些实施方案中的任何一种所描述的绝缘导体加热器可通过现有技术中已知的任何方法被安装在开孔514中。在一个实施方案中,一个以上的绕线组件(spooling assembly)可用于同时安装电热器和支承构件。美国专利No.4,572,299(授权于Van Egmond等人,它被引入本文就象全部在这里列出一样)描述了电热器用绕线固定于井上。另外地,该支承构件可以使用盘绕管装置(包括现有技术中已知的任何装置)来安装。当支承构件被插入井中时,该加热器可以退绕(un-spooled)并连接到支承构件上。电热器和支承构件可以从绕线组件上退绕。间隔物(Spacers)可以沿着一定长度的支承构件被联接到支承构件和加热器。附加的绕线组件可用于附加的电热器元件。

    在一个实施方案中,该支承构件可以使用标准油田操作和焊接支承体的不同部分来安装。焊接可使用轨迹焊来进行。例如,支承构件的第一段可以深入井中。第二段(例如,具有大体上类似的长度)可以联接到井内的第一段上。第二段可通过将第二段焊接到第一段上来联接。设置在井头上的轨迹焊接机可以经过构型设计将第二段焊接到第一段上。重复这一过程,让后面的段联接于前面的段,一直到所需长度的支承件处于井内为止。

    图18说明了联接到例如上覆地层套管541上的井头的一个实例的剖视图。法兰590c可以联接于,或属于井头590的一部分。法兰590c可以是,例如碳钢,不锈钢或任何其它商购的合适密封材料。法兰590c可用O形环590f或任何其它密封机构来密封。热电偶590g可经过法兰590c伸入井头590。热电偶590g可以测量在井的加热部分内的支承构件564上或其附近的温度。支承构件564可联接于法兰590c。支承构件564可经过构型设计以支持这里所述的一个或多个绝缘导体加热器。支承构件564可通过焊接590h被密封在法兰590c中。另外,支承构件564可通过现有技术中已知的任何方法密封。

    电源导线590a可联接于导入电缆和/或绝缘导体加热器。电源导线590a可为经过构型设计为绝缘导体加热器提供电能。电源导线590a可密封在密封法兰590d中。密封法兰590d可通过压缩密封件或O形环590e密封。电源导线590a可用带590i联接于支承构件564上。带590i可以包括硬质和耐腐蚀的材料如不锈钢。井头590可用焊接590h密封,这样可基本上抑制流体从地层中经过井头590逃逸。提升螺栓590j可经过构型设计来提升井头590和支承构件564。井头590也可包括压力控制阀。压合接头590k可用于密封电力电缆590a和压合接头5901可用于密封热电偶590g。这些密封件抑制流体从地层中逃逸。该压力控制阀可经过构型设计来控制开孔内的压力,在开孔内布置了支承构件564。

    在一个实施方案中,控制系统可经过构型设计以控制供应到绝缘导体加热器中的电功率。供应给绝缘导体加热器的功率可用任何合适类型的控制器来控制。对于交流电,该控制器可以是例如抽头式变压器。另外地,该控制器可以是零交叉式电热器加热点火(firing)SCR(硅控整流器)控制器。零交叉电热器加热点火控制可通过如下来实现:让全部电源电压施加于绝缘导体加热器上而流过该绝缘导体加热器达到特定的周期数,在瞬时电压是零的“交叉”处开始,继续进行特定数目的完整周期,和当瞬时电压再次达零时中断。特定数目的周期可以是阻断,使得可以控制绝缘导体加热器的热量输出。例如,该控制系统可经过排列来阻断每六十个周期(可由标准60Hz交流电源提供)当中的十五和/或二十个周期。零交叉加热点火控制理想地使用具有低温度系数材料的那些材料。零交叉加热火力控制可基本上抑制在绝缘导体加热器中产生电流尖峰。

    图19说明了经过构型设计来加热含烃地层的一区段的导管内装导体的加热器的实例。导体580可设置在导管582中。导体580可以是导电材料的棒条或导线管。导体580可以在导体580的顶部和底部上具有低电阻的段,为的是在这些段584中产生较少热量。基本上低电阻的段584归因于在该段中导体580的较大横截面积。例如,导体580可以是具有大约2.8厘米直径的304或310不锈钢棒条。然而,导体580的直径和厚壁可以取决于例如含烃地层的所需加热速率来变化。导管582可以包括导电材料。例如,导管582可以是具有大约7.6厘米的直径和大约标号(schedule)40的厚度的304或310不锈钢管。导管582可以放入地层516内的开孔514中。开孔514可具有至少大约5厘米的直径。然而开孔的直径可以取决于例如在地层中的所需加热速率和/或导管582的直径来变化。例如,开孔的直径可以是大约10厘米到大约13厘米。也可使用更大直径的开孔。例如,如果将一个以上的导体放入导管内,则使用较大的开孔。

    导体580可以通过定中心器581来定位于导管582的中心。定中心器581可以将导体580与导管582实现电隔离。另外,定中心器581可以经过构型设计来将导体580定位于导管582内。定中心器581可由陶瓷材料或陶瓷和金属材料的结合物制成。一个以上的定中心器581可以经构型设计来基本上抑制在使用过程中在导管582内导体580的变形。一个以上的定中心器581能够沿着导体580以大约0.5m和大约3m之间的间距来间隔设置。定中心器581可由陶瓷,304不锈钢,310不锈钢,或其它类型的金属制成。定中心器581可根据在图22和/或图23a和23b中所示来进行构型设计。

    如图20中所描绘,滑动连接器583可以联结导体580的末端,该导体设置在导管582的最低表面附近。滑动连接器583允许在导体580和导管582之间有不同的热膨胀。滑动连接器583在比导体有更大横截面积的低电阻区段584中连接于位于井底的导体580上。区段584的低电阻允许滑动连接器在不大于约90℃的温度下操作。如此,滑动连接器组件的腐蚀被最大程度减少,所以在滑动连接器583和导管582之间的接触电阻也最大程度减少。滑动连接器583按图20中所示和按任何这里所述的实施方案所述来构型设计。导体580的较低电阻段584可以将导体580联接于井头690,如图19中所描绘。井头690按图21中所示和按照任何这里所述的实施方案所述进行构型设计。经由导体580的低电阻段584从电力电缆585将电流供给导体580。电流可以经过滑动连接器583从导体580输送到导管582。导管582可与上覆地层套管541和于井头690实现电绝缘,让电流返回电力电缆585。可在导体580和导管582中产生热量。所产生的热量会在导管582和开孔514内辐射,来加热地层516的至少一部分。例如,大约330伏特的电压和大约795安培的电流可供应导体580和导管582,在229米(750英尺)的加热段中产生大约1150瓦/米导体580和导管582的热量。

    上覆地层导管541可以放置在地层516的上覆地层540中。上覆地层导管541可以在一些实施方案中被基本上抑制上覆地层540的加热的材料所包围。导体580的较低电阻段584被放入上覆地层导管541内。导体580的较低电阻段584可由例如碳钢制成。较低电阻段584可具有大约2厘米到大约5厘米的直径或例如大约4厘米的直径。导体580的较低电阻段584可用定中心器581来居中于上覆地层导管541内。定中心器581可以沿着导体580的较低电阻段584以大约6m到大约12m的间距或例如大约9m的间距来间隔。导体580的较低电阻段584可使用现有技术中已知的任何方法如电弧焊被联接于导体580上。较低电阻段584可经过构型设计后在上覆地层导管541中产生很少的热量和/或基本上不产生热量。填充材料542可以位于上覆地层套管541和开孔514之间。填充材料542经过构型设计可以基本上抑制流体从开孔514流向表面550或抑制大部分的载热流体从开孔514流到表面550。

    上覆地层导管可以包括,例如,具有大约7.6cm的直径和大约标号40管的厚度的碳钢导管。水泥544可以包括,例如,矿渣或石英粉,或它们的混合物(例如,大约1.58克每立方厘米矿渣/硅石粉)。水泥544沿径向延伸到大约5厘米到大约25厘米的宽度。水泥544也可由一种被设计来抑制热量流入地层516中的材料制成。

    表面导体545和上覆地层套管541可以围绕水泥544并可以联接于井头690。表面导体545可以具有大约10厘米到大约30厘米的直径,和更优选大约22厘米的直径。电绝缘密封法兰可经过构型设计以机械方式将导体580的较低电阻段584联接于井头690和将较低电阻段584以通电方式联接于电力电缆585。电绝缘密封法兰可经过构型设计将引入导体585联接于井头690。例如,引入导体585可以包括铜电缆,电线,或其它长条元件。然而,引入导体585可以包括具有较低电阻的任何材料。该引入导体可夹紧到低阻导体的底部以形成电接触。

    在一个实施方案中,可以在导管582内产生热量或通过导管582产生热量。以这种方式,由加热器所产生的总热量当中的大约10%到大约30%或例如大约20%可以在导管582中或利用导管582来产生。导体580和导管582都可由不锈钢组成。导体580和导管582的尺寸经过选择后以使得导管将在大约650瓦/每米到1650瓦/每米的范围内散热。导管582内的温度可以是大约480℃到大约815℃和导体580内的温度可以是大约500℃到840℃。可以沿着大于约300m或大于约600m的导管582长度来提供含烃地层的基本上均匀加热。然而,导管582的长度可以取决于例如含烃地层的类型,在地层中开孔的深度,和/或为了处理所希望的地层长度来变化。

    产生的热量可以经过构型设计后来加热含烃地层的至少一部分。至少一部分的加热可以基本上通过在地层的开孔内产生的热量的辐射来进行和在较小程度上通过气体流导来进行。如此,与用填充材料来填充开孔以便在绝缘导体和地层之间提供传导式热转移有关的成本可以省去。另外,通过辐射的热转移一般比通过传导的热转移更高效,这样加热器一般在较低温度下在开放井眼中操作。再一优点是加热组件可以随意地经历热膨胀。另一优点是加热器可以置换。

    根据任何这里所述的实施方案中所描述的导管内装导体型导体可以安装在开孔514内。在一个实施方案中,该导管内装导体型加热器可分段装入井内。例如,导管内装导体型加热器的第一段可以深入井中。该段可具有大约12m长度。第二段(例如,具有大体上类似的长度)可以联接到井内的第一段上。第二段可通过将第二段焊接到第一段上和/或利用在第一段和第二段上设置的绳线来联接。设置在井头上的轨迹焊接机可以经过构型设计将第二段焊接到第一段上。重复这一过程,让后面的段联接于前面的段,一直到所需长度的加热器处于井内为止。在一些实施方案中,在被放入井内之前可以联接三段。该三段可由焊接来联接。该三段具有大约12.2m的长度。所形成的37m段可通过井头上的升降机来垂直提升。该三段可联接于在这里所述的井内的三个附加的段中。在放入井内之前焊接这三个段可以减少漏洞和/或有缺陷焊缝的数目,并可减少为安装加热器所需要的时间。

    在可供选择的实施方案中,该导管内装导体型加热器可绕在绕线组件(spooling assembly)上。该绕线组件可安放在可运输的结构上。该可运输的结构可运输到钻井位置。该导管内装导体型加热器可从绕线组件上退绕到井中。

    图20说明了滑动连接器的实例。滑动连接器583可以包括刮刀593,后者在位点595处靠近导管582的内表面。刮刀593可以包括任何金属或导电材料(例如,钢或不锈钢)。定中心器591可以联接于导体580。在一些实施方案中,导体580可具有基本上在滑动连接器583的位置周围的较低电阻段584,由于增加的厚度。定中心器591可以包括任何导电材料(例如,金属或金属合金)。定中心器591可以经弹簧弓592联接于刮刀593。弹簧弓592可以包括任何金属或导电材料(例如,铜铍合金)。定中心器591,弹簧弓592,和/或刮刀593可通过现有技术中已知的任何焊接方法来联接。滑动的连接器583可以将导体580的较低电阻段584经过定中心器591,弹簧弓592,和/或刮刀593联接到导管582。在导体580的加热过程中,导体580可以在与导管582明显不同的速率下发生膨胀。例如,在导体580上的位点594可以在导体580的加热过程中相对于导管582上的位点595运动。刮刀593可以通过沿着导管582表面滑动来与导管582保持电接触。几个滑动连接器可以重复(redundancy)使用并减少各刮刀的电流。另外,导管582的厚度可以增加了基本上接近滑动连接器583的长度以显著减少在导管582的该部分中所产生的热量。增加厚度的导管582的长度可以是例如大约6m。

    图21说明井头的另一实例。井头690可通过法兰690n或任何其它合适的机械装置联接于电接线盒690a。电接线盒690a可经过构型设计来控制被供应给电热器的功率(电流和电压)。该电热器可以是这里所述的导管内装导体型加热器。法兰690n可以包括,例如,不锈钢或任何其它合适的密封材料。导体690b可设置在法兰690n中和可以将上覆地层套管541与电接线盒690a实现电连接。导体690b可以包括任何金属或导电性材料(例如,铜)。压力密封件690c可以在电接线盒690a的内表面上密封导体690b。

    法兰690n可用金属O形密封圈690d密封。导管690f(例如它可以是管)可以将法兰690n与法兰690m连在一起。法兰690m可以联接于上覆地层套管541。法兰690m可用O形密封环690g(例如金属O形密封圈或钢O形密封环)来密封。导体(例如导体580)的较低电阻段584可以联接于电接线盒690a。较低电阻段584可穿过法兰690n和并用O形环组件690p密封在法兰690n中。组件690p被设计来将导体580的较低电阻段584与法兰690n和法兰690m绝缘。O形环组件690c可用来将导体690b与法兰690m和接线盒690a电绝缘。定中心器581可以联接于低电阻段584。电绝缘定中心器581可具有在任何这里所述的实施方案中描述的特性。热电偶690i可用连接器690h和线路690j联接于热电偶法兰690q。热电偶690i可被包封在电绝缘的鞘体(例如,金属鞘体)之内。热电偶690i可用压力密封件690k密封于热电偶法兰690q。热电偶690i可用来监测在井下加热部分中的温度。

    图22说明了在例如导管582中的定中心器的实例的透视图。电绝缘体581a可设置在导体580上。绝热体581a可由例如氧化铝或经构型设计可以在高温下使用的任何其它电绝热材料组成。绝热体581a在导体580上的定位可通过圆盘581d来保持。圆盘581d可焊在导体580上。弹簧弓581c可通过圆盘581b联接于绝热体581a上。弹簧弓581c和圆盘581b可以由金属如310不锈钢和经构型设计可在高温下使用的任何其它导热材料制成。定中心器581可以作为设置在导体580上的单个圆柱形元件来排列。定中心器581可以作为设置在导体580上的两个半圆柱形元件来排列。两个半圆柱形元件可通过带581e联接于导体580。扎带581e可由设计在高温度下使用的任何材料(例如钢)制成。

    图23a说明了设置在导体580上的定中心器581e的一个实例的剖视图。图23b说明了在图23a中所示的一个实例的透视图。定中心器581e可以由在高温度下基本上承受住高电压的任何合适电绝热材料制成。此类材料的例子可以是氧化铝和/或玻璃陶瓷(Macor)。圆盘581d可以维持定中心器581e相对于导体580的位置。圆盘581d可以是焊接在导体580上的金属盘。圆盘581d可以间断焊接到导体580上。定中心器581e可以基本上将导体580与导管582实现电绝缘。

    在一个实例中,导管可以用流体增压以便将导管内的压力与开孔内的压力平衡。如此,导管的变形可以基本上得到抑制。导热流体可用于增压该导管。导热流体可提高该导管内的热传递。导热流体可以包括气体如氦气,氮气,空气,或它们的混合物。加压的流体也可用于增压该导管,以使得加压的流体可以抑制在导体和导管之间的电弧。如果空气和/或空气混合物被用于增压该导管,则空气和/或空气混合物可以与导体和导管的材料起反应而在导体和导管的表面上形成氧化物,这样导体和导管至少在一定程度上更加抗腐蚀。

    导体和/或导管的热发射率可以增加。例如,导体和/或导管的表面可以变粗糙以提高热发射率。导体和/或导管的黑化也可增加热发射率。另外地,在安装之前导体和/或导管的氧化可以经过构型设计以提高热发射率。也可通过在导管中和/或在含烃地层的开孔内在氧化性流体存在下加热导体和/或导管来氧化导体和/或导管。提高热发射率的另一个供选择的途径是将导体和/或导管阳极氧化以使得表面变粗糙和/或黑化。

    在另一个实例中,可以将穿孔的管放入在含烃地层中所形成的开孔内,靠近第一导管和在第一导管之外部。该穿孔的管可以经过构型设计以除去在开孔中所形成的流体。如此,可以保持开孔内的压力,以使得第一导管的变形基本上被抑制并且在加热器附近的地层中的压力可以降低。该穿孔的管也可用于通过从地层中添加流体或除去流体来提高或降低地层中的压力。这使得可以控制地层中的压力和控制所生产的烃类的质量。穿孔的管可以用于在使用裸井构型的热源的全部描述实施方式中的压力控制。该穿孔的管也可经过构型设计来注射气体以便现场提升烃类性质;例如,氢气可以在升高的压力下注射。

    图24说明了经过构型设计来加热含烃地层的一区段的导管内装导体型加热器的另一实例。除了导体580外,第二导体586也可设置在导管582中。导体580按照这里所述进行构型设计。第二导体586可以使用位于导管582的最低表面附近的连接器587被联接于导体580。第二导体586可以经过构型设计作为供应给导体580的电流的返回通路。例如,第二导体586可以让电流经过在上覆地层套管541中的第二较低电阻导体588返回到井头690。第二导体586和导体580可以构型设计为长条传导性材料。第二导体586和导体580可以是例如具有大约2.4cm的直径的不锈钢棒条。连接器587可以是柔性。导管582可以使用定中心器581来与导体580和第二导体586实现电隔离。上覆地层套管541,水泥544,表面导体545,和填充材料542可以按照在图19中所示的实施方案中所述来进行构型设计。这一实施方案的优点包括不使用滑动接触器(可以延长加热器的使用寿命)和隔离全部施加的功率与地层516。

    在另一个实施方案中,第二导体可以设置在第二导管内,以及第三导体可以设置在第三导管中。第二开孔可以不同于第一导管的开孔。该第三开孔可以不同于第一导管的开孔和第二开孔。例如,第一、第二和第三开孔中的每一个可以位于在地层的基本上不同的井位置并具有基本上类似的尺寸。第一,第二,和第三导体可以按照这里所述进行构型设计。第一,第二,和第三导体能够以三相Y电构型进行电连通。外部导管可以连接在一起或可以连接到地面。三相Y电构型可以提供比使用单个导体更安全、更有效的加热含烃地层的方法。第一,第二,和/或第三导管可以分别与第一,第二,和第三导体实现电隔离。各导体和各导管的尺寸可以经过构型设计后使得各导体可以产生大约650瓦/每米导体至大约1650瓦/每米导体的热量。在一个实施方案中,在导管中的第一导体和第二导体可通过柔性连接电缆来联接。第一和第二导体的底部可以扩大以产生低电阻区段,并因此产生较少热量。如此,柔性连接器可由例如包覆了橡胶绝缘层的铜线制成。

    在一个实施方案中,第一导体和第二导体可以联接于导管内的至少一个滑动连接器。滑动连接器按照这里所述进行构型设计。例如,这种滑动连接器可以经过构型设计产生比第一导体或第二导体更少的热量。该导管可以与第一导体,第二导体,和/或滑动连接器实现电隔离。该滑动连接器可以被放入第一导管内的位置,如果需要较少的含烃地层的加热的话。

    在一个实施方案中,导管的一定区段的厚度可以增加,使得沿着增加厚度的该区段可转移(例如,辐射)较少的热量。增加厚度的该区段优选是沿着导管的一定长度形成的,如果需要含烃地层的较少加热的话。

    在一个实施方案中,该导体可以由焊接在一起的各种金属的区段形成。各种不同金属的截面积经过选择后使所形成的导体是长的,在高的操作温度下耐蠕变,和/或沿着导体的整个长度基本上散逸同样量的热/每单位长度。例如,第一段可以由耐蠕变金属(比如,但不限于,铬镍铁合金617或HR120)和导体的第二段可以由304不锈钢组成。该耐蠕变第一段有助于支持第二段。第一段的截面积大于第二段的截面积。第一段的较大截面积使得第一段有更大的强度。第一段的较高电阻性质使得该第一段散逸了与较小截面积的第二段相同量的热/每单位长度。

    在一些实施方案中,用于具体的段的截面积和/或金属经过选择后,使得具体的段提供了比相邻段更大的(或更少)的热散逸/每单位长度。在烃类层和非烃层(例如,上覆地层和含烃地层)之间的界面附近提供了更多的热量以抵消末端效应和允许更均匀热散逸到含烃地层中。更高的热散逸也可位于长条元件的下端以抵销末端效应和允许更均匀热散逸。

    在一个实施方案中,长条元件可以位于含烃地层的开孔(例如,裸井眼)内。该开孔优选是在含烃地层内的无套管的开孔中。该开孔可以具有至少大约5厘米或例如大约8厘米的直径。开孔的直径可以取决于例如在地层中的所需加热速率来变化。该长条元件可以是长的金属(例如,长条)或任何其它的块状的金属(例如,棒条)。该长条元件可以包括不锈钢。然而,该长条元件也可包括任何导热性材料,它可作构型设计以产生足以加热该地层的一部分的热量和基本上承受开孔内的相应温度,例如,它可以经过构型设计以承受在开孔内的温度下的腐蚀。

    长条元件可以裸金属加热器。“裸金属”是指不包括电绝缘体层(如矿物质绝缘体)的一种金属,它被设计在长条元件的整个工作温度范围内为金属提供电绝缘。裸金属可包括包含腐蚀抑制剂如自然氧化层、施涂的氧化层和/或膜的金属。裸金属包括具有聚合物或其它类型的电绝缘体的金属,该绝缘体在长条元件的典型的操作温度下不能保持电绝缘性质。此类材料可以放置在金属上并在加热器的使用过程中发生热降解。

    长条元件可具有大约650米的长度。通过使用高强度合金的各个段可以获得更长的长度,但是这样的长条元件是昂贵的。在一些实施方案中,长条元件可以由井头中的板支持。该长条元件可以包括端对端地焊接在一起的不同导电性材料的各个段。大量的导电性焊接材料可用于将单独的各个段联接在一起以提高所获得的元件的强度和为电提供流动的通路,而不会导致在焊接合处的电弧和/或腐蚀。该不同的导电材料可以包括具有高度抗蠕变性的合金。不同导电材料的各段可具有不同直径以确保沿着长条元件的均匀加热。比第二种金属具有更高抗蠕变性的第一种金属典型地比第二种金属具有更高的电阻。电阻的差异允许更大截面积、更耐蠕变的第一种金属的段将散逸与较小截面积第二种金属的段同样量的热。两种不同金属的截面积可以特定设计以便在两种焊接在一起的金属段中获得基本上相同量的热散逸。该导电材料可包括,但不限于,617铬镍铁合金(Inconel),HR-120,316不锈钢,和304不锈钢。例如,长条元件可具有60米一段的617铬镍铁合金,60米一段的HR-120,和150米一段的304不锈钢。另外,长条元件可具有低电阻段,它从井头延伸穿过上覆地层。该低电阻区段可以减少从井头穿过上覆地层的该地层内加热。该低电阻段可以是例如选择充分导电的材料和/或增加导电的横截面积的结果。

    另外,支承构件延伸穿过该上覆地层,并且裸金属长条元件可以在上覆地层和烃类地层之间的界面附近联接于板、定中心器或其它类型支承构件上。低电阻电缆,如铜束电缆,可以沿着该支承构件延伸并可以联接于该长条元件上。该铜电缆可以联接于电能源,后者为该长条元件供应电。

    图25说明了经过构型设计来加热含烃地层的一区段的多个长条元件的实例。两个或更多个(例如,四条)长条元件600可以由支承构件604支持。长条元件600可以使用绝缘的定中心器602联接于支承构件604。支承构件604可以是管或导管。支承构件604也可以是穿孔的管。支承构件604可以经过构型设计让氧化性流体流入开孔514。支承构件604可以具有在大约1.2厘米到大约4厘米之间的直径和更优选大约2.5厘米的直径。支承构件604,长条元件600,和绝缘的定中心器602可以设置在地层516的开孔514中。绝缘的定中心器602可以经过构型设计以保持长条元件600定位在支承构件604上,这样在使支承构件604或长条元件600变形的足够高的温度下基本上抑制了长条元件600的侧向运动。绝缘的定中心器602可以是这里所述的定中心器。长条元件600,在一些实施方案中,可以是大约2.5厘米宽和大约0.3厘米厚的不锈钢的金属条。然而,长条元件600也可包括管形或棒形的导电材料。电流可以接通到长条元件600,以使得长条元件600由于电阻而产生热量。

    长条元件600可以经过构型设计以产生大约650瓦/每米的长条元件600到大约1650瓦/每米的长条元件600的热量。如此,长条元件600可以在大约480℃到大约815℃的温度下。可以沿着长条元件600的大于约305m或大于约610m的一段长度来提供含烃地层的基本上均匀加热。然而,长条元件600的长度可以取决于例如含烃地层的类型、在地层中开孔的深度、和/或为了处理所希望的地层长度来变化。

    长条元件600能够以串联方式实现电联接。通过使用引入导体572将电流提供给长条元件600。引入导体572可进一步按照这里所述进行构型设计。引入导体572可以联接于井头690。通过使用联接于长条元件600的引出导线606让电流返回到井头690。引入导体572和引出导线606可以通过在井头690和上覆地层540之间的密封法兰在表面550处联接于井头690。密封法兰可以基本上抑制流体从开孔514逃逸到表面550。引入导体572和引出导线606可以使用冷销转变导体联接于长条元件。该冷销转变导体可以包括较低电阻的绝缘导体,使得由冷销转变导体基本上不产生热量。该冷销转变导体可以通过现有技术中已知的任何接头或焊接方法被联接于引入导体572,引出导线606,和/或长条元件600。该冷销转变导体可以在引入导体572,引出导线606,和/或长条元件600之间提供温度转变。该冷销转变导体可以进一步按照这里的任何实施方案中所述进行构型设计。引入导体572和引出导线可以由较低电阻的导体制成,以使电流通过引入导体572和引出导线606时很少或基本上不产生热量。

    焊接珠粒可以放置在支承构件604上的定中心器602的下方,以固定该定中心器的位置。焊接珠粒可以处于最高定中心器之上的长条元件600上以固定长条元件相对于支承构件(也可使用其它类型的连接机构)的位置。当加热时,该长条元件可以向下热膨胀。该长条元件可以在沿着一定长度的长条元件的不同位置上由不同金属形成,以允许形成较长的长度。例如:“U”形长条元件可以包括由310不锈钢形成的第一长度,由焊接到第一长度上的304不锈钢形成的第二长度,和由焊接到第二长度上的310不锈钢形成的第三长度。310不锈钢比304不锈钢有更高电阻和可以散逸比同样尺寸的304不锈钢多大约25%的能量/单位长度。310不锈钢可以比304不锈钢更耐蠕变。第一长度和第三长度在形成后具有一定的截面积,这些截面积允许第一长度和第三长度散逸与304不锈钢的较小截面积的长度同样多的热量。第一和第三长度可以接近井头690。不同类型的金属的使用允许形成长的长条元件。不同的金属可以是,但不限于,617铬镍铁合金(Inconel),HR120,316不锈钢,310不锈钢,和304不锈钢。

    填充材料542可以位于上覆地层套管541和开孔514之间。填充材料542可以经过构型设计来抑制流体从开孔514流入表面550,和抑制向着该表面的相应热损失。填充材料542可进一步按照这里所述进行构型设计。上覆地层套管541可以放置在地层516的上覆地层540中的水泥544中。上覆地层套管541可进一步按照这里所述进行构型设计。表面导体545可以设置在水泥544中。表面导体545按照这里所述进行构型设计。支承构件604可以在地层516的表面550上联接于井头690。定中心器581可以经过构型设计以保持支承构件604在上覆地层套管541内的位置。定中心器581可进一步按照这里所述进行构型设计。将电流提供给长条元件600以产生热量。从长条元件600所产生的热量会在开孔514内辐射,来加热地层516的至少一部分。

    可以沿着一定长度的长条元件600从氧化性流体源508提供氧化性流体。该氧化性流体可以抑制碳沉积在长条元件上或其附近。例如,该氧化性流体可以与烃类反应而形成二氧化碳,它可以从开孔内除去。在支承构件604的开孔605可以经过构型设计后让氧化性流体沿着长条元件600的长度方向流动。开孔605可以是这里所构型设计和描述的临界流量孔。另外地,管可以设置在长条元件600附近以控制地层内的压力,如以上实施方案中所述。在另一个实施方案中,管可以设置在长条元件600附近让氧化性流体流入开孔514中。同时,至少一种的长条元件600可包括具有开孔的管,这些开孔经过构型设计允许氧化性流体流动。如果没有氧化性流体的流动,则在长条元件600上或附近或在绝缘的定中心器602上可能发生碳沉积,因此引起在长条元件600和绝缘的定中心器602之间的短路或沿着长条元件600的热点。该氧化性流体可用来与地层中的碳反应,如本文中所述。通过与碳反应产生的热量可以补偿或补充电子方式产生的热量。

    在一个实施方案中,多个长条元件可以支持在开孔内的支承构件上。多个的长条元件能够以串联或并联构型实现电联接。选择施加于多个长条元件上的电流和电压,以使得在地面上电能源的电力供应的成本连同多个长条元件的成本可以最大程度减少。另外,工作电流和电压可以选择来优化输入电能的成本连同长条元件的材料成本。该长条元件可以如这里所述经过构型设计以产生和辐射热量。该长条元件可以按这里所述被安装在开孔514中。

    在一个实施方案中,裸金属长条元件能够以“U”形(或发夹)形成,该元件可从井头上或从位于上覆地层和被加热地层之间的界面上或其附近的定位器上悬挂下来。在某些实施方案中,裸金属加热器可由棒条坯材形成。圆柱形、高氧化铝陶瓷电绝缘体可以放置在长条元件的腿部上方。沿着腿部的长度方向的点焊可以固定该绝热体的位置。该绝热体可以阻止该长条元件接触该地层或井套管(如果该长条元件放入井套管内)。该绝热体也可抑制“U”形元件的腿部彼此接触。高氧化铝陶瓷电绝缘体可以从Cooper Industries(休斯敦,德克萨斯)购买。在一个实施方案中,该“U”形元件可以由具有不同截面积的不同金属形成,这样长条元件可以相对较长并可以沿着长条元件的整个长度散逸基本上相同量的热量/每单位长度。不同的焊接在一起的各段的使用可获得长条元件,它具有在长条元件的顶部附近的较大直径的各段和沿着长条元件的长度方向上的较小直径段。例如,长条元件的实例具有两个7/8英寸(2.2厘米)直径第一段,两个1/2英寸(1.3厘米)中间段,和3/8英寸(0.95米)直径底部段,它被弯成“U”形。该长条元件可以由具有其它横截面形状如椭圆形,正方形,矩形,三角形等的材料组成。这些段可以由合金形成,对于各段基本上有相同的热散逸/每单位长度。

    在一些实施方案中,用于具体的段的截面积和/或金属经过选择后,使得具体的段提供了比相邻段更大的(或更少)的热散逸/每单位长度。在烃类层和非烃层(例如,上覆地层和含烃地层)之间的界面附近提供了更多的热散逸/单位长度以抵销末端效应和允许更均匀热散逸到含烃地层中。更高的热散逸也可位于长条元件的下端以抵销末端效应和允许更均匀热散逸。

    图26说明了经过构型设计来加热含烃地层的一区段的表面燃烧器的实例。燃料流体611经过导管617提供到燃烧器610。氧化性流体可以从氧化性流体源508提供到燃烧器610中。燃料流体611可以在燃烧器610用氧化性流体加以氧化而形成氧化产物613。燃料流体611可以包括,例如,氢气。燃料流体611也可包括甲烷或任何其它烃流体。燃烧器610可以位于地层516之外或位于含烃地层516中的开孔614之内。火焰(flame)618可以经过构型设计以便加热燃料流体611到足以支持燃烧器610中的氧化的一种温度。火焰618可以构型设计以加热燃料流体611到大约1425℃的温度。火焰618可以联接于导管617的末端。火焰618可以是引燃火焰。该引燃火焰可以经过构型设计后用燃料流体611的小流量来燃烧。然而,火焰618可以是电点火源。

    氧化产物613可以提供到在联接于燃烧器610的内部导管612内的开孔614中。热量可以从氧化产物613中经过外部导管615转移到开孔614中和沿着一定长度的内部导管612转移到地层516中。所以,氧化产物613可以沿着内部导管612的长度方向基本上被冷却。例如,氧化产物613具有在内部导管612的顶部附近大约870℃的温度和在内部导管612的底部附近大约650℃的温度。内部导管612的靠近燃烧器610的一段可具有设置在内部导管612的内表面上的陶瓷绝缘子612b。陶瓷绝缘子612b可以经过构型设计来基本上抑制内部导管612和/或接近燃烧器610的绝热体612a的熔化。开孔614可以延伸到地层中达到在表面550之下多达大约550m的长度。

    内部导管612可以经过构型设计后将氧化产物613提供到接近开孔614的底部的外部导管615中。内部导管612可具有绝热体612a。图27说明了有绝热体612a和陶瓷绝缘子612b设置在内部导管612的内表面上的内部导管612的实例。绝热体612a可以经过构型设计后基本上抑制在内部导管612中的流体与在外部导管615中的流体之间的热传递。绝热体612a的厚度可以沿着一定长度的内部导管612发生变化,这样沿着内部导管612的长度可以改变热量传递到地层中的速度。例如,绝热体612a的厚度可以从开孔614内的内部导管612的顶部到底部逐渐从较大厚度减少至较小厚度。这一渐变厚度可以沿着开孔614内的内部导管612的长度方向上让地层516更均匀加热。绝热体612a可以包括陶瓷和金属材料。氧化产物613可以经过外部导管615返回到表面550。外部导管可具有绝热体615a,如图26中所描绘。绝热体615a可以经过构型设计后基本上抑制热量从外部导管615转移到上覆地层540。

    氧化产物613可以经过表面550上的导管619提供到辅助燃烧器。氧化产物613可以构型设计为在辅助燃烧器中燃料流体的一部分。这样做可以提高对于加热地层516目的的输出能量对输入能量的效率。该辅助燃烧器可以经过构型设计后经过地层516中的附加开孔提高热量。

    在一些实施方案中,除了从表面燃烧器提供的热量外,电热器可以经过构型设计来提供热量。该电热器可以是,例如,在上述实施方案的任何一个中描述的绝缘导体加热器或导管内装导体型加热器。该电热器可以经过构型设计后为含烃地层提供附加热量,这样含烃地层可以沿着地层中开孔的深度来基本上均匀加热。

    无焰燃烧器,如在美国专利5,255,742(授权于Mikus等人),5,404,952(授权于Vinegar等人),5,862,858(授权于Wellington等人),和5,899,269(授权于Wellington等人)中描述的那些,可以经过构型设计来加热含烃地层,这些专利被引入本文就象全部列于本文一样。

    图28说明了经过构型设计来加热含烃地层的一区段的无焰燃烧器的实例。该无焰燃烧器可以包括位于内部导管638之内的中心管637。中心管637和内部导管638可以放置在外部导管636之内。外部导管636可以设置在含烃地层516中的开孔514内。燃料流体621可以经过中心管637提供到无焰燃烧器中。燃料流体621可以包括这里所述的燃料流体中的任何一种。如果利用烃类燃料如甲烷,则它与蒸汽混合以防止在中心管637中结焦。如果氢气用作该燃料,不需要蒸汽。

    中心管637可以包括位于氧化区域内的流动机构635(例如,流量孔),让燃料流体621流入内部导管638。流动机构635可控制燃料流体621流入内部导管638中,这样燃料流体621的流动不取决于内部导管638中的压力。流动机构635可具有这里所述的特征。氧化性流体623可以经过内部导管638提供到燃烧器中。氧化性流体623可以从氧化性流体源508中提供。氧化性流体623可以包括在上述实施方案中描述的氧化性流体当中的任何一种。在中心管637上的流动机构635经过构型设计后抑制氧化性流体623流入中心管637中。

    氧化性流体621可以与燃料流体621在内部导管638的氧化区域中进行混合。氧化性流体623或燃料流体621,或两种的结合物,可以在燃烧器之外预热到足以支持燃料流体621的氧化的温度。燃料流体621的氧化可以在外部导管636内产生热量。所产生的热量可以将热量提供到靠近内部导管638的氧化区域的含烃地层的至少一部分中。来自燃料流体621的氧化的产物625可通过在内部导管638之外的外部导管636被除去。在上覆地层中在下行氧化性流体和上行燃烧产物之间的热交换导致提高的热效率。所除去的燃烧产物625的流动可以与燃料流体621和氧化性流体623的流动达到平衡,以保持温度在自燃温度之上但在足以产生相当多的氮氧化物的温度之下。同时,流体的恒定流速可以在内部导管638的氧化区域内提供基本上均匀的温度分布。外部导管636可以是,例如,不锈钢管。如此,含烃地层的至少一部分的加热基本上是均匀的。如上所述,较低的操作温度也可提供与加热系统有关的成本低廉的冶金成本。

    某些热源实例可以包括通过绝缘导体或其它类型的线路联接到这些热源当中的任何一个的操作系统。该操作系统可以经过构型设计与热源对接。该操作系统可以接收加热器的信号(例如电磁信号),它是热源的温度分布的代表特征。另外,该操作系统可以进一步经过构型设计以在当地或远处控制热源。例如,该操作系统可以通过改变联接于该热源的设备的参数来改变热源的温度。所以,该操作系统可以监测,改变,和/或控制地层的至少一部分的加热。

    在一些实施方案中,如上所述的热源可以经过构型设计后在没有控制和/或操作系统下基本上可以操作。该热源可以经过构型设计后仅仅需要从电能源如变压器供应电能。例如,导管内装导体型加热器和/或长条元件加热器可以包括传导性材料,它具有自我控制热源的热输出的热学性能。如此,该导管内装导体型加热器和/或该长条元件加热器可以经过构型设计在没有外部控制的情况下在整个温度范围中进行操作。传导性材料如不锈钢可以用于该热源。不锈钢具有随温度提高而增加的电阻,因此在更高温度下提供更多的热量输出。

    这里所述的热源中任何一个的泄漏电流可以监控。例如,泄漏电流的增加可以显示绝缘导体加热器的老化。在绝缘导体加热器中的电压击穿会引起热源的破坏。此外,供应给这些热源中的任何一个的电流和电压也可监控。该电流和电压可以经过监控以分析/指示在热源中的电阻。热源中的电阻可以经过设计以表示热源中的温度,因为热源的电阻已知是温度的函数。另一种方法可以包括用放入热源中或其附近的至少一个热电偶来监测热源的温度。在一些实施方案中,控制系统可以监测热源的参数。该控制系统可以改变热源的参数,以使得可以提供所需的输出额如加热速率和/或温度升高。

    在一些实施方案中,热电偶套管可以放入到包括热源的含烃地层的开孔内。该热电偶套管可以放入具有或不具有套管的开孔中。在没有套管的开孔中,热电偶套管可以包括合适的冶金技术含量和厚度,使得热电偶套管的腐蚀基本上得到抑制。热电偶套管和温度测井方法,如在美国专利No.4,616,705(授权于Stegemeier等人,它被引入本文供参考就象全文列出在这里一样)中描述的,可用来监测温度。仅仅所选择的井可以装有热电偶套管以避免与在各热源处安装和操作温度监测器有关的费用。

    在一些实施方案中,在地层中的平均温度达到了所选择温度之后该热源可以放慢和/或停掉。放慢和/或停掉热源可以减少输入能量费用,基本上抑制地层的过热,和让热量基本上转移到地层的较冷区域中。

    某些实施方案包括从一个或多个热源为含烃地层的第一部分提供热量。另外,某些实例可以包括从第一部分生产出地层流体,并保持地层的第二部分在基本上未加热的状态。第二部分可以基本上接近地层的第一部分。如此,第二部分可以为地层提供结构强度。此外,加热也可提供给地层的第三部分。该第三部分可以基本上接近第二部分和/或与第一部分在侧面间隔。另外,地层流体可以从地层的第三部分生产。如此,处理的地层可具有一种图案,它类似于例如具有交替的加热和未加热部分的条纹或棋盘状图案。

    地层的附加部分也可包括此类交替的加热和未加热部分。如此,含烃地层的这一图案分布式加热可以保持地层内的结构强度。保持含烃地层内的结构强度可以基本上抑制沉陷。被处理的地层的那一部分的沉陷会由于压实而减少被处理的部分的渗透性。另外,沉陷可以减少地层内的流体的流动,导致地层流体的较低生产量。

    热解温度范围可以取决于地层内的烃类的特定类型。热解温度范围可以包括例如在大约250℃和大约900℃之间的温度。另外地,热解温度范围可以包括在大约250℃到大约400℃之间的温度。例如,大多数的地层流体可以在大约250℃到大约400℃的热解温度范围内生产。如果含烃地层被加热到整个热解温度范围,则向着热解温度范围的上限,地层可以生产仅仅少量的氢气。在全部的可用氢已经枯竭后,将出现从地层上少量流体的生产。

    在加热的含烃地层内的温度(和平均温度)将取决于例如与热源的接近程度,地层的导热性和热扩散系数,所发生反应的类型,含烃地层的类型,和在含烃地层内水的存在来变化。在含烃地层内的温度可使用数值模拟模型来分析。该数值模拟模型可以分析和/或计算地下温度分布。另外,该数值模拟模型可包括在所分析的温度分布下分析地表下地层的各种性质。

    例如,地表下地层的各种性质可包括,但不限于,地层的地表下部分的导热性和地层的地表下部分的渗透性。该数值模拟模型也可包括在所分析的温度分布下分析在地表下地层中形成的流体的各种性质。例如,所形成流体的各种性质可包括,但不限于,在地层的地表下形成的流体的累积体积,流体粘度,流体密度,和在地层的地表下下所形成的流体的组成。这一模拟方法可用于分析如上所述的小规模野外现场实验的商业性开采的性能。例如,商业规模开采的性能可以基于(但不限于)从商业性开采生产的产品的总体积来分析。

    在一些实施方案中,现场转化方法可以提高含烃地层内的温度或平均温度。在含烃地层的规定体积(V)内的温度或平均温度提高(ΔT)可以通过以下方程式对于给定的热量输入速率(q)与时间(t)来分析:ΔT=Σ(q*t)CV*ρB*V]]>

    在这方程式,地层的平均热容量(Cv)和地层的平均体积密度(PB)可以使用取自含烃地层的一种或多种样品来估测或测定。

    在另一实施方案中,现场转化方法可以包括将规定体积加热到热解温度或平均热解温度。在时间(t)中为加热规定体积(V)到所希望的温度升高(ΔT)而需要的热量输入速率(q)可以使用以下方程式来测定或分析:

    ∑q*t=ΔT*CV*ρB*V。在这方程式,地层的平均热容量(Cv)和地层的平均体积密度(PB)可以使用取自含烃地层的一种或多种样品来估测或测定。

    可以理解的是,上述方程组可用于分析或估测温度,平均温度(例如,在地层的所选择区段中),热输入等。这些方程组没有考虑其它因素(如热损失),这些因素也对加热和温度分析结果有一些影响。然而,这些因素通常可用校正因数来校正,这是现有技术中常用的方法。

    在一些实施方案中,含烃地层的一部分可以在大约0.1℃/天到大约50℃/天范围内的加热速率下加热。另外地,含烃地层的一部分可以在大约0.1℃/天到大约10℃/天范围内的加热速率下加热。例如,大部分的烃类可以在大约0.1℃/天到大约10℃/天范围内的加热速率下从地层生产。另外,含烃地层可以在热解温度范围的主要部分中在低于约0.7℃/天的速率下加热。该热解温度范围可以包括在以上实施方案中描述的温度范围。例如,加热部分可以在这样的速率下加热一段时间,该时间大于为跨越该温度范围所需要的时间的50%、大于为跨越该温度范围所需要的时间的75%、或大于为跨越该温度范围所需要的时间的90%。

    含烃地层被加热的速率可以影响从含烃地层生产的地层流体的数量和质量。例如,在高加热速率下加热(这是当进行费歇分析法时的情况)可以从含烃地层产生大量的可凝结烃类。然而,此类方法的产品具有比使用低于大约10℃/天的加热速率加热时低得多的质量。在低于约10℃/天的温度升高速率下加热可以允许在热解温度范围内发生热解,其中所不希望有的产物和焦油的生产可以减少。另外,低于约3℃/天的温度升高速率可以通过进一步减少所不希望有的产物的生产和进一步减少在含烃地层内焦油的生产,来进一步提高所生产的可凝结烃类的质量。

    在一些实施方案中,控制含烃地层内的温度牵涉到地层内的加热速率。例如,控制该加热速率使得该加热速率低于大约3℃/天可以更好地控制含烃地层内的温度。

    针对烃类的现场方法包括监控在生产井中温度升高速率。然而,在含烃地层的一部分中的温度可以在含烃地层的该部分内的各种位置上测量。例如,现场方法可以包括监测在两个相邻热源之间的中点处该部分的温度。该温度可以随时间的进程来监测。如此,温度升高速率也可监测。温度升高速率可影响从该地层生产的地层流体的组成。照这样,温度升高速率可以经过监测,改变和/或控制,例如,为了改变从地层生产的地层流体的组成。

    在一些实施方案中,为在含烃地层的所选择体积(V)中获得加热速率(h)所需要的功率(Pwr)可通过下式测定:Pwr=h*V*CV*ρ。在该方程式,含烃地层的平均热容量可以描述为CV。含烃地层的平均热容量可以是相对常数值。平均热容量可以使用取自含烃地层的一种或多种样品来估测或测定,或使用热脉冲试验来现场测量。以热脉冲试验为基础的测定平均热容量的方法已由I.Berchenko,E.Detournay,N.Chandler,J.Martino,和E.Kozak进行了描述,“In-situ measurement of some thermoporoelastic parameters of agranite”,Poromechanics,A Tribute to Maurice A.Biot,545-550页,Rotterdam(鹿特丹),1998(Balkema),它被引入本文供参考就象全文列于这里一样。

    另外,含烃地层的平均体积密度可以描述为ρ。含烃地层的平均体积密度可以是相对常数值。平均体积密度可以使用取自含烃地层的一种或多种样品来估测或测定。在某些实施方案中,含烃地层的平均热容量和平均体积密度的乘积可以是相对常数值(该乘积可以使用热脉冲试验来现场分析)。所测定的功率可用于测定从热源中提供到所选择体积中的热量,以使得所选择的体积在加热速率h下加热。例如,加热速率可以低于大约3℃/天,和低于大约2℃/天。如此,在加热速率的一定范围内的加热速率可以在所选择的体积中得到保持。在上下文中需要理解的是,“功率”用于描述每单位时间的输入能量。然而,该输入能量的形式可以按照这里所述来变化(即,从电阻加热器、燃烧加热器等提供热量)。

    以多种因素为基础所选择的加热速率包括但不限于,在井中可能的最高温度,从地层生产的地层流体的预定质量,等等。烃流体的质量可通过可凝结烃类的API比重,通过烯烃含量,通过氮、硫和/或氧含量等来定义。在一个实施方案中,将热量提供到含烃地层的至少一部分中以生产具有大于约20°的API比重的地层流体。然而,该API比重可以依据例如在地层的该部分内的加热速率和压力来变化。

    在一些实施方案中,在含烃地层中的地下压力可以对应于在地层内产生的流体压力。加热含烃地层内的烃类可以通过例如热解法产生流体。产生的流体可以在该地层内汽化。有助于压力提高的流体包括,但不限于,在热解过程中生产的流体和在加热过程中汽化的水。所生产的热解流体可包括,但不限于,烃类,水,碳的氧化物,氨,分子氮,和分子氢。所以,随着该地层的加热部分的所选择区段内温度的升高,在所选择区段内的压力将由于增加的流体产生和水的汽化而提高。

    在一些实施方案中,在含烃地层的加热部分的所选择区段内的压力将取决于例如深度,与热源的距离,在含烃地层内烃类的丰度,和/或与出油井的距离来变化。地层内的压力可以在几个不同位置测定,它们包括但不限于,在井头和在井眼的不同深度。在一些实施方案中,压力可以在出油井中测量。在另一实施方案中,压力可以在加热器井中测量。

    含烃地层加热到该热解温度范围可以在已经在含烃地层中产生较大渗透性之前进行。渗透性的最初缺乏会阻止所产生的流体从地层内的热解区中的运输。以这种方式,因为热量最初从热源转移到含烃地层,在含烃地层内的流体压力靠近热源会增加。流体压力的增加可通过例如在地层中至少一些烃类的热解过程中流体的产生来引起。增加的流体压力可以通过该热源来释放,监测,改变,和/或控制。例如,该热源可以包括在以上实施方案中描述的阀门。这种阀门可以经过构型设计以控制流体从热源中流出和流体流入热源中的流速。另外,该热源可以包括裸井眼构型,通过它释放压力。

    另外地,通过热解流体或在地层中产生的其它流体的膨胀所形成的压力可以提高,虽然在地层中不存在进入生产井的开型通路或任何其它压力降。另外,流体压力可以允许提高到岩石静压力。当流体压力等于或超过岩石静压力时会在含烃地层中形成破裂。例如,该破裂可以从热源形成一直到生产井。在被加热部分内破裂的产生可以降低该部分内的压力,归因于地层流体通过生产井的生产。为了在所选择的部分中保持所选择的压力,在生产井可以保持背压。

    在含烃地层内的流体压力可以依据例如烃类的热膨胀热解流体的产生,和所产生流体从地层中的抽出来改变。例如,当在地层内产生流体时,井眼内的流体压力会提高。所产生流体从地层中的输出可以减少地层内的流体压力。

    在一个实施方案中,在热解过程中在含烃地层的一部分的所选择区段内压力可以提高到所选择的压力。所选择的压力可以是在大约2巴(绝对)到大约72巴(绝对)范围内或,在一些实施方案中,在2巴(绝对)到36巴(绝对)范围内。另外地,所选择的压力可以在大约2巴(绝对)到大约18巴(绝对)的范围内。例如,在某些实施方案中,大部分的烃流体可以从具有在大约2巴(绝对)到大约18巴(绝对)范围内的压力的地层中生产。在热解过程中的压力可以改变或被改变。该压力可以加以改变,以改变和/或控制所生产地层流体的组成,控制可凝结流体同不凝结的流体相比的百分比,和/或到控制所生产的流体的API比重。例如,下降的压力可以导致较多可凝结流体组分的生产,而流体含有主要百分数的烯烃,反之亦然。

    在某些实施方案中,在含烃地层的一部分中的压力将由于在加热部分内流体产生而提高。另外,可以在地层的加热部分内保持该提高的压力。例如,地层内的提高压力可通过所产生的地层流体流出穿过热源和/或通过控制经生产井从地层中生产的地层流体的量来得到保持。保持在地层内提高的压力可以抑制地层沉陷。另外,保持在地层内提高的压力倾向于减少用于输送可凝结烃类的收集导管的所需尺寸。此外,保持在加热部分内提高的压力可以减少和/或基本上不需要在地面上压缩地层流体,因为地层产品通常在较高压力下生产。保持在地层内的提高压力也可有利于从所生产的不可凝结的流体来发电。例如,所生产的不可凝结的流体可穿过汽轮机来发电。

    地层中的提高压力也可得到保持,以生产更多和/或改进的地层流体。在某些实施方案中,在热解压力范围内从地层生产的大量(例如,主要量)的地层流体可包括不凝烃类。在地层内有选择地提高和/或维持压力,且地层流体能够在该提高和/或维持压力下或在该压力附近生产。随着地层内压力的提高,从地层生产的地层流体将在许多情况下包括大部分的不凝烃类。以这种方式,大量(例如主要量)的在该压力下生产的地层流体将包括比在较低压力下生产的地层流体有更轻和更高质量的可凝结烃类。

    另外,在含烃地层的加热部分中保持压力,基本上抑制了具有大于例如约25的碳数的地层流体的生产。例如,提高含烃地层的该部分中的压力可以提高该部分中流体的沸点。流体的沸点的这一提高可基本上抑制具有较高碳数的地层流体的生产,和/或多环烃化合物的生产,因为此类地层流体倾向于作为液体保留在地层中直至它们裂解为止。

    另外,提高含烃地层的一部分中的压力会导致从地层生产的地层流体的API比重的提高。较高的压力会提高较短链烃流体的产生,它具有较高的API比重值。

    在一个实施方案中,在地层的加热部分中的压力可以惊人地提高较高质量热解流体的质量,较高质量热解流体的数量,和/或热解流体在地层内的蒸汽相运输。提高该压力常常允许低分子量烃类的生产,因为低分子量烃类将在地层中的蒸汽相中更容易运输。低分子量烃类的产生(和相应增加的蒸汽相运输)被认为部分地归因于在含烃地层的一部分中氢气的自产生和反应。例如,保持提高的压力可以强迫在加热部分中产生的氢气进入液相(例如通过溶解)。另外,加热该部分到热解温度范围内的某温度下可以使地层内的至少一些烃类发生热解,以在液相中产生热解流体。所产生的组分可以包括双键和/或基团。在液相中的H2可以减少所产生热解流体的双键,从而减少了所产生的热解流体的聚合潜力。另外,氢气也可中和在所产生的热解流体中的基团。所以,在液相中的H2可以基本上抑制所产生的热解流体彼此反应和/或与地层中的其它化合物反应。如此,较短链的烃类可以进入蒸汽相并可从地层中生产。

    为增加蒸汽相中热解流体的量而提高该地层压力可以显著减少在地层的所选择区段内结焦的潜力。结焦反应可以在液相中发生。因为所产生组分中的许多可以转变成短链烃类和可以进入蒸汽相中,因此在所选择区段内的结焦可以减少。

    为增加蒸汽相中热解流体的量而提高地层压力也是有益的,因为这样做允许较轻(和较高质量)热解流体的更多回收。通常,当此类流体处于蒸汽相中而不是液相中时,热解流体更快速地生产,有较少残留物。当热解流体处于液相中而不是蒸汽相中时,不希望有的聚合反应也倾向于更频繁地发生。另外,当在蒸汽相中生产热解流体时,需要较少数目的生产井/区域,从而降低项目成本。

    在一个实施方案中,含烃地层的一部分被加热提高H2的分压。在一些实施方案中,提高的H2分压可以包括在大约1巴(绝对)至大约7巴(绝对)范围内的H2分压。另外地,提高的H2分压可以包括在大约5巴(绝对)至大约7巴(绝对)范围内的H2分压。例如,在大约5巴(绝对)到大约7巴(绝对)范围内可生产主要量的烃流体。然而,在热解H2分压范围内的H2分压的范围可以取决于例如地层的加热部分的温度和压力来变化。

    保持地层内H2分压大于大气压力可提高所生产的可凝结烃流体的API值。例如,保持该H2分压可以提高所生产的可凝结烃流体的API值到大于约25或,在有些情况下,大于约30。在含烃地层的加热部分中保持该H2分压可以提高在该加热部分中H2的浓度,使得H2可用于与烃类的热解组分反应。H2与烃类的热解组分的反应可以减少烯烃聚合成焦油和其它交联的(难于提高品位的)产品。此类产品可具有较低的API比重值。所以,具有低API比重值的烃流体的生产基本上被抑制。

    阀门可以经过构型设计来保持、改变、和/或控制在含烃地层的加热部分内的压力。例如,在含烃地层内设置的热源可以联接到阀门。该阀门可以经过构型设计后经过加热器源从地层中释放出流体。另外,压力阀可以联接于生产井,它可以设置在含烃地层内。在一些实施方案中,通过阀门释放的流体可以加以收集和运输到地表装置中以进一步加工和/或处理。

    烃类的现场转化方法可以包括为含烃地层的一部分提供热量,控制该加热部分中的温度,温度升高速率,和/或压力。例如,在加热部分内的压力可通过使用设置在加热器井或生产井内的压力阀来控制,如本文中所述。加热部分的温度和/或温度升高速率可通过例如改变供应给一个或多个热源的能量的量来加以控制。

    控制含烃地层内的压力和温度将在大多数情况下影响所产出的地层流体的性质。例如,从地层生产的地层流体的组成或质量可通过改变在加热部分中的所选择区段中的平均压力和/或平均温度来改变。产出流体的质量可以由性质限定,该性质可以包括但不限于,API比重,在产出的地层流体中烯烃百分比,乙烯与乙烷比率,氢/碳原子比率,在产出的地层流体中具有大于25的碳数的烃类的百分比,总当量产量(气体和液体),总液体生产,和/或液体产品产率(作为费歇分析法的百分比)。例如,控制所产出的地层流体的质量可以包括控制在所选择区段中的平均压力和平均温度,以使得在所选择区段中的平均估测压力大于在下面关系式中对于在所选择区段中的估测平均温度(T)所计算的压力(p):p=exp[AT+B]]]>

    其中p是以psia(每平方英寸磅数绝对值)测量,T是以开氏度测量,A和B是取决于所选择性质的数值的参数。估测的平均温度是按照这里所述测定的。

    以上给出的关系可以改写,使得压力的自然log是温度倒数的线性函数。这一形式的关系可以重写成:ln(p)=A/T+B。在绝对压力与绝对温度的倒数的关系曲线中,A是斜率和B是截距。该截距B被定义为当温度的倒数接近0时压力的自然对数。所以,压力-温度关系的斜率和截距值(A和B)可以对于所选择性质的给定值从两个压力-温度数据点确定。该压力-温度数据点可以包括在地层内的平均压力和在地层内的平均温度,在该压力和温度下性质的具体值是或可从该地层获得。例如,该压力-温度数据点可以从实验如实验室实验或野外现场实验获得。

    可以测定在斜率参数A和地层流体的性质的值之间的关系。例如,A的值可作为地层流体性质的值的函数来描绘。三次多项式可以拟合到这些数据。例如,三次多项式关系如A=a1*(性质)3+a2*(性质)2+a3*(性质)+a4可以拟合该数据,其中a1,a2,a3和a4是描述了在第一参数A和地层流体的性质之间的关系的经验常数。另外地,具有其它泛函形式的相互关系式如另一阶多项式或对数函数可以拟合该数据。如此,a1,a2,…,可以从数据拟合的结果估测。类似地,可以测定在第二参数B和地层流体的性质的值之间的关系。例如,B的值可作为地层流体性质的值的函数来描绘。三次多项式也可拟合该数据。例如,三次多项式关系如B=b1*(性质)3+b2*(性质)2+b3*(性质)+b4可以拟合到该数据,其中b1,b2,b3和b4是描述了在参数B和地层流体的性质的值之间的关系的经验常数。照这样,b1,b2,b3,和b4可以从拟合该数据的结果来估测。例如,表1a和1b列出了对于如上所述的Green River油页岩的地层流体的几个性质所测定的估测经验常数。表1a性质A1A2a3a4API比重-0.738549-8.8939024752.182-145484.6乙烯/乙烷比-155434093261335-303588.8-2767.469碳数大于25的烃类的wt%0.1621956-8.85952547.9571-24684.9H/C原子比2950062-1698245632584767-20846821液体生产(加仑/吨)119.2978-5972.9196989-524689当量液体生产(加仑/吨)-6.24976212.9383-777.217-39353.47%费歇分析值0.5026013-126.5929813.139-252736表1b性质b1b2b3B4API比重0.003843-0.2794243.39107196.67251乙烯/乙烷比-8974.3172593.058-40.7887423.31395碳数大于25的烃类的wt%-0.00050220.026258-1.1269544.49521H/C原子比790.0532-4199.4547328.5724156.599液体生产(加仑/吨)-0.178088.914098-144.999793.2477当量液体生产(加仑/吨)-0.033872.778804-72.6457650.7211%费歇分析值-0.00079010.196296-15.1369395.3574

    为了确定可用于生产具有所选择性质的地层流体的平均压力和平均温度,所选择性质的值和如上所述的经验常数可用于根据下列关系式测定第一参数A,和第二参数B的值:

    A=a1*(性质)3+a2*(性质)2+a3*(性质)+a4

    B=b1*(性质)3+b2*(性质)2+b3*(性质)+b4

    例如,表2a-2g列出了对于如上所述的地层流体的所选择性质测定的,参数A的估测值和参数B的近似值。表2a API比重A B 20度-59906.9 83.46594 25度43778.5 66.85148 30度-30864.5 50.67593 35度-21718.5 37.82131 40度-16894.7 31.16965 45度-16946.8 33.60297

    表2b 乙烯/乙烷比A B 0.20-57379 83.145 0.10-16056 27.652 0.05-11736 21.986 0.01-5492.8 14.234表2c 碳数大于25的烃类的wt%A B 25%-14206 25.123 20%-15972 28.442 15%-17912 31.804 10%-19929 35.349 5%-21956 38.849 1%-24146 43.394

    表2d H/C原子比A B 1.7-38360 60.531 1.8-12635 23.989 1.9-7953.1 17.889 2.0-6613.1 16.364

    表2e 液体生产(加仑/吨)A B 14加仑/吨-10179 21.780 16加仑/吨-13285 25.866 18加仑/吨-18364 32.882 20加仑/吨-19689 34.282

    表2f 当量液体生产(加仑/吨)A B 20加仑/吨-19721 38.338 25加仑/吨-23350 42.052 30加仑/吨-39768.9 57.68

    表2g %费歇分析值A B 60%-11118 23.156 70%-13726 26.635 80%-20543 36.191 90%-28554 47.084

    参数A和参数B的测定值可用来通过使用在所选择区段中的估测平均温度T,确定在地层的所选择区段中的平均压力。估测的平均温度是按照这里所述测定的。例如,所选择区段的平均压力可以通过关系式确定:p=exp[(A/T)+B],其中p是以psia测量的,和T是以开氏度测量的。另外地,所选择区段的平均绝对压力(以巴测量)可以使用下列关系式来确定:

    p(巴)=exp[(A/T)+B-2.6744]。如此,可以控制在所选择区段中的平均压力,以使得在所选择区段内的平均压力被调节到以上所测定的平均压力,为的是从具有所选择性质的所选择区段中生产地层流体。

    另外地,参数A和参数B的测定值可用于通过使用在所选择区段中估测的平均压力p来测定在地层的所选择区段中的平均温度。估测的平均压力是按照这里所述测定的。所以,使用上面描述的关系式,在所选择区段中的平均温度可以被控制到接近所计算的平均温度,为的是生产具有所选择性质的烃流体。

    正如这里所述,从地层生产的地层流体的组成可通过改变烃类的现场转化方法中的至少一种操作条件来改变。另外,至少一种操作条件可通过使用计算机-辅助(computer-implemented)方法来测定。例如,操作条件可包括,但不限于,在地层中的压力,在地层中的温度,盐的加热速率,提供给热源的功率,和/或合成气产生流体的流速。计算机-辅助方法可以包括测量地层的至少一种性质。例如,测量的性质可以包括含有烃类的层的厚度,镜质体反射,氢含量,氧含量,水分含量,含烃地层的深度/宽度,和这里另外描述的其它性质。

    至少一种测量的性质可以输入到计算机可执行程序中。该程序可经过运算从所测量的性质确定至少一种操作条件。另外,所选择的地层流体的至少一种性质可以输入该程序中。例如,所选择的地层流体的性质可包括,但不限于,API比重,烯烃含量,碳数分布,乙烯/乙烷比率,和碳/氢原子比率。该程序也可经过运算从选择的地层流体的性质确定至少一种操作条件。如此,现场转化方法的操作条件可以经过改变以接近至少一种测定的操作条件,以使得可以增加所选择的地层流体从地层中的生产。

    在一个实施方案中,计算机-辅助方法可用来确定对于作为时间函数的一组操作条件,可从含烃地层生产的地层流体的至少一种性质。该方法可以包括测量地层的至少一种性质和为这里所述的计算机程序提供至少一个所测量的性质。另外,一组或多组操作条件也可提供给计算机程序。操作条件中的至少一种可以包括,例如,加热速率或压力。一组或多组操作条件可包括目前使用的操作条件(在现场转化方法中)或为现场转化方法所考虑的操作条件。计算机程序经过运算可通过使用至少一组操作条件和地层的至少一种测量的性质,来确定由烃类的现场转化方法生产的地层流体的至少一种性质(作为时间的函数)。此外,该方法可以包括将流体的测定性质与所选择的性质对比。如此,如果由计算机程序产生了多个确定性质,则可以确定与所选择性质差别最小的所确定性质。

    地层流体性质可以取决于生产井在地层中的位置来变化。例如,相对于地层中热源位置的生产井位置会影响从地层生产的地层流体的组成。另外,在地层中的生产井和热源之间的距离可作变化以改变从地层生产的地层流体的组成。减少在生产井和热源之间的距离可以提高在生产井中的温度。如此,流过生产井的相当大部分的热解流体可在一些情况下由于在生产井中升高的温度而裂解成不凝结的化合物。所以,可以选择生产井相对于热源的位置以提高所产出的地层流体的不凝性气体分数。另外,可以选择生产井相对于热源的位置,以使得所产出的地层流体的不凝性气体分数大于所产出的地层流体的可凝性气体分数。

    所产出的地层流体的碳数分布可以指示该产出的地层流体的质量。通常,低碳数的可凝结烃类被认为比高碳数的可凝结烃类更有价值。低碳数可以包括,例如,低于大约25的碳数。高碳数可以包括大于约25的碳数。在一个实施方案中,烃类的现场转化方法可以包括为地层的至少一部分提供热量和让热量转移,以使热量生产出热解流体,使得大部分的热解流体具有低于大约25的碳数。

    在一个实施方案中,烃类的现场转化方法可以包括以足以改变和/或控制烯烃生产的一种速率将热量提供到含烃地层的至少一部分中。例如,该方法可以包括以一定速率加热该部分以生产地层流体,后者具有低于地层流体的可凝结烃类重量的大约10wt%的烯烃含量。减少烯烃生产可以基本上减少管道表面被该烃类的涂敷,因此减少了与运输烃类通过该管道相关的困难。减少烯烃生产也倾向于在热解过程中抑制烃类的聚合,从而提高在地层中的渗透性和/或提高产出流体的质量(例如,通过降低碳数分布,增加API比重,等等)。

    然而,在一些实施方案中,该部分能够以一定速率加热,以便选择性地提高在产出流体中可凝结烃类的烯烃含量。例如,烯烃可以与此类可凝结烃类分离并用于生产附加产物。

    在一些实施方案中,该部分能够以一定速率加热,以便选择性地提高在产出流体中可凝结烃类的苯酚和取代酚的含量。例如,苯酚和/或取代酚可以与此类可凝结烃类分离并用于生产附加产物。该资源可以,在一些实施方案中,被选择来增加苯酚和/或取代酚的生产。

    在产出流体中的烃类可包括几种不同化合物的混合物,其中的一些是可凝结的和其中的一些则不是。在产出流体中不凝烃类的分数可通过在含烃地层的加热部分中改变、控制和/或保持温度在热解温度范围内来得到改变和/或控制。另外,在产出流体中不凝烃类的分数可通过改变、控制和/或保持该加热部分中的压力来改变和/或控制。在一些实施方案中,地面设备可以经过构型设计来分离所产出流体的可凝结和不凝结的烃类。

    在一些实施方案中,该不凝结烃类可能包括,但不限于,具有低于大约5个碳原子的烃类,H2,CO2,氨,H2S,N2和/或CO。在某些实施方案中,从含烃地层的一部分生产的流体的不凝烃类所具有的碳数为2-4的烃类(“C2-4”烃类)与甲烷的重量比是高于约0.3,高于约0.75,或在一些情况下高于约1。例如,从油页岩或含重烃的地层的一部分中生产的流体的不凝烃类所具有的碳数为2-4的烃类与甲烷的重量比是大于约1。另外,从含有煤炭的地层的一部分中生产的流体的不凝烃类所具有的碳数为2-4的烃类与甲烷的重量比是大于约0.3。

    与从其它地层生产的类似的重量比相比C2-4烃类与甲烷的这些重量比被认为是有益的。该重量比说明了具有2,3,和/或4个碳原子的烃类(例如,乙烷,丙烷,和丁烷)的量大于在从地层生产的气体中正常存在的量。这些烃类常常更有价值。具有该重量比的烃类的生产被认为归因于在热解过程中施加于地层的条件(例如,在还原性环境或至少非氧化性环境中使用的控制加热和/或压力)。可以相信,在这些条件下更长链的烃类能够容易地分解成更小(和在一些情况下更饱和)的化合物如C2-4烃类。C2-4烃类与甲烷重量比可以依据例如加热部分的温度和加热部分的加热速率来变化。

    在某些实施方案中,在从含烃地层生产的流体中烃类的API比重可以是大约25或25以上(例如,30,40,50等)。

    甲烷和至少一部分乙烷可以与产出流体中的不凝烃类分离并用作天然气。一部分的丙烷和丁烷可以与产出流体的不凝烃类分离。另外,分离的丙烷和丁烷可以用作燃料或用作生产其它烃类的原料。碳数低于4的一部分的产出流体可以按照这里所述在地层中进行重整以产生另外的H2和/或甲烷。另外,乙烷,丙烷,和丁烷可以与不凝烃类分离并用于产生烯烃。

    从含烃地层生产的流体的不凝烃类可具有大于约5wt%,大于10wt%,或甚至大于15wt%的H2含量。该H2可以用作例如燃料电池的燃料,在现场将烃流体加以氢化,和/或在非现场将烃流体加以氢化。另外,在含烃地层的加热区段中H2在地层流体内的存在被认为提高产出流体的质量。在某些实施方案中,产出流体的氢/碳原子比可以是至少大约1.7或1.7以上。例如,产出流体的氢/碳原子比可以是至少大约1.8,大约1.9,或更高。

    该不凝烃类可以包括一些硫化氢。该不凝烃类可以经过处理将硫化氢与不凝烃类中的其它化合物分离。分离的硫化氢可用于生产例如硫酸,肥料,和/或元素硫。

    在某些实施方案中,通过现场转化方法从含烃地层生产的流体可以包括二氧化碳。从地层生产的二氧化碳,例如,可用于提高油的回收,用作生产尿素的原料的至少一部分,和/或重新注入含烃地层中用于合成气生产和/或煤层甲烷生产。

    通过现场转化方法从含烃地层生产的流体可包括一氧化碳。从地层生产的一氧化碳例如可用作燃料电池的燃料,用作费-托工艺的原料,用作甲醇生产的原料,和/或用作甲烷生产的原料。

    产出流体的可凝结烃类可以与流体分离。在一个实施方案中,可凝结组分可以包括可凝结烃类和在水相中存在的化合物。该水相可以与可凝结组分分离。全部的产出流体的氨含量可以是大于流体的大约0.1wt%,大于流体的大约0.5wt%,和在一些实施方案中,至多为产出流体的大约10wt%。该氨可用来生产例如尿素。

    可以生产流体的某些实例,其中在产出流体中的大部分烃类具有低于约25的碳数。另外地,在可凝结烃类中低于大约15wt%的该烃类具有大于约25的碳数。在一些实施方案中,在可凝结烃类中低于大约5wt%的烃类可以具有大于约25的碳数,和/或在可凝结烃类中低于大约2wt%的烃类具有大于约25的碳数。

    在某些实施方案中,从地层(例如,含有煤炭的地层)生产的流体可以包括氧化的烃类。例如,产出流体的可凝结烃类包括含量大于可凝结烃类的大约5wt%的氧化烃类。另外地,可凝结烃类包括含量大于可凝结烃类的大约1.0wt%的氧化烃类。此外,可凝结烃类包括含量大于可凝结烃类的大约1.5wt%或大于可凝结烃类的大约2.0wt%的的氧化烃类。在一个实施方案中,该氧化烃类可包括,但不限于,苯酚和/或取代酚。在一些实施方案中,苯酚和取代酚比从现场转化方法生产的其它产品有更高的经济价值。所以,现场转化方法可用于生产苯酚和/或取代酚。例如,当地层内的流体压力保持在较低压力下时会增加苯酚和/或取代酚的产生。

    在一些实施方案中,从含烃地层生产的流体的可凝结烃类也可包括烯烃。例如,可凝结烃类的烯烃含量可以在大约0.1wt%到大约15wt%的范围内。另外地,可凝结烃类的烯烃含量也可以在大约0.1wt%到大约5wt%的范围内。此外,可凝结烃类的烯烃含量也可以在大约0.1wt%到大约2.5wt%的范围内。可凝结烃类的烯烃含量可以通过控制在地层内的压力和/或温度来加以改变和/或控制。例如,可凝结烃类的烯烃含量可通过选择性提高地层内的压力,通过选择性降低地层内的温度,通过选择性降低地层的加热速率,和/或通过选择性提高地层中的氢分压,来减少。在一些实施方案中,可凝结烃类的减少的烯烃含量是优选的。例如,如果产出流体的一部分用于生产汽车燃料,则减少的烯烃含量是需要的。

    在另一实施方案中,较高烯烃含量是优选的。例如,如果可凝结烃类的一部分可被出售,则较高烯烃含量是优选的,归因于烯烃产品的高经济价值。在一些实施方案中,烯烃可以与产出流体分离然后出售和/或用作生产其它化合物的原料。

    产出流体的不凝烃类也可同时包括烯烃。例如,不凝烃类的烯烃含量使用乙烯/乙烷摩尔比率来精确计量。在某些实施方案中,该乙烯/乙烷摩尔比率可以是大约0.001到大约0.15。

    从含烃地层生产的流体可以包括芳香族化合物。例如,可凝结烃类包括含量大于可凝结烃类的大约20wt%或大约25wt%的芳香族化合物。另外地,可凝结烃类包括含量大于可凝结烃类的大约30wt%的芳香族化合物。可凝结烃类也可同时包括较低量的在其中具有两个以上环的化合物(例如,三芳族烃或更高)。例如,该可凝结烃类可以在可凝结烃类中包括低于大约1wt%或低于大约2wt%的三芳族烃或更多环的芳族烃。例如,该可凝结烃类可以在可凝结烃类中包括低于大约5wt%的三芳族烃或更多环的芳族烃。

    尤其,在某些实施方案中,沥青质(即基本上可溶于烃类中的大的多环芳族烃)构成了可凝结烃类的低于大约0.1wt%。例如,该可凝结烃类可以包括大约0.0wt%到大约0.1wt%的沥青质组分或在一些实施方案中,低于大约0.3wt%的沥青质组分。

    产出流体的可凝结烃类也包括较大量的环烷烃。例如,可凝结烃类包括含量为可凝结烃类的大约5wt%至大约30wt%的环烷烃组分。

    在某些实施方案中,从地层生产的流体的可凝结烃类可包括含有氮的化合物。例如,低于大约1wt%(当以元素为基础计算时)的可凝结烃类可以是氮(例如,典型地,该氮可以在含氮化合物如吡啶,胺类,酰胺,咔唑等中)。

    在某些实施方案中,从地层生产的流体的可凝结烃类可包括含有氧的化合物。例如,在某些实施方案中(例如,对于油页岩和重质烃类)低于大约1wt%(当以元素为基计算时)的该可凝结烃类可以是含氧的化合物(例如,典型地该氧可以在含氧的化合物如苯酚,取代酚,酮,等中)。在某些其它实施方案中,(例如,对于含有煤炭的地层)在大约5wt%和大约30wt%之间的该可凝结烃类可以典型地包括含氧的化合物如酚类,取代酚,酮,等。在一些情况下,某些含氧的化合物(例如,酚类)是有价值的,因此可以经济地从产出流体中分离。

    在某些实施方案中,从地层生产的流体的可凝结烃类可包括含有硫的化合物。例如,低于大约1wt%(当以元素为基础计算时)的可凝结烃类可以是硫(例如,典型的含硫化合物包括诸如噻吩,硫醇等之类的化合物)。

    此外,从地层生产的流体可包括氨(典型地该氨可以与从地层产生的水缩合,如果有的话)。例如,从地层生产的流体可以在一些实施方案中包括大约0.05wt%或更多的氨。某些地层(例如煤炭和/或油页岩)可以生产较大量的氨(例如,全部所生产的流体中高达约10wt%可以是氨)。

    另外,从地层生产的流体也可包括分子氢(H2)。例如,该流体可以包括占不凝烃类的在大约10%到大约80%(按体积)之间的H2含量。

    在一些实施方案中,在该(地层)部分中烃类的总有机碳含量的至少大约15wt%可以转变成烃流体。

    从烃类生产的产品的总潜在量可通过费歇分析法测定。该费歇分析法是包括在1小时内加热烃类的样品到大约500℃、收集从加热的样品生产的产品和最后定量这些产品的一种标准方法。在一个实施方案中,现场处理含烃地层的方法可包括加热地层的一区段,从烃类得到了占潜在量的约60wt%以上的产品(根据费歇分析法所测量的结果)。

    在某些实施方案中,地层的所选择区段的加热可以加以控制,使地层的所选择区段内至少大约20wt%(或在一些实施方案中大约25wt%)的该烃类发生热解。在地层内的烃类转化可以用于抑制地层的沉陷。

    加热地层的至少一部分可引起该部分内至少一些烃类发生热解,从而形成烃片段。该烃片段可以是反应活性的并可以与地层中的其它化合物反应和/或与通过热解产生的其它烃片段反应。然而,烃片段与其它化合物和/或彼此之间的反应可以减少所选择产品的生产。然而,在加热过程中在地层的该部分中或被提供在该部分中的还原剂可以提高所选择产品的生产。还原剂的例子可包括,但不限于,H2。例如,该还原剂可以与该烃片段反应而形成所选择的产品。

    在一个实施方案中,分子氢可以提供到该地层中以产生还原性环境。在分子氢和在地层的一部分内的至少一些烃类之间的氢化反应可产生热量。所产生的热量可用于加热地层的该部分。分子氢也可在地层的该部分内产生。如此,所产生的H2可用于氢化在地层的一部分中的烃流体。

    例如,H2可以从含烃地层的第一部分中生产。该H2可以作为从第一部分生产的流体的组分来生产。例如,从地层的第一部分生产的流体的至少一部分可以提供到地层的第二部分中以在第二部分中创造还原性环境。地层的第二部分可以按照这里所述被加热。另外,所生产的H2可以提供到地层的第二部分中。例如,在所产出流体内H2的分压可以大于热解H2分压,根据在生产出所产出流体的井中测量的结果。

    例如,含烃地层的一部分可以在还原性环境中加热。在加热的部分中至少一些烃类的热解过程中还原剂的存在可以还原(例如,至少部分地饱和)至少一些热解产品。还原该热解产品可以减少在烃流体中烯烃的浓度。还原该热解产物可以提高烃流体的产品质量。

    现场处理含烃地层的方法的实施方案可以包括在地层内产生H2和烃流体。另外,该方法可以包括在地层内使用H2将所产生的烃流体加以氢化。在一些实施方案中,该方法也可包括提供所产生的H2到地层的一部分中。

    在一个实施方案中,处理含烃地层的一部分的方法可包括加热该部分,使得该加热的部分的所选择区段的热导性提高。例如,在该部分的所选择区段内的孔隙度和渗透性在加热过程中会显著提高,使得热量不仅利用传导方式而且利用对流方式和/或利用辐射方式从热源中转移通过该地层。如此,热量的该辐射和对流转移可提高所选择区段的表观热导性和因此影响热扩散性。大的表观热扩散性使得从热源加热含烃地层的至少一部分变得可行。例如,传导,辐射,和/或对流方式加热的结合可以加速该加热。加速的加热可以显著地减少为生产烃类所需要的时间和可以显著提高现场转化方法的工业化的经济可行性。在另外的实施方案中,含烃地层的现场转化方法也可包括为加热的部分提高热量以便将所选择区段的热导率提高到高于大约0.5W/(m℃)或大约0.6W/(m℃)。

    在一些实施方案中,煤生成的现场转化方法可以提高在煤炭的加热部分内煤炭的品级。煤炭的品级提高(由镜质体反射来分析)可以与煤炭的结构(例如碳结构中的分子变化)的较大变化相符。煤炭的变化的结构可具有较高的热导率。

    在含烃地层内的热扩散性可取决于例如含烃地层的密度,地层的热容量和地层的热导率来变化。当在所选择区段内发生热解时,可以从所选择区段中除去含烃地层质量(mass)。质量的除去可包括,但不限于,水的除去和烃类转变成地层流体。例如,当从含有煤炭的地层中除去水时可以预期得到较低的热导率。这一效果会在不同的深度上有较大变化。在较大的深度下,岩石静压力可以是较高的,并可以封闭煤炭中的某些孔(例如,内生裂隙(cleat)和/或裂纹)。煤炭孔的封闭可以增加煤炭的热导率。在一些实施方案中,由于较高的岩石静压力而可以观察到较高的热导率。

    在一些实施方案中,现场转化方法可以在热解过程中产生分子氢。另外,热解倾向于增加在地层中的孔隙率/空隙空间。地层中的空隙空间可含有由热解方法产生的氢气。氢气可具有氮或或空气的大约六倍的热传导率。这可以提升地层的热传导率。

    这里所述的某些实施方案在许多情况下能够经济地处理先前被认为是不经济的地层。此类处理是可能的,因为热导率和热扩散性的令人惊奇的提高能够用该实施方案实现。这些令人惊讶的结果可通过以下事实来说明:现有的文献指出,当加热时,某些含烃地层如煤炭对于热导率和热扩散性都显示较低的值。例如,在标题为“Thermal,Mechanical,and Physical Properties of Selected Bituminous-Coals and Cokes”,由J.M.Singer和R.P.Tye起草的政府报告No.8364中,美国内务部,矿业局(U.S.Department of the Interior,Bureau of Mines)(1979),作者报导了四种烟煤的热传导率和热扩散性。这一政府报告包括在高达约400℃下显示较低值的热导率和扩散性的曲线图(例如,热导率是大约0.2W/(m℃)或更低,和热扩散性低于约1.7×10-3cm2/s)。这一政府报告指出“煤炭和焦炭是优良的绝热体”。

    相反,在这里所述的某些实施方案中,含烃类的资源(例如,煤炭)可以进行处理,以使得热传导率和热扩散性(例如,热导率等于或大于约0.5W/(m℃)和热扩散性等于或大于4.1×10-3cm2/s)显著高于以现有文献如政府报告No.8364为基础所预计的值。如果按照这里的某些实施方案中所述进行处理,则煤炭无法用作“优良的绝热体”。相反,热量能够且一定以一种比根据文献所预期的速率高(和好)得多的速率转移和/或扩散到地层中,从而显著提高了处理该地层的经济可行性。

    在一个实施方案中,现场加热含烃地层的一部分到低于上限热解温度的温度可以提高该加热的部分的渗透性。例如,由于热量的作用引起在加热的部分中裂纹的形成而导致渗透性提高。随着加热的部分的温度升高,由于蒸发作用而除去水。蒸发的水可以从地层中逃逸和/或除去。水的除去也可提高该加热的部分的渗透性。另外,由于在宏观规模上从加热部分内至少一些烃类的热解作用生产烃类,也提高了加热部分的渗透性。在一个实施方案中,在含烃地层的加热部分内所选择区段的渗透性是基本上均匀的。例如,通过传导的加热是基本上均匀的,并且由传导加热产生的渗透性也是基本上均匀的。在本专利的上下文中,“基本上均匀的渗透性”是指在地层中任何所选择的部分的估测(例如计算或估计)渗透性与该选择的部分中所分析的平均渗透性相比不会变化10倍以上。

    在含烃地层的加热部分中所选择区段的渗透性也可快速提高,在所选择区段通过传导方式加热时。例如,非渗透性的含烃地层的渗透性在处理之前低于大约0.1毫达西(9.9×10-17m2)。在一些实施方案中,含烃地层的至少一部分进行热解可提高该部分的所选择区段内的渗透性到大于约10毫达西,100毫达西,1达西,10达西,20达西,或50达西。所以,该部分的所选择区段的渗透性可以提高约1,000倍,10,000倍,或100,000倍以上。

    在一些实施方案中,来自一个或多个热源的热量的重叠(例如,叠加)可导致含烃地层的一部分的基本上均匀加热。因为在加热过程中地层典型地具有贯穿该地层的温度分布廓线,在本专利的上下文中“基本上均匀”加热是指这样一种加热,要求该区段的主要部分中的温度与被处理的所选择区段(体积)的主要部分中的估测平均温度相差不多于100℃。

    含烃地层的基本上均匀加热可导致渗透性的基本上均匀提高。例如,由于在地层中产生的热应力,均匀地加热可以在加热的部分内产生一系列的基本上均匀的裂纹。基本上均匀地加热能够以基本上均匀的方式从该部分中产生热解流体。由于蒸发和生产所除去的水可以导致提高加热部分的渗透性。除了由于热应力而产生裂纹之外,由于流体压力提高也产生裂纹。当在加热部分内产生流体时,在加热部分内的流体压力也会提高。当流体压力接近该加热部分的岩石静压力时,可以产生裂纹。流体的基本上均匀加热和均匀产生可以在加热部分内产生基本上均匀的裂纹。在一些实施方案中,含烃地层的加热区段的渗透性变化不超过大约10倍。

    由于处理含烃地层的至少一部分而导致的烃类的除去(按照在以上实施方案的任何一个中所述)也可在微观的规模上发生。由于加热而从该部分内的微孔中除去烃类。微孔通常被定义为具有低于约1000埃的横截面尺寸的孔。如此,固体烃类的除去可以导致在加热部分的至少所选择区段内孔隙度的基本上均匀提高。加热含烃地层的该部分(按照在以上那些实施方案中所述)可以基本上均匀地提高该加热部分内所选择区段的孔隙度。在本专利的上下文中,“基本上均匀的孔隙度”是指在地层中任何所选择的部分的估测(例如计算或估计)孔隙度与该选择的部分的所分析的平均孔隙度相差不多于约25%。

    在热解之后含烃地层的一部分的物理特性类似于多孔性床的那些。例如,在热解之后含烃地层的一部分可包括具有大约几毫米的尺寸的颗粒。这些物理特性与注入可使烃类燃烧的气体以加热该烃类的含烃地层的物理特性不同。注入非破碎的或裂隙地层中的气体倾向于形成通道并且不会在整个地层中均匀分布。相反,注入含烃地层的热解部分中的气体可容易地和基本上均匀地接触保留在地层中的碳和/或烃类。另外,通过加热该烃类所产生的气体能够以最低压力损失在地层的加热部分内传输较大的距离。气体的传输例如对于处理陡峭倾斜的含烃地层是特别理想的。

    合成气可以从含有例如煤炭的含烃地层,油页岩,其它含有干酪根的地层,重质烃类(焦油砂矿;等)和其它含沥青的地层的一部分生产。在合成气产生之前处理含烃地层以产生基本上均匀的、较高渗透性的地层。在一个实施方案中,在热解流体的生产已经基本上枯竭或变得不经济之后,开始合成气生产。另外,如果合成气的生产在经济上是更加有益,则合成气产生可以在基本上枯竭或不经济的热解流体生产之前开始。地层温度通常高于在合成气产生过程中的热解温度。将地层温度从热解温度提高到合成气产生温度可以允许热量进一步应用于地层以使地层热解。在将地层的温度从热解温度提高到合成气产生温度的同时,可以从地层中生产甲烷和/或H2。

    从预先除去了热解流体的地层中生产合成气使得可以生产出合成气,它主要包括H2,CO,水和/或CO2。在某些实施方案中,生产的合成气基本上不含烃组分,除非与合成气生产流体一起或除了合成气生产流体外不同来源的烃流也被引入到地层中。从通过缓慢加热地层到热解温度所形成的基本上均匀、较高渗透性地层中生产合成气可以使合成气产生流体容易引入到地层中,并使合成气产生流体接触该地层的较大部分。该合成气产生流体能够这样做,是因为在热解过程中已提高了地层的渗透性和/或因为在热解过程中已提高了地层中每单位体积的表面积。在热解后地层中的较大表面积(例如,“接触面积”)倾向于让合成气产生反应基本上处于C,H2,CO,水和CO2的平衡条件下。然而,其中形成甲烷的反应不处于平衡状态,因为它们是动力学控制的。较高的、基本上均匀的地层渗透性允许这些生产井以比地层热解过程中所使用的那些生产井更远的距离间隔。

    用于产生合成气的地层的至少一部分的温度可以提高到合成气产生温度(例如,在大约400℃和大约1200℃之间)。在一些实施方案中,所生产的合成气的组成可受到地层温度,受到邻近合成气生产井的地层的温度,和/或受到合成气组分的停留时间的影响。较低合成气产生温度可生产出具有高的H2/CO比率的合成气,但是所生产的合成气也可包括大部分的其它气体如水,CO2,和甲烷。较高的地层温度可以生产出H2与CO比率接近1的合成气,并且该气流包括大部分(和有时候基本上仅仅)H2和CO。如果该合成气产生流体是基本上纯净的蒸汽,则该H2与CO比率可以在较高温度下接近1。在大约700℃的地层温度下,在某些压力下该地层可以生产出H2与CO比率为大约2的合成气。合成气的组成倾向于取决于合成气产生流体的性质。

    合成气产生通常是吸热过程。在合成气生产过程中可将热量加入到地层的一部分中以保持地层温度在所希望的合成气产生温度或高于最低合成气产生温度。热量可以从热源中、从该部分的氧化反应中、和/或从比地层温度更高的温度下将合成气产生流体引入地层中的过程中,加入到地层中。

    氧化剂可以与合成气产生流体一起被引入地层的一部分中。该氧化剂可以与地层的该部分中的碳发生放热反应来加热该地层。在地层内的碳的氧化可以使地层的一部分经济地加热到较高的合成气产生温度。该氧化剂也引入到地层中,而没有合成气产生流体加热该部分。通过使用氧化剂,或氧化剂和热源,来加热地层的该部分可以比仅仅用热源加热该地层的部分更加有益。该氧化剂可以是,但不限于,空气,氧气,或富氧空气。该氧化剂可以与地层中的碳反应产生CO2和/或CO。空气,或富氧空气(即氧含量大于21体积%的空气)在地层中产生热量的应用会使得主要部分的N2存在于生产的合成气中。地层中的温度可以保持低于为产生氮氧化物(NOx)所需要的温度,这样很少或没有NOx化合物存在于所生产的合成气中。

    蒸汽和氧气,或蒸汽和空气的混合物,可以基本上连续地注入到地层中。如果蒸汽和氧气的注入用于合成气生产,则可通过水利用燃料电池的直流输出功率的水解作用就地生产氧气。由水的电解生产的H2可用作燃料电池的燃料流。由水的电解生产的O2可注入到热地层中以提高地层的温度。

    在用于从地层中热解和生产热解流体的地层内的热源和/或生产井可在合成气生产过程中用于不同的目的。在热解过程中用作热源或生产井的井可以用作注入井以便将合成气生产流体引入到地层中。在热解过程中用作热源或生产井的井可在合成气产生过程中用作生产井。在热解过程中用作热源或生产井的井可以在合成气产生过程中用作热源来加热地层。合成气生产井能够以比热解生产井更远的间距间隔,这归因于地层的较高的、基本上均匀的渗透性。合成气生产井可以被加热到较高的温度,以使得靠近生产井的该地层的一部分处于将生产出所需合成气组成的温度。比较地,热解流体生产井可以根本不加热,或可以仅仅加热到将会抑制生产井内热解流体的凝结的温度。

    可以从地层的热解过程中使用的井中从倾斜的地层中生产合成气。如图4中所示,合成气生产井206可以设置在注入井208之上和从注入井208向下倾斜设置。热的合成气生产流体可以被引入到注入井208中。沿着地层倾角向下运动的热的合成气流体可以产生合成气,后者通过合成气生产井206生产。沿着地层倾角向上运动的合成气产生流体可以在处于合成气产生温度下的该地层的一部分中产生合成气。在合成气产生温度下沿着地层倾角向上运动到该地层的部分以上的合成气产生流体和所产生的合成气的一部分可以加热相邻的地层。沿着地层倾角向上运动的合成气产生流体可以冷凝、加热地层的相邻部分,和在合成气产生温度下向下流向或流入地层的一部分中。合成气产生流体然后可以产生另外的合成气。

    合成气产生流体可以是在地层的加热部分内能够产生H2和CO的任何流体。合成气产生流体可以包括水,O2,空气,CO2,烃流体,或它们的结合物。水可以作为液体或作为蒸汽被引入到地层中。水与地层中的碳反应而生产出H2,CO,和CO2。CO2可以与热的碳反应而形成CO。空气和O2是氧化剂,它与地层中的碳反应产生热量和形成CO2,CO,和其它化合物。烃流体可以在地层内反应而形成H2,CO,CO2,H2O,焦炭,甲烷和/或其它轻质烃类。引入低碳数烃类(即,碳数低于5的化合物)可以在地层内生产附加的H2。在地层中添加较高碳数的烃类可通过在合成气内具有大量的甲烷和其它低碳数化合物级分而提高所产生的合成气的内能。

    作为合成气产生流体所提供的水可以从许多不同的来源获得。在处理地层的热解阶段中可生产出水。水可以包括一些夹带的烃流体。该流体可用作合成气产生流体。包括烃类的水理想地产生附加的H2,当用作合成气产生流体时。从水泵中生产的水可以为合成气产生提供水,该水泵可抑制水流入进行现场转化方法的地层的一部分中。具有较高水含量(即大于约20wt%H2O)的低品级干酪根资源或烃类可以产生大量的水和/或CO2,如果进行现场转化方法的话。通过让低品级的干酪根资源进行现场转化方法所生产的水和CO2可用作合成气产生流体。

    在合成气的地层中涉及的反应包括,但不限于:

    (1)

    (2)

    (3)

    热力学促使发生下列反应:

    (4)

    (5)

    然而,反应的动力学在某些实施方案中是缓慢的,在地层条件下从反应(4)和(5)形成了较低量的甲烷。

    在氧存在下,发生下列反应产生二氧化碳和热量:

    (6)

    与蒸汽接触的煤炭的平衡气相组成可以提供在合成气产生过程中在地层中生产的组分的组成的指示。H2,一氧化碳,和二氧化碳的平衡组成数据可用于确定合适的操作条件,如用于生产具有所选择组成的合成气的温度。由于地层的高而基本上均匀的渗透性,在地层内达到平衡条件。从合成气生产获得的组成数据在许多情况下从平衡值偏离低于10%。

    在一个实施方案中,所生产的合成气的组成可通过将附加的组分与蒸汽一起注入地层中来改变。二氧化碳可以提供于合成气产生流体中以基本上抑制在合成气产生过程中从地层生产的二氧化碳的生产。该二氧化碳可以使反应(2)的平衡向左偏移,因此减少了从地层碳产生的二氧化碳的量。该二氧化碳也可与地层中的碳反应产生一氧化碳。二氧化碳可从合成气中分离并与合成气产生流体再注入到地层中。然而,二氧化碳在合成气产生流体中的添加可以减少氢气的生产。

    图29描绘了从用于产生合成气的热解流体生产中回收的水的使用的示意图。具有电热器803的热源801可从地层的第一区段805生产热解流体807。所生产的热解流体807可以送到分离器809中。分离器809可以包括生产水流811、蒸汽流813和烃凝结物流815的多个单独的分离装置和加工装置。来自分离器809的水流811可以与合成气产生流体818合并而形成合成气产生流体821。合成气产生流体821可以提供到注入井817中并被引入地层的第二部分819中。合成气823可以从合成气生产井825中生产。

    图30描绘了合成气生产用的系统的实例的示意图,在该系统中来自所生产的合成气的二氧化碳被注入到地层中。合成气830可以通过生产井834从地层832生产。气体分离装置836可以从合成气830中分离一部分的二氧化碳,生产出CO2流838和剩余的合成气流840。该CO2流838可以与通过注入井837被引入到地层832中的合成气生产流体料流842混合,和/或CO2可以单独被引入该地层中。这可限制该地层内的碳转化成CO2和/或可以提供地层内产生的CO的量。

    合成气产生流体能够以各种不同方式被引入到地层中。蒸汽可以在加热地层的最低部分被注入到加热的含烃地层中。另外地,在陡峭倾斜地层中,蒸汽沿着倾角向上注入而合成气生产沿着倾角向下进行。注射的蒸汽可以穿过该剩余的含烃地层到达生产井。另外,反应的吸收热可以提供到具有沿着注射蒸汽的通路设置的热源的地层中。在供选择的实施方案中,在沿着含烃地层的多个位置上注射的蒸汽可增加蒸汽在整个地层中的突破。也可使用这些位置的直线驱井网。直线驱井网可以包括注蒸汽注射井和合成气生产井的交替排。

    在较低压力和低于约400℃的温度,合成气反应是比较缓慢的。在较低压力和在大约400℃和大约700℃之间的温度下,反应(2)倾向于是主导反应并且合成气组成主要是氢气和二氧化碳。在较低压力和大于约700℃的温度下,反应(1)倾向于是主导反应并且合成气组成主要是氢气和一氧化碳。

    较低温度合成气反应的优点包括较低的热量需求,较便宜的冶金学和较少的吸热反应(尤其当甲烷形成发生时)。较高温度合成气反应的优点是氢气和一氧化碳可以用作其它工艺方法(例如,费-托法)的原料。

    含烃地层的压力在合成气生产过程中保持在较高压力下。该压力可以是从大气压力到地层的岩石静压力。较高的地层压力可以让所生产的合成气流过汽轮机来发电。较高的地层压力可以让较小的收集管来运输所生产的合成气,和减少在地表面上的下游压缩要求。

    在一些实施方案中,合成气能够以连续方式从地层的一部分生产。该部分可以被加热到所希望的合成气产生温度。合成气产生流体可以被引入该部分中。在合成气产生流体引入该部分中的过程中,热量可以加入到地层的该部分中或在该部分中产生。引入的热量可以补偿由于吸热的合成气反应以及热量损失到顶层和底层中等等所发生的热量损失。在其它实施方案中,合成气能够以基本上间歇的方式生产。地层的该部分可以被加热,或在该部分中生产热量,以便将该部分的温度提高到高的合成气产生温度。合成气产生流体然后被加入到该部分中,直到合成气的产生使地层的温度降低至低于可生产所需合成气组成的温度为止。合成气产生流体的引入然后可以停止。通过将地层的该部分再加热至高的合成气产生温度和在获得高的合成气产生温度之后添加合成气产生流体,可以重复进行该循环。所产生的合成气的组成可以进行监控,以确定何时合成气产生流体在地层中的添加应该停止。

    图31说明了连续的合成气生产系统的实例的示意图。图31包括具有热注入井眼850和热注入井眼852的地层。该井眼可以是在该地层的一部分中设置的井眼的较大排列图案的组成单元。通过用热源加热该地层,通过注射氧化性流体或通过两者的结合,地层的一部分可以加热至合成气产生温度。氧化性流体854,如空气或氧气,和合成气产生流体856,如蒸汽,可以注入到井眼850中。在一个实施方案中,氧与蒸汽的比率可以是大约1∶2到大约1∶10,或大约1∶3到大约1∶7(例如,大约1∶4)。

    烃类的现场燃烧可以加热在井眼850和852之间的地层的区域858。氧化性流体的注射可以加热区域858到特殊的温度范围,例如,在大约600℃和大约700℃之间。然而,该温度可以依据合成气的所需组成来改变。连续生产方法的优点是,跨越区域858的温度是基本上均匀的且随时间推移基本上保持恒定,一旦地层已达到实质性的热平衡。连续生产也使得不需要使用阀门来频繁地逆转注射方向。此外,由于在与氧化加热同样的区域中发生的从合成气反应的吸热冷却,连续生产可以降低在注入井附近的温度。基本上恒定的温度使得可以控制合成气组成。生产的合成气860可以连续地从井眼852中排出。

    在一个实施方案中,希望在连续生产中使用氧气而不是空气作为氧化性流体854。如果使用空气,则氮气需要从合成气中分离。氧气作为氧化性流体的使用会提高生产成本,这是由于为获得基本上纯净氧气所花费的成本。然而,从用于生产所需氧气的空气分离装置获得的低温氮副产品可用于热交换器中,以冷凝来自在烃类的热解过程中生产的热蒸汽流的烃类。该纯氮气也可用于氨生产。

    图32说明了在含烃地层中合成气的间歇生产的实例的示意图。井眼870和井眼872可以设置在地层的一部分中。该井眼可以是在该地层的一部分中设置的井眼的较大排列图案的组成单元。氧化性流体874,如空气或氧气,可以注入到井眼870中。烃类的氧化可以加热在井眼870和872之间的地层的区域876。空气或氧气的注入可以继续进行,一直到区域876的平均温度处于所希望的温度为止(例如,在大约900℃和大约1000℃之间)。更高或更低的温度也可形成。在井眼870和井眼872之间的区域876中可以形成温度梯度。该梯度的最高温度可以位于该注射井眼870的附近。

    当达到了所需温度时,或经过所需时间注入氧化性流体时,氧化性流体注入可以减少和/或停止。合成气产生流体877,如蒸汽或水,可以注入到该注射井眼872中以生产合成气。在注射井眼中的注射蒸汽或水的回压可以强迫所生产的合成气和未反应的蒸汽跨越区域876。由吸热的合成气反应引起的区域876的平均温度的下降可以部分地通过在箭头878指明的方向上在区域876中的温度梯度来补偿。产品流880可以通过热源井眼870来生产。如果产品的组成明显偏离所希望的组成,则蒸汽注射被停止,空气或氧气注射可以重新开始。

    在一个实施方案中,具有所选择组成的合成气可通过将从地层的不同部分生产的合成气掺混来生产。地层的第一部分可通过一个或多个热源加热到足以产生合成气的第一种温度,该合成气具有比所选择的H2/一氧化碳比率更低的H2/一氧化碳比率(例如,大约1或2)。第一合成气产生流体可以提供到该第一部分中以产生第一合成气。第一合成气可以从该地层生产。地层的第二部分可通过一个或多个热源加热到足以产生合成气的第二种温度,该合成气具有比所选择的H2/一氧化碳比率更大的H2/一氧化碳比率(例如,3或3以上的比率)。第二合成气产生流体可以提供到该第二部分中以产生第二合成气。第二合成气可以从该地层生产。第一合成气可以与第二合成气掺混以生产具有所希望的H2/一氧化碳比率的共混合成气。

    第一温度可以基本上不同于第二温度。另外地,第一和第二温度可以是大约相同的温度。例如,足够产生具有不同组成的合成气的温度可以根据第一和第二部分的组成和/或在第一和第二部分内烃类的先前热解来变化。第一合成气产生流体与第二合成气产生流体具有基本上相同的组成。另外地,第一合成气产生流体具有与第二合成气产生流体不同的组成。合适的第一和第二合成产生流体可以根据例如第一和第二部分的温度、第一和第二部分的组成、和在第一和第二部分内烃类的先前热解来变化。

    另外,具有所选择的H2与一氧化碳的比率的合成气可通过控制地层的温度来获得。在一个实施方案中,地层的整个部分或区段的温度可以经过控制以得到具有所选择比率的合成气。另外地,在合成气生产井中或在其附近的温度可加以控制以得到具有所选择比率的合成气。

    在一个实施方案中,具有所选择的H2与一氧化碳比率的合成气可通过在地面上处理所生产的合成气来获得。首先,地层的温度可以经过控制以得到具有与所选择比率不同的比率的合成气。例如,该地层可以保持在较高温度以产生具有较低H2/一氧化碳比率的合成气(例如,在某些条件下该比率可以接近1)。所生产的合成气中的一些或全部然后被提供到在地面上的转换反应器(转换过程)中。一氧化碳与水在转换过程中进行反应生产H2和二氧化碳。所以,该转换过程可提供H2与一氧化碳比率。该二氧化碳然后被分离以获得具有所选择的H2与一氧化碳比率的合成气。

    在一个实施方案中,生产的合成气918可用于能量的生产。在图33中,处理的气体920可以从处理区段900中输送到能源产生装置902中以抽取(extract)有用能量。一般通过将气体氧化产生热量和将热量的一部分转化成机械和/或电能来从可燃气体中获取能量。另外地,能源产生装置902可以包括产生电能的燃料电池。另外,能源产生装置902可以包括,例如,熔融碳酸盐燃料电池或另一类型的燃料电池、汽轮机、锅炉燃烧室或井下的气体加热器。生产的电能904可以提供给电力网906。所生产的电908的一部分可用于将能量供应给可加热地层912的电热元件910。

    在一个实施方案中,能源产生装置902可以是锅炉燃烧室。燃烧室可以包括用于燃料的燃烧的小的衬有耐火材料的腔室,它整个或部分地建造在窑的壁中。空气或氧914可以提供给能源产生装置902以氧化所生产的合成气。通过合成气的氧化生产的水916可以再循环到地层中以生产附加的合成气。

    所生产的合成气也可用作井下的气体加热器的燃料。井下的气体加热器,如这里所公开的无焰燃烧器,可以经过构型设计来加热含烃地层。如此,热传导过程可以是基本上自持的和/或可以基本上减少或省去对电的需要。因为无焰燃烧器可以具有接近90%的热效率,释放到环境中的二氧化碳的量可以低于从使用化石燃料生产的电来加热含烃地层的方法中释放到环境中的二氧化碳的量。

    二氧化碳可以通过热解和合成气产生方法来生产。二氧化碳也可通过能量产生过程和/或燃烧过程来产生。通过利用所生产的二氧化碳和/或通过在地层内贮存二氧化碳,可以减少从烃类的现场转化方法中排放到大气中的二氧化碳净释放量。例如,从地层生产的一部分二氧化碳可用作溢流剂(flooding agent)或用作生产化学品的原料。

    在一个实施方案中,该能量产生过程可通过隐退(sequestering)在有用能量的抽取过程中生产的二氧化碳,来产生减少量的排放物。例如,来自能量产生过程的排放物可通过在含烃地层内贮存一定量的二氧化碳而减少。贮存的二氧化碳的量大约相当于在离开地层的排出料流中的二氧化碳量。

    图33说明了减少的散发能量过程。由能量产生装置902生产的二氧化碳可以从离开能量产生装置的流体中分离。通过使用支撑在多孔不锈钢或陶瓷基底上的热钯膜,或高温变压吸附,在高温下将二氧化碳与H2分离。该二氧化碳可以隐退在废弃的含烃地层922中,注入石油生产田924中以便通过改进在该石油生产田中的流动性和生产来获得提高的油回收率,通过甲烷的吸附和随后的解吸而隐退到含有甲烷的深的含烃地层中,或经过合成气生产井再次注入928到地层的一区段中来生产一氧化碳。离开能量产生装置的二氧化碳可以隐退在脱水的甲烷储层中。合成气产生用的水可以来自甲烷储层的脱水。附加的甲烷也能够通过交替二氧化碳和氮气来生产。隐退二氧化碳的方法的例子已描述在授权于Chaback等人的美国专利No.5,566,756中,它被引入本文供参考就象在本文中全部列出一样。通过从离开能量产生装置的二氧化碳流中除去热量可以利用附加的能量。

    在一个实施方案中,希望在二氧化碳的隐退之前让热的废弃的地层冷却。例如,在较低温度下在煤层中可以吸收更高量的二氧化碳。另外,冷却地层可以增强地层。废弃的地层可以通过在地层中引入水来冷却。生产的蒸汽可从地层中分出。产生的蒸汽可用于任何所希望的工艺过程。例如,该蒸汽可以提供到地层的相邻部分中以加热该相邻部分或产生合成气。

    在一个实施方案中,可以开采废弃的含烃地层。开采的材料可以在一些实施方案中用于冶金目的,如在炼钢过程中用于产生高温的燃料。含有煤炭的地层的热解显著提高了煤炭的品级。在热解后,煤炭可以基本上转变成具有无烟煤特性的煤炭。开采过的含烃地层可具有30m或更多的厚度。典型为冶金用途所开采的无烟煤层可以仅仅具有约1米的厚度。

    图34说明了其中从热解生产的流体可以分离成燃料电池原料流和加入到燃料电池中以产生电能的实施方案。该实施方案可以包括具有经过构型设计生产合成气的生产井942的含碳地层940以及具有经过构型设计生产热解流体948的电热器946的加热器井944。在一个实施方案中,热解流体可以包括H2和碳数低于5的烃类。从加热器井944生产的热解流体948可供应到气体薄膜分离系统950中以分离H2和碳数低于5的烃类。基本上由H2组成的燃料电池原料流952可输入到燃料电池954中。空气原料流956可以加入到燃料电池954中。氮气流958可以从燃料电池954中排出。从燃料电池生产的电960可以输送到电网。电962也可用于为加热器井944中的电热器946提供电力。二氧化碳965可以注入到地层940中。

    具有碳数4,3和1的烃类典型地具有相当高的市场价值。这些烃类的分离和销售可能是所需要的。典型地乙烷没有足够的价值去分离和在一些市场上出售。乙烷可以作为燃料流的一部分送至燃料电池或乙烷可用作合成气产生流体的烃流体组分。乙烷也可用作生产乙烯的原料。在一些市场中,对于碳数低于5的任何烃类都无法销售。在这样的条件下,在热解过程中生产的全部烃气可以送至燃料电池或用作合成气产生流体的烃流体组分。

    基本上由碳数低于5的烃类组成的热解流体964可以注入到地层940中。当该烃类接触该地层时,烃类可以在地层内裂解而生产甲烷,H2,焦炭,和烯烃如乙烯和丙烯。在一个实施方案中,通过将地层的温度加热到热解温度范围的上端和在较高速率下注入烃流体,可以增加烯烃的生产。如此,烃类在地层中的停留时间会减少并且脱氢的烃类可以倾向于形成烯烃而不是裂解成H2和焦炭。烯烃生产也可通过减少地层压力来增加。

    在一个实施方案中,电热器946可以是无焰分布式燃烧器。从地层生产的H2的至少一部分可以用作无焰分布式燃烧器的燃料。

    另外,在一些实施方案中,加热器井944可以加热该地层到合成气产生温度范围。基本上由碳数低于5的烃类组成的热解流体964可以注入到地层940中。当该烃类接触该地层时,烃类可以在地层内裂解而生产甲烷,H2和焦炭。

    图35描绘了用无焰分布燃烧器996从含烃地层976的合成气产生方法的实例。从生产井978生产的合成气980可以加入到气体分离装置984中,在其中二氧化碳986可以与合成气980分离。二氧化碳的第一部分990可以输送到地层中使之隐退。二氧化碳的第二部分992可以与合成气产生流体一起注入地层中。合成气988的部分993可以供应给加热器井994中以便在分布燃烧器996中燃烧而为地层产生热量。合成气988的部分998可以供应给燃料电池1000中生产电能。电1002可以输送到电网。在燃料电池中生产的蒸汽1004和从分布燃烧器中的燃烧生产的蒸汽1006可以加入到地层中以产生合成气。

    在一个实施方案中,与这里所述的热解流体一起产生的二氧化碳可以隐退在含烃地层中。图36说明了在含烃地层1020中的现场热解。具有电热器1024的加热器井1022可以设置在地层1020中。热解流体1026可以从地层1020生产并加入到气体分离装置1028中,在其中二氧化碳1030可以与热解流体1032分离。二氧化碳1030的部分1034可以贮存在地层1036中。该二氧化碳可以隐退在废弃的含烃地层1038中,注入到石油生产田1040中以提高油的回收,或隐退到煤床1042中。另外地,二氧化碳也可通过合成气生产井再注射1044到地层1020的区段中以生产一氧化碳。至少一部分的电1035可用于为一个或多个电热器提供电能。

    在一个实施方案中,从地层中的至少一些烃类的热解生产的流体可以加入到重整装置中来生产合成气。该合成气可以加入到燃料电池中生产电。另外,通过燃料电池产生的二氧化碳可以隐退而减少通过该方法产生的排放物的量。

    如图37中所示,加热器井1060可以位于含烃地层1062内。附加的加热器井也可位于地层内。加热器井1060可以包括电热器1064。从地层生产的热解流体1066可以加入到重整装置如蒸气重整炉1068中,生产合成气1070。热解产物的一部分可用作重整装置中的燃料。蒸气重整炉1068可以包括促进重整反应的催化剂材料和为吸热的重整反应提供热量的燃烧器。蒸汽源可以连接到重整装置段中为重整反应提供蒸汽。该燃烧器可以在远远高于重整反应所需要的和远远高于燃料电池的操作温度的一种温度下操作。照这样,希望与燃料电池无关地作为单独的装置来操作燃烧器。

    另外地,重整装置可以包括由难熔金属合金制成的多个管。每一管可以包括具有作为表面涂层的重整催化剂的填充粒状或球粒状材料。管的直径可以在大约9厘米和大约16厘米之间变化,管的加热长度正常是在大约6m和大约12m之间。燃烧区可以提供在管之外,并可以在燃烧器中形成。管的表面温度可通过燃烧器保持在大约900℃的温度以确保在管内部流动的烃流体适当地被处于大约500℃和大约700℃之间的温度下的蒸汽所催化。传统的管式重整装置可以依赖于管内的传导和对流方式热转移,为重整分配热量。

    另外,烃流体如热解流体可以在加入到重整装置中之前进行预处理。该重整装置可以经过构型设计以便将热解流体转变成简单的反应剂,之后才被引入到燃料电池中。例如,热解流体可以在脱硫装置中进行预处理。在预处理之后,该热解流体可以提供给重整装置和变换反应器,为以H2作为燃料的燃料电池生产合适的燃料贮料。

    由重整装置生产的合成气包括上面描述的组分当中的任何一种,如甲烷。生产的合成气1070可以供应给燃料电池1072。由燃料电池生产的电1074的一部分可以送至电网。另外,电1076的一部分可以为电热器1064提供电能。离开燃料电池的二氧化碳1078可以输送到隐退区域1080中。

    另外地,在一个实施方案中,从地层生产的热解流体1066可以加入到重整装置1068中,后者生产二氧化碳流1082和H2流1070。例如,该重整装置可以包括用于芯(core)的无焰分布式燃烧器和薄膜(membrane)。该薄膜可以允许仅仅H2穿过该薄膜而导致H2和二氧化碳的分离。该二氧化碳可以输送到隐退区域1080中。

    从地层生产的合成气可以转化成更重质的可凝结烃类。例如,Fischer-Tropsch烃类合成方法可用于合成气的转化、费-托法可以包括将合成气转化成烃类。该方法可以使用升高的温度,标准的或升高的压力,和催化剂,如磁性氧化铁或钴催化剂。从费-托法生产的产品可包括具有宽分子量分布的烃类并包括支化和未支化的链烷烃。

    费-托法的产品也可包括相当量的烯烃和含氧的有机化合物。费-托反应的例子可以通过下面来说明:(7)

    用作费-托反应的原料气的合成气的氢气与一氧化碳比率可以是大约2∶1。在某些实施方案中该比率可以是大约1.8∶1-2.2∶1。更高或更低的比率可以被某些费-托系统所调节。

    图38说明了使用从含烃地层生产的合成气作为原料流的费-托法的流程图。热的地层1090可用来生产具有接近2∶1的H2与CO比率的合成气。合适的比率可以通过在大约700℃下操作合成生产井、或通过将从地层的不同区段中生产的合成气掺混获得具有大约2∶1的H2与CO比率来产生。合成气产生流体1092可以加入到热的地层1090中产生合成气。H2和CO可以与从热的地层1090生产的合成气分离,以形成原料流1094。原料流1094可以送到费-托装置1096。原料流1094可以增补或替代从催化甲烷重整装置1100生产的合成气。

    费托装置1096可以生产蜡原料流1102。生产蜡原料流1102的费-托合成法方法是放热过程。在费-托工艺过程中产生蒸汽1104。蒸汽1104可以用作合成气产生流体1092的一部分。

    从费-托装置1096生产的蜡原料流1102可以送至加氢裂化器1106。加氢裂化器可以生产处产品料流1108。该产品料流可以包括柴油,喷气燃料,和/或石脑油产品。在费-托法中合成气转化成烃类的方法的例子被描述在美国专利No 4,096,163(Chang等人),6,085,512(Agee等人),和6,172,124(Wolflick等人),它们被引入本文供参考就象全部列于这里一样。

    图39描绘了与壳牌中间馏分合成法(Shell Middle DisillatesSynthesis,简写SMDS)费-托和石蜡裂化方法相结合的现场合成气生产的实例。SMDS方法的实例描述在美国专利No.4,594,468(Minderhoud)中,并被引入本文供参考就象在本文中全部列出一样。中间馏分烃混合物也可使用在图39中说明的SMDS方法从生产的合成气生产。中间馏分可以表示沸点范围基本上与在石油原料的普通常压蒸馏中获得的煤油和汽油馏分的沸点范围对应的烃类混合物。该中间馏分沸点范围可以包括在大约150℃和大约360℃之间的温度,具有在大约200和大约360℃之间的馏分沸点,可以称作瓦斯油(gas oil)。图39描绘了离开生产井1128和可以加入到SMDS装置1122中的合成气1120,具有大约2∶1的H2与一氧化碳比率。在某些实施方案中该比率可以是大约1.8∶1-2.2∶1。SMDS装置的产品包括有机液体产品1124和蒸汽1126。蒸汽1126可以提供给注入井1127。如此,蒸汽可以用作合成气生产的原料。烃蒸气在一些情况下被加入到该蒸汽中。

    图40描绘了与催化甲烷化方法相结合的现场合成气生产的实例。例如,离开生产井1142的合成气1140可以提供给催化甲烷化装置1144。在一些实施方案中,希望所生产的合成气-它用作催化甲烷化方法的原料气-的组成具有大约3∶1的H2与一氧化碳比率。甲烷1146可以通过催化甲烷化装置1144生产。由装置1144生产的蒸汽1148可以提供给注入井1141中以生产合成气。催化甲烷化方法的实例被描述在美国专利No 3,992,148(Child),4,130,575(Jorn等人),和4,133,825(Stroud等人),它们被引入本文供参考就象全部在这里列出一样。

    所生产的合成气也可用作生产甲醇的方法的原料。生产甲醇的方法的实例被描述在美国专利No 4,407,973(van Dijk等人),4,927,857(McShea,III等人),和4,994,093(Wetzel等人)中,它们被引入本文供参考就象全部列于本文中一样。所生产的合成气也可用作将合成气转化成汽油的方法和将合成气转化成柴油机燃料的方法两者的原料气。生产发动机燃料的方法的实例被描述在美国专利No4,076,761(Chang等人),4,138,442(Chang等人),和4,605,680(Beuther等人),它们被引入本文供参考就象全部在这里列出一样。

    在一个实施方案中,生产的合成气可以用作氨和尿素的生产中的原料气,如图41和42所述。氨可以通过哈伯博斯(Haber-Bosch)制氨法来合成,它包括根据以下反应直接从N2和H2合成:

    (8)

    该N2和H2可以合并、压缩到高压(例如,大约80巴到大约220巴),然后被加热到较高的温度。反应混合物可以在主要由铁组成的催化剂上通过,在其上进行氨生产。在氨合成过程中,该反应剂(即,N2和H2)和产品(即氨)处于平衡中。如此,所生产的氨的总量可通过将该平衡向产品形成方向偏移来增加。在氨气生产时从反应混合物中除去氨气,平衡可以偏移到产品形成方向。

    氨的除去可以通过将气体混合物冷却到在大约(-5)℃到大约25℃之间的温度来实现。在这一温度范围内,二相混合物可以用液相中的氨和气相中的N2和H2来形成。该氨可以与混合物的其它组分分离。氮气和氢气可以随后再加热到操作温度以供氨转化和再次穿过反应器。

    通过在合适的压力(例如,大约125巴(绝对)到大约350巴(绝对))和合适的温度(例如,大约160℃到大约250℃)下将氨和二氧化碳引入反应器中来制备尿素。根据下列反应可形成氨基甲酸铵:

    (9)

    随后通过根据以下平衡反应将氨基甲酸铵脱水来形成尿素:

    (10)

    氨转化的程度例如取决于温度和过量氨的量。作为反应产物获得的溶液基本上包括尿素,水,氨基甲酸铵和游离氨。该氨基甲酸铵和该氨需要从溶液中除去。一旦除去,它们可以回到反应器。反应器可以包括用于氨基甲酸铵和尿素的形成的单独区。然而,这些区也可结合成一套设备。

    根据一个实施方案,高压尿素装置在操作时要求未转化成尿素并且没有去除过量氨的氨基甲酸铵的分解可以在15巴(绝对)和100巴(绝对)之间的压力下进行。这显著低于在尿素合成反应器中的压力。该合成反应器可以在大约180℃到大约210℃的温度下和在大约180巴(绝对)到大约300巴(绝对)的压力下进行操作。氨和二氧化碳可以直接供应给尿素反应器。在尿素合成中的NH3/CO2摩尔比率(N/C摩尔比率)通常是在大约3和大约5之间。该未转变的反应剂可以在膨胀、解离和/或冷凝之后再循环到尿素合成反应器中。

    在一个实施方案中,具有所选择的H2与N2比率的氨原料流可以使用富集的空气从地层产生。合成气产生流体和富集的空气流可以提供到地层中。富集的空气的组成经过选择后可以产生具有所选择的H2与N2比率的合成气。在一个实施方案中,地层的温度可以加以控制以产生具有所选择的比率的合成气。

    在一个实施方案中,提供到氨合成方法中的原料流的H2与N2比率可以是大约3∶1。在其它实施方案,该比率可以是大约2.8∶1到3.2∶1。具有所选择的H2与N2比率的氨合成原料流可以通过掺混来自地层的不同部分的原料流来获得。

    在一个实施方案中,来自氨合成过程的氨可以提供给尿素合成过程以产生尿素。在热解过程中生产的氨可加入到从氨合成过程中生产的氨中。在另一个实施方案中,在加氢处理过程中生产的氨可加入到从氨合成过程中生产的氨中。在合成气中的一些一氧化碳可以在转换过程中转化成二氧化碳。来自转换过程的二氧化碳可以供应给尿素合成过程。从地层的处理产生的二氧化碳在一些情况下也可加入到尿素合成过程。

    图41说明使用薄膜富集的空气从合成气生产氨和尿素的方法的实例。富集的空气1170和蒸汽,或水,1172可以加入到含碳地层1174中,按照这里所述的湿式氧化模式生产合成气1176。

    在某些实施方案,富集的空气1170与空气和氧气流掺混,以使在生产的合成气中氮气与氢气的比率是大约1∶3。该合成气处在正确的氮气和氢气比率下可以形成氨。例如,可以计算出,对于700℃的地层温度,3巴(绝对)的压力,和使用13,231吨/天的炭(将转化成合成气),可以注射14.7千吨/天的空气,6.2千吨/天的氧气,和21.2千吨/天的蒸汽。这将导致生产出20亿立方英尺/天的合成气,其中包括5689吨/天的蒸汽,16,778吨/天的一氧化碳,1406吨/天的氢气,18,689吨/天的二氧化碳,1258吨/天的甲烷,和11,398吨/天的氮气。在转换反应(将一氧化碳转换成二氧化碳,和生产附加的氢气)之后,该二氧化碳可以除去,产品料流可以甲烷化(除去残余一氧化碳),并且在理论上可以生产13,840吨/天的氨和1258吨/天的甲烷。这一计算包括从以上反应(4)和(5)生产的产品。

    富集的空气可以从膜分离装置中生产。空气的膜分离主要是物理过程。以各分子的特定性质如尺寸和渗透速率为基础,空气中的分子可以经过分离形成基本上纯净形式的氮,氧,或它们的结合物。

    在一个实施方案中,薄膜系统可以包括装有多个非常薄的膜纤维的中空管。各薄膜纤维可以是有空气在其中流动的另一种中空管。薄膜纤维的壁可以是多孔的和可以经过构型设计后使得氧在比氮更快的速率下透过壁。如此,让富氮的气流从纤维的另一端流出。纤维外和中空管内的空气可以是富氧的。该空气经过分离后用于后续应用,如从地层生产合成气。

    在一个实施方案中,所产生的氮气的纯度可通过空气流过薄膜的流速和/或压力的变化来控制。提高空气压力会增加氧分子突破纤维壁的渗透作用。降低流速会增加氧在薄膜中的停留时间,因此会增加穿过该纤维壁的渗透性。空气压力和流速可以经过调节后允许系统操作员改变在较短时间内产生的氮的量和纯度。

    在富集的空气中N2的量可以调节以便为氨生产提供大约3∶1的N∶H比率。希望在二氧化碳比一氧化碳更有利地生产的温度下产生合成气。地层的温度理想的是在大约400℃和大约550℃之间。在另一个实施方案中,希望地层的温度是在大约400℃和大约450℃之间。在如此低的温度下生产的合成气基本上由N2,H2和二氧化碳与少量的一氧化碳组成。

    如图41中所示,氨生产用的原料流可通过首先将合成气流1176加入到氨原料流气体加工装置1178中来制备。在氨原料流气体加工装置1178中该原料流会发生转换反应(将一氧化碳转换成二氧化碳,和生产附加的氢气)。二氧化碳也可以从原料流中除去,并且该原料流可以进行甲烷化(以除去残余的一氧化碳)。

    在某些实施方案中,二氧化碳可以通过在胺处理装置中的吸附与原料流(或任何气流)分离。薄膜或其它二氧化碳分离技术/设备也可用于从原料流中分离二氧化碳。

    氨原料流1180可以供应给氨生产设备1182中以生产氨1184。离开气体分离装置1178的二氧化碳1186(和/或来自其它来源的二氧化碳)可以与氨1184一起被加入到尿素生产设备1188中生产尿素1190。

    通过使用含碳地层,和使用富氧气流和富氮气流可以生产氨和尿素。富氧气流和合成气产生流体可以提供到地层中。该地层可以借助于在地层中的碳被富氧气流所氧化来加热或部分地加热。在合成气中的H2,和来自富氮气流的N2,可以提供到氨合成工艺中以产生氨。

    图42说明了使用低温分离的空气从合成气生产氨和尿素的实例的流程图。空气2000可以加入到低温空气分离装置2002中。低温分离包括在大约(-168)℃和(-172)℃之间的温度下进行的蒸馏工艺过程。在其它实施方案中,该蒸馏过程可以在大约(-165)℃和(-175)℃之间的温度下进行。在这些温度范围内空气被液化。该蒸馏过程可以在大约8巴(绝对)和大约10巴(绝对)之间的压力下操作。通过压缩空气和与离开该塔的冷空气交换热来获得高压。氮比氧有更高挥发性并作为馏出产品离开。

    离开分离器的N2气2004可用于热交换器2006中来冷凝来自热解气流2008的高分子量烃类以便从气相除去低分子量烃类而进入液体油相中。含有比气流2008和液流2012更高的低分子量烃类的组成的经品级提升的气流2010(它包括冷凝的烃类)可以离开热交换器2006。

    来自低温分离装置的氧2014与蒸汽2016或水加入到热的含碳地层2018中,在这里所述的连续方法中生产合成气2020。希望在二氧化碳比一氧化碳更有利地形成的温度下产生合成气。地层的温度理想的是在大约400℃和大约550℃之间。在另一个实施方案中,希望地层的温度是在大约400℃和大约450℃之间。合成气2020可以基本上由H2和二氧化碳组成。二氧化碳可以从合成气2020中除去以制备原料流,用于使用胺气分离装置2022的氨生产。来自气体分离装置的H2流2024和来自热交换器的N2流2026可以加入到氨生产设备2028中来生产氨2030。离开气体分离装置的二氧化碳2032和氨2030可以加入到尿素生产设备2034中来生产尿素2036。

    在一个实施方案中,氨合成过程的原料流可以通过将含N2和二氧化碳的气体加入到含碳地层中来产生。该气体可以是烟道气或它可以是通过在地层的另一部分中O2与碳的氧化反应来产生的气体。含有N2和二氧化碳的气体可以提供到含有碳的地层中。在气体中的二氧化碳可以吸附在地层中并隐退在其中。排出气流可以从地层生产。该排出气流具有比进入地层的气体低得多的二氧化碳百分比。在排出气流中的氮气被提供到氨合成过程中。在来自地层的另一部分的合成气中的H2可以被提供到氨合成过程中。

    图43说明了制备用于氨和尿素生产过程的氮气流的方法的实例。空气2060可以注入到热的含碳地层2062中以便通过地层中的碳的氧化来生产二氧化碳。在一个实施方案中,加热器经过构型设计来加热含碳地层的至少一部分到足以支持碳的氧化的温度。足以支持氧化的温度,例如对于煤炭来说,是大约260℃。离开热的地层的气流2064可以基本上由二氧化碳和氮组成。通过让气流通过冷的废弃的含碳地层2066,将氮气与二氧化碳分离。碳比氮优先地被吸附在冷的废弃的地层2066中。例如,在50℃和0.35巴下,在煤炭的废弃部分上二氧化碳的吸附可以是大约72m3/公吨,相比之下氮气是大约15.4m3/公吨。离开冷的废弃部分2066的氮2068可以与H2气流2072一起被供应到氨生产设备2070中来生产氨2074。该H2气流可通过这里公开的方法,例如在图41和42中描述的方法来获得。

    图44说明了经过构型设计来处理相对可渗透性地层的系统的实例。相对可渗透性地层2200可以包括重质烃类。生产井2210可以设置在相对可渗透性地层2200中。相对可渗透性地层2200可以设置在基本上不渗透层2204之间。上面的基本上不渗透层2204可以称为地层2200的上覆地层。下面的基本上不渗透层2204可以称为地层2200的基岩。上覆地层和基岩可以包括不同类型的不渗透材料。例如,该上覆地层和/或该基岩可以包括页岩或湿碳酸盐(即在其中没有烃的碳酸盐)。

    低温热源2216和高温热源2218可以设置在生产井2210中。低温热源2216和高温热源2218可以按照这里所述进行构型设计。生产井2210按照这里所述进行构型设计。低温热源2216可以通常称作热源或加热器,它们经过构型设计后为基本上接近低温热源的地层2200的所选择流动化区段(mobilization section)提供热量。提供的热量经过构型配置来将所选择的流动化区段的一些或全部加热到在地层中含有的重质烃类的流动化温度范围之内的平均温度。该流动化温度范围可以是在大约75℃到大约150℃之间。所选择的流动化温度可以是大约100℃。然而该流动化温度可以依据在地层2200中含有的重质烃类的粘度来变化。例如,需要较高的流动化温度来使地层2200内的较高粘度流体产生流动。

    高温热源2218可以通常称作热源或加热器,它们经过构型设计后为基本上接近该热源2218的地层2200的所选择热解区段2202提供热量。提供的热量经过构型配置来将所选择的热解区段2202加热到在地层2200中含有的重质烃类的热解温度范围之内的平均温度。该热解温度范围可以是在大约270℃到大约400℃之间。所选择的热解温度可以是大约300℃。然而,热解温度可以依据地层特性,组成,压力,和/或从地层2200生产的产品的所需质量来变化。产品的质量可以基于产品的性质(例如,产品的API比重)来确定。热解可以包括该重质烃类裂解成烃片段和/或更轻的烃类。重质烃类的热解倾向于提高该重质烃类的质量。

    如图44中所示,在地层2200中的流动化流体可基本上借助重力流入所选择的热解区段2202中。流动化的流体可以通过在所选择的热解区段2202中的热解作用来提高品级。流动化流体的流动性任选通过将流体2214加压经过导管2212加入到地层2200中来增加。增压的流体2214可以是一种流体,它经过构型设计后可以提高接近导管2212的地层2200中的压力。接近导管2212的提高的压力可以增加在地层2200中的流动化流体流入所选择的热解区段2202中。由导管2212提供的增压流体2214的压力可以是在大约7巴(绝对)到大约70巴(绝对)之间。然而,增压流体2214的压力可以根据例如在地层2200内的流体粘度和/或流体流入所选择的热解区段2202中的所希望流速来改变。增压流体2214可以是基本上不氧化重质烃类的任何气体。例如,增压流体2214可以包括N2,CO2,CH4,氢气,蒸汽等。

    生产井2210可以经过构型设计后从所选择的热解区段2202中除去热解流体和/或流动化流体。地层流体可以作为蒸汽被除去。该地层流体可以通过在生产井2210中的高温热源2218和低温热源2216进一步提升品级。生产井2210可以进一步经过构型设计来控制在所选择的热解区段2202中的压力以提供压力梯度,因此流动化流体可以从所选择的流动化区段中流入所选择的热解区段2202中。在一些实施方案中,在所选择的热解区段2202中的压力可以控制,进而控制流动化流体流入所选择的热解区段2202中的流速。通过不加热该整个地层到热解温度,排放过程(drainage process)可以为现场转化方法产生较高的生产能量与输入能量之比率。

    另外,在相对可渗透性地层2200中的压力可以控制以生产所需质量的地层流体。例如,在相对可渗透性地层2200中的压力可以提高以生产具有提高的API比重的地层流体,与在较低压力下生产的地层流体相比。提高在相对可渗透性地层2200中的压力可以增加在流动化和/或热解流体中的氢分压。在流动化和/或热解流体中提高的氢分压会减少在流动化和/或热解流体中的重质烃类。减少该重质烃类可以生产出更轻,更有价值的烃类。氢化的重质烃类的API比重可以比未氢化的重质烃类的API比重更高。

    在一个实施方案中,增压流体2214可以经过在生产井2210中和/或其附近设置的导管被提供到地层2200中。该导管可以经过构型设计将增压流体2214提供到与上面的不渗透层2204靠近的地层2200中。

    在另一个实施方案中,低温热源2216可以在生产井2210中关小和/或关停。地层2200中的重质烃类可通过从所选择的热解区段2202中将热量转移到地层2200的相邻部分中来产生流动化。从所选择的热解区段2202中的热传递可以基本上由传导方式进行。

    图45说明了经过构型设计来处理相对可渗透性地层但基本上不使流动化流体发生热解的实施方案。低温热源2216可以设置在生产井2210中。低温热源2216,导管2212,和不渗透层2204可以按照在图44中所示的实例来进行构型设计。低温热源2216可以进一步经过构型设计为地层2200提供热量,将地层2200的一些或全部加热到在流动化温度范围内的平均温度。在地层2200内的流动化流体可以基本上借助重力作用流向地层2200的底部。增压流体2214可以经过导管2212被提供到地层2200中并可以按照在图44中所示的实施方案中所述进行构型设计,以增加该流动化流体流向地层2200的底部。增压流体2214也可以经过在生产井2210中和/或其附近设置的导管被提供到地层2200中。地层流体可以经过在地层2200的底部和/或在其附近的生产井2210被除去。低温热源2216可以将热量提供到经由生产井2210排出的地层流体中。提供的热量可以使生产井2210内的排出地层流体发生汽化,以使地层流体可以作为蒸气被排出。提供的热量也可增加该生产井2210内的排出的地层流体的API比重。

    图46说明了使用被不渗透层2204分隔开的重质烃类层2201来处理相对可渗透性地层的实施方案。热注入井2220和生产井2210可以设置在相对可渗透性地层2200中。基本上不渗透层2204可以分隔这些层2201。重质烃类可以位于层2201中。低温热源2216可以设置在注入井2220中。低温热源2216可以按照在任何上述实施方案中所述来进行构型设计。重质烃类可以通过从低温热源2216提供的热量来变成流动化,以使重质烃类的粘度大体上降低。增压流体2214可以经过注入井2220内的开孔被提供到层2201内。增压流体2214的压力可以引起流动化流体流向生产井2210。在注入井2220中或其附近增压流体2214的压力可以是大约7巴(绝对)到大约70巴(绝对)。然而,增压流体2214的压力可以经过控制以保持低于一种压力,该压力可以提升相对可渗透性地层2200的上覆地层。

    高温热源2218可以设置在生产井2210中。高温热源2218可以按照在任何上述实施方案中所述来进行构型设计。由高温热源2218提供的热量大体上促使在与生产井2210接近的所选择的热解区段内的流动化流体的一部分热解。该热解和/或流动化流体可以通过生产井2210从层2201中排出。高温热源2218可以进一步提高在生产井2210内的排出地层流体的品级。所排出地层流体可以作为蒸气经过生产井2210排出。在生产井2210中或其附近的压力可以低于大约70巴(绝对)。通过不加热该整个地层到热解温度,该工艺过程可以为现场转化方法产生较高的生产能量与输入能量之比率。在生产井2210中或其附近该地层流体的品级提升可以生产出更高价值的产品。

    在另一个实施方案中,高温热源2218可以被生产井2210内的低温热源2216替换。与高温热源2218相比,低温热源2216使地层2201内的重质烃类发生较少热解。所以,经生产井2210排出的地层流体在地层流体经生产井2210排出时基本上不被高温热源2218提升品级,如图46中示出的实施方案所述。

    在另一个实施方案中,重质烃类的热解可以通过用注入井2220内的高温热源2218替代低温热源2216来增加。与低温热源2216相比,高温热源2218使地层2201内的重质烃类发生更多热解。与在注入井2220内使用低温热源2216的方法中排出的地层流体相比,经生产井2210排出的地层流体提高了品级,如图46中示出的实施方案中所述。

    在一些实施方案中,含有重质烃类的相对可渗透性地层可以稍低于较厚的不渗透层(上覆地层)。该上覆地层具有至少大约300m或更厚的厚度。上覆地层的厚度可以通过相对可渗透性地层的地理位置决定。

    在一些实施方案中,更经济的是用在相对可渗透性地层内水平设置的热源为地层提供热量。生产井也可水平设置在相对可渗透性地层内。然而,该生产井可以水平设置在相对可渗透性地层内,垂直地设置在相对可渗透性地层内,或以相对于该相对可渗透性地层的一定角度设置。

    生产井2210也可以进一步按照这里的任何实施方案中所述进行构型设计。例如,生产井2210可以包括阀门,这些阀门经过构型设计后可改变、保持和/或控制该地层的至少一部分的压力。

    图47说明了使用水平的热源处理相对可渗透性地层的一个实施方案。热源2300可以设置在相对可渗透性地层2200内。相对可渗透性地层2200可以稍低于不渗透层2204。不渗透层2204可包括,但不限于,页岩或碳酸盐。不渗透层2204可具有大约20m或更厚的厚度。如图46中所示,不渗透层2204的厚度取决于例如不渗透层2204的地理位置。热源2300可以水平地设置在相对可渗透性地层2200内。热源2300可以经过构型设计后为相对可渗透性地层2200的一部分提供热量。热源2300可以包括在上述实施方案的任何一种中描述的低温热源和/或高温热源。提供的热可以经过构型设计,使相对可渗透性地层2200内的重质烃类的一部分大体上流动化,与在这里所述的实施方案的任何一个中一样。提供的热量也可以经过构型设计,使相对可渗透性地层2200内的重质烃类的一部分热解,与在这里所述的实施方案的任何一个中一样。设置在相对可渗透性地层2200内的热源2300的长度可以是在大约50m到大约1500m之间。然而,在相对可渗透性地层2200内热源的长度可以取决于例如相对可渗透性地层2200的宽度,预期的生产速率和热源2300的能量输出量来变化。

    图48说明了使用大体上水平的热源处理相对可渗透性地层的一个实施方案。热源2300可以水平地设置在相对可渗透性地层2200内。热源2300可以按照在图47示出的以上实施方案中所述进行构型设计。热源2300描绘在图48中,与图47中示出的热源有不同的透视角度。相对可渗透性地层2200可以稍低于不渗透层2204。生产井2302可以垂直地,水平地,或以某一角度设置在相对可渗透性地层2200内。生产井2302在相对可渗透性地层2200内的布置可以取决于例如所需要的产品和需要的生产速率来变化。例如,生产井2302可以靠近相对可渗透性地层2200的底部来设置。

    热源2300可以提供热量,使相对可渗透性地层2200内的重质烃类的一部分大体上流动化。流动化的流体可以基本上借助重力作用流向相对可渗透性地层2200的底部。流动化的流体可以经过生产井2302排出。在相对可渗透性地层2200的底部或附近设置的热源2300的每一个可以经过构型设计来将与地层2200底部接近的区段的一些或全部加热到足以热解该区段内的重质烃类的温度。该区段可以称为所选择的热解区段。在所选择的热解区段内的温度可以是在大约270℃和大约400℃之间和可以按照在这里的实施方案中的任何一个中所述进行构型设计。在所选择的热解区段内重质烃类的热解可以将重质烃类的至少一部分转变成热解流体。热解流体可以经过生产井2302排出。生产井2302可以设置在所选择的热解区段内。在一些实施方案中,在大体上使相对可渗透性地层2200内的重质烃类的大部分流动化之后,一个或多个热源2300关小和/或关停。这样做可以更高效地加热该地层和/或可以节省与该现场方法有关的输入能量费用。同时,在“非高峰”时间内的加热可以是比较便宜的。

    在一个实施方案中,生产井2302可以保持关闭,一直到达到了足以使所选择的热解区段内的重质烃类的至少一部分热解的温度。这样做可以抑制从相对可渗透性地层2200生产较大量的无价值的重质烃类。较大量的重质烃类的生产需要昂贵的设备和/或缩短了生产设备的寿命。

    另外,在生产井2302内提供的热量可使该排出地层流体汽化。热量也可提供在生产井2302内以使该排出地层流体发生热解和/或提高品级,如这里的实施方案的任何一个中所述。

    增压流体可以经过热源2300提供到相对可渗透性地层2200中。增压流体可以增加流动化流体流向生产井2302。例如,提高在热源2300附近的增压流体的压力将倾向于增加流动化的流体向生产井2302中的流动。该增压流体可包括,但不限于,N2,CO2,CH4,H2,蒸汽,和/或它们的混合物。另外地,该增压流体可以通过设置在相对可渗透性地层2200内的注入井来提供。

    另外,在相对可渗透性地层2200中的压力可以控制,以使地层流体的生产速率得到控制。在相对可渗透性地层2200中的压力可以通过例如设置在相对可渗透性地层2200内的生产井2302,热源2300,和/或压力控制井来加以控制。

    生产井2302也可以进一步按照这里的任何实施方案中所述进行构型设计。例如,生产井2302可以包括阀门,这些阀门经过构型设计后可改变、保持和/或控制该地层的至少一部分的压力。

    在一个实施方案中,处理相对可渗透性地层的现场方法可以包括从多个热源为地层的一部分提供热量。多个热源可以按排列图案排列在相对可渗透性地层内。图49说明了经过构型设计来处理相对可渗透性地层的热源2400和生产井2402的排列图案2404的实例。热源2400可以与生产井2402按照“5点”图案来排列。在“5点”图案中,四个热源2400可以大体上与生产井2402等距离并且该热源彼此之间大体上等距离来排列,如图49中描绘。根据例如由各热源2400产生的热量,在热源2400和生产井2402之间的间距可通过所需的产品或所需的生产速率来决定。热源2400也与生产井同样地进行构型设计。在热源2400和生产井2402之间的间距可以是例如大约15m。同时,生产井2402与热源同样地进行构型设计。

    图50说明了热源2400与生产井2402按“7点”图案排列的排列图案2406的另一实例。在“7点”图案中,六个热源2400可以大体上与生产井2402等距离并且该热源彼此之间大体上等距离来排列,如图50中描绘。热源2400也与生产井同样地进行构型设计。同时,生产井2402与热源同样地进行构型设计。在热源2400和生产井2402之间的间距可以按照在以上实施方案的任何一个中所述进行测定。

    需要理解的是,热源2400和生产井2402的几何排列图案是这里举例所描述的。热源2400和生产井2402的排列图案可以根据例如被处理的所构型设计的相对可渗透性地层的类型来变化。例如,热源2400和生产井2402的图案可以包括在这里的实施方案中任何一个中描述的图案。另外,生产井2402在热源2400的排列图案内的位置可通过例如该相对可渗透性地层的所希望的加热速率、热源的加热速率、热源的类型、相对可渗透性地层的类型、相对可渗透性地层的组成、相对可渗透性地层的粘度、和/或需要生产速率来确定。

    在一些实施方案中,相对可渗透性地层的一部分可以在大约0.1℃/天到大约50℃/天范围内的加热速率下加热。大部分的烃类可以在大约0.1℃/天到大约15℃/天范围内的加热速率下从地层生产。在一个实施方案中,该相对可渗透性地层能够以低于约0.7℃/天的速率加热,经过了其中热解流体从地层中排出的温度范围的重要部分。该重要的部分可以大于为跨越该温度范围所需要的时间的50%、大于为跨越该温度范围所需要的时间的75%、或大于为跨越该温度范围所需要的时间的90%。

    从相对可渗透性地层生产的烃流体的质量可通过碳数分布来描述。通常,低碳数的产品如碳数低于约25的产品被认为比碳数大于约25的产品更有价值。在一个实施方案中,处理相对可渗透性地层可以包括向地层的至少一部分提供热量从而从地层中生产烃流体,其中产出流体的大部分可具有低于大约25,或例如低于大约20的碳数。例如,低于大约20wt%的所生产的可凝结流体可具有大于约20的碳数。

    在一个实施方案中,在重质烃类的流动化和/或热解过程中,在相对可渗透性地层的一部分中的压力可以提高到需要的压力。需要的压力可以是在大约2巴(绝对)到大约70巴(绝对)的范围内。然而,在保持压力在大约7巴(绝对)到大约30巴(绝对)的范围内的同时,生产出了大部分的烃流体。在流动化和/或热解过程中的压力可以改变或被改变。该压力可以加以改变以控制该产出流体的组成,控制可凝结流体同不凝结的流体相比的百分比,和/或到控制所生产的流体的API比重。增加压力可以增大产出流体的API比重。增加压力也可提高在产出流体内链烷烃的百分比。

    增加该储层压力(reservoir pressure)可以增大产出流体内的氢分压。例如,在产出流体内的氢分压可以自生增加或通过氢气注入来增加。增加的氢分压可以提高该重质烃类的品级。该重质烃类可以还原成较轻的更高质量的烃类。轻烃可通过氢与产出流体内的重烃链段反应来生产。溶于流体中的氢气也会还原该产出流体内的烯烃。所以,增加流体中的氢气压力可以减少该产出流体内烯烃的百分比。降低烯烃和/或重质烃类在产出流体中的百分比可以提高产出流体的质量(例如API比重)。在一些实施方案中,在相对可渗透性地层的一部分中的压力可以通过在加热部分内的气体产生来提高。

    在一个实施方案中,通过在这里的实施方案的任何一个中描述的现场方法从相对可渗透性地层的一部分中生产的流体可包括氮气。例如,低于约0.5wt%的可凝结流体可以包括氮气,或例如低于大约0.1wt%的可凝结流体包括氮气。另外,通过在以上实施方案中描述的现场方法生产的流体可包括氧气。例如,低于约7wt%的可凝结流体可以包括氧气,或例如低于大约5wt%的可凝结流体包括氧气。从相对可渗透性地层生产的流体也可包括硫。例如,低于约5wt%的可凝结流体可以包括硫,或例如低于大约3wt%的可凝结流体包括硫。在一些实施方案中,在可凝结流体中氮,氧,和/或硫的wt%可通过在现场方法中提高在相对可渗透性地层中流体压力来减少。

    在一个实施方案中,从相对可渗透性地层生产的流体的可凝结烃类可包括芳香族化合物。例如,大于约20wt%的该可凝结烃类可以包括芳香族化合物。在另一个实施方案中,芳族化合物的wt%可以占可凝结烃类的约30%以上。该可凝结烃类也可包括二芳族化合物。例如,低于约20wt%的该可凝结烃类可以包括二芳香族化合物。在另一个实施方案中,二芳香族化合物可以占可凝结烃类的约15wt%以下。该可凝结烃类也可包括三芳香族化合物。例如,低于约4wt%的该可凝结烃类可以包括三芳香族化合物。在另一个实施方案中,三芳香族化合物可以占可凝结烃类的约1wt%以下。

    在一个实施方案中,在较低渗透性地层的至少一部分中处理重质烃类的现场方法可包括从一个或多个热源加热该地层。一个或多个热源可以按照在这里的实施方案中的任何一个中所述进行构型设计。热源的至少一个是电热器。在一个实施方案中,热源的至少一个可以位于加热器井中。该加热器井可以包括导管,热流体流过该导管将热量转移到该地层。在地层的所选择区段中至少一些重质烃类可通过来自一个或多个热源的热量来热解。足以热解在具有较低渗透性的含烃地层中的重质烃类的温度可以在约270℃到约300℃的范围内。在其它实例中,足以热解重质烃类的温度可以在大约300℃至大约375℃范围内。热解流体可以从地层产生。在一个实施方案中,可通过至少一个生产井来生产流体。

    另外,加热也可提高所选择区段的至少一部分的平均渗透性。地层温度的提高会在该地层中产生热致破裂。该热致破裂会在热源之间增长,进一步提高了在该地层的所选择区段的一部分中的渗透性。归由于提高的渗透性,在地层中的流动化流体倾向于流入热源中并可以热解。

    在一个实施方案中,在较低渗透性地层的至少一部分中的压力可加以控制,以保持所产出的地层流体的组成在所希望的范围内。该产出的地层流体的组成可以监测。该压力可以通过在靠近生产该地层流体的地方设置的背压阀来控制。使得获得所需组成的生产井的所需操作压力可以从压力和地层中重质烃类的热解产物的组成之间的关系的实验数据确定。

    图51是在较低渗透性地层中用于加热重质烃类的热源和生产井布井图案的实例的视图。热源2502,2503,和2504可以按照这些热源的三角形布井图案被排列在三角网格的顶点。生产井2500可以设置在三角网格的中心附近。在其它实施方案中,生产井2500可以设置在该网格图案的任何位置上。热源可以按照与图51中所示的三角形图案不同的图案来排列。例如,井可以按方形图案排列。热源2502,2503和2504可以加热该地层到可使地层内的至少一些重质烃类热解的温度。热解流体可以倾向于流向生产井,由箭头表示,和地层流体经过生产井2500生产。

    在一个实施方案中,在有效热解该地层内重质烃类的热源之间的平均距离可以是大约5m和大约8m之间。在一个实施方案中,更有效的范围可以是大约2m和大约5m之间。

    在较低渗透性地层的一部分中处理重质烃类的一个实施方案可包括从一个或多个热源提供热量以使一些重质烃类发生热解并将该地层的所选择区段中的重质烃类的一部分汽化。在该地层中的重质烃类可以在大约300℃和大约350℃之间的温度下汽化。在另一个实施方案中,在该地层中的重质烃类可以在大约350℃和大约450℃之间的温度下汽化。汽化和热解的流体可以流向靠近生产流体的位置。在一个实施方案中,流体可以通过生产井从地层生产。由于汽化而增长的压力,需要通过生产井来释放压力。

    图51也表示了一个实施方案,其中至少一些重质烃类可以热解并且该重质烃类的一部分可以在至少两个热源中或附近发生汽化。热源2502,2503和2504可以加热该地层到足以使地层内的流体汽化的温度。汽化的流体倾向于按照从热源向着生产流体的生产井2500的方向流动,由箭头表示。

    在较低渗透性的含烃地层的一部分中处理重质烃类的一个实施方案中,热量可以从一个或多个热源提供,其中至少一个热源位于加热器井内。该热源可以使地层的所选择区段中的至少一些重质烃类热解并使所选择区段的至少一部分增压。在加热过程中,地层内的压力大体上提高。地层内的压力可以控制,使得地层内的压力得到保持而能够生产出所需组成的流体。热解产物可以从地层中排出,即作为蒸气从位于地层内的一个或多个加热器井排出。通过加热该地层所产生的回压可用于经过一个或多个加热器井生产热解产物。

    图52是用于加热在较低渗透性的含烃地层的一部分中的重质烃类和从一个或多个加热器井生产流体的热源排列图案的实例的视图。热源2502可以按照三角形图案排列并可以设置在加热器井中。该热源可以提供热量,以热解在地层中的一些或全部流体。流体可以通过一个或多个该加热器井生产。

    在较低渗透性的含烃地层的一部分中处理重质烃类的一个实施方案包括加热该地层以在该地层内产生至少两个区,使得至少两个区具有不同的平均温度。一个或多个热源可以加热该地层的所选择的第一区段以产生热解区,其中重质烃类可以在所选择的第一区段中热解。另外,一个或多个热源可以加热该地层的所选择的第二区段,以使得在第二所选择区段中的重质烃类的至少一些具有具有比热解区的平均温度低的平均温度。

    加热该所选择的第二区段可以降低在所选择的第二区段中一些重烃的粘度以产生低粘度区。在所选择的第二区段中重质烃类的粘度的下降足以在所选择的第二区段内生产流动化流体。该流动化流体可以流入该热解区中。例如,提高该地层中重质烃类的温度到大约200℃和大约250℃之间可以降低重质烃类的粘度,足以使重质烃类流过该地层。在另一个实施方案中,将流体的温度提高到在大约180℃和大约200℃之间也足以使重质烃类流动化。例如,在200℃下在地层中重质烃类的粘度可以是大约50厘泊到大约200厘泊。

    加热可以产生热致裂纹,它们在所选择的第一区段和所选择的第二区段中的热源之间增长。热致裂纹大体上提高地层的渗透性并有利于流动化流体从低粘度区流入热解区中。在一个实施方案中,垂直水力压裂裂缝可以在该地层中产生,进一步提高渗透性。水力压裂裂缝的存在也是所希望的,因为在水力压裂裂缝中聚集的重质烃类可以在热解区中具有增加的停留时间。增加的停留时间可以导致在热解区中重质烃类的增加热解。

    同时,基本上与粘度下降的同时,低粘度区中的压力将因为地层的热膨胀和在地层中的夹含的水蒸发成蒸汽而提高。例如,在低粘度区中的压力可以是大约10巴(绝对)到上覆地层压力(它是大约70巴(绝对))之间。在其它实施方案中该压力可以是大约15巴(绝对)到大约50巴(绝对)。压力的值可取决于多个因素,比如但不限于,热应力破裂的程度,在地层中水的量、和地层的物料性质。在热解区中的压力可以大体上低于低粘度区中的压力,归因于热解区的较高渗透性。与低粘度区相比,热解区的较高温度可导致更高程度的热应力破裂,和因此有更大的渗透性。例如,热解区压力可以是大约3.5巴(绝对)到大约10巴(绝对)。在其它实施方案中,热解区压力可以是大约10巴(绝对)到大约15巴(绝对)。

    在热解区和低粘度区之间的压差可强迫一些流动化流体从低粘度区流入该热解区中。在热解区中的重质烃类通过热解成热解流体而提高品级。热解流体可以通过生产井从地层生产。在另一个实施方案中,从地层生产的热解流体包括液体。

    在一个实施方案中,热解区中热源的密度可以大于在低粘度区中热源的密度。在热解区中热源的增加密度可以在热解区中建立和保持均匀的热解温度。在低粘度区中使用较低密度的热源可以是更加有效和经济的,由于在低粘度区中需要较低的温度。在一个实施方案中,在用于加热第一所选择区段的热源之间的平均距离可以是在大约5m和大约10m之间。另外地,平均距离可以是在大约2m和大约5m之间。在一些实施方案中,在用于加热第二所选择区段的热源之间的平均距离可以是在大约5m和大约20m之间。

    在一个实施方案中,该热解区和一个或多个低粘度区可以在时间上按顺序加热。热源可以加热第一所选择区段直到热解区的平均温度达到所希望的热解温度为止。随后,热源可以加热距离该热解区最近的所选择的第二区段的一个或多个低粘度区,一直到该低粘度区达到所希望的平均温度为止。加热稍远离该热解区的所选择的第二区段的低粘度区可以按类似方式继续。

    在一个实施方案中,热量被提供到地层中以产生平面的热解区和平面的低粘度区。一个或多个平面的低粘度区可以在热解区周围对称地产生,并倾向于强迫重质烃类流向热解区。在一个实施方案中,在热解区中的流体可以从位于热解区中的生产井生产。

    图53是说明热解区和低粘度区的热源和生产井图案的一个实例的视图。沿着平面2504和平面2506的热源2512可以加热平面的区域2508以产生热解区。加热可以在热解区中产生热致裂纹2510。在平面2516,2518,2520,和2522中用热源2514加热可以产生因热致裂纹而增加渗透性的低粘度区。在低粘度区和热解区之间的压差可强迫流动化流体从低粘度区流入该热解区中。由热致裂纹2510产生的渗透性足够的高,以致可以产生大体上均匀的热解区。热解流体可以通过生产井2500来生产。

    在一个实施方案中,希望在时间上按顺序产生热解区和低粘度区。距离热解区最近的热源可以首先活化,例如,在图53的平面2504和平面2506内的热源2512。大体上均匀的温度可以经过一段时间以后在热解区中建立。流过热解区的流动化流体会发生热解和汽化。一旦建立该热解区,在距离热解区最近的低粘度区中的热源(例如,在平面2516和平面2520中的热源2514)可以启动和/或加速,以建立低粘度区。通过反复活化稍远离该热解区的热源(例如,在平面2518和平面2522中的热源2514)来形成更大的低粘度区。

    图54是在图53中示出的排列图案的展开图。与图53中的区域2508对应的四个平面垂直区域2540可包括产生热解区的热源。区域2548,2550,和2552可以包括施加热量以产生低粘度区的热源。生产井2500可以设置在发生热解的区域中并经过构型设计来排出热解流体。在一个实施方案中,热解区2540的长度可以是在大约75m和大约100m之间。在另一个实施方案中,热解区的长度可以是在大约100m和大约125m之间。在另一个实施方案中,在同一平面中的生产井之间的平均距离可以是在大约100m和大约150m之间。在一个实施方案中,在平面2542和平面2544之间的距离可以是在大约40m和大约80m之间。在一些实施方案中,一个以上的生产井可以设置在发生热解的区域中。平面2542和平面2544可以大体上平行。该地层可以包括大体上彼此平行的另外的平面垂直热解区。热流体可以提供到垂直平面区域中,使得可以发生重质烃类的现场热解。热解流体可以通过设置在垂直平面区域中的生产井排出。

    平面的热解区的实例可以包括由地层中的生产井产生的垂直水力压裂裂缝。该地层可以包括大体上与该地层中的垂直水力压裂裂缝平行设置的热源。在与裂纹接近的平面区域中的热源可以提供足以使热解区中至少一些或全部的重质烃类发生热解的热量。在平面区域之外的热源可以加热该地层到足以降低在低粘度区中流体的粘度的温度。

    图55是在包括布井图案和垂直水力压裂裂缝的具有较低渗透性的含烃地层的至少一部分中处理重质烃类的一个实例的视图。生产井2600可以通过在这里的实施方案中任何一个中所述的方法,经过构型设计产生裂纹2602。由水力压裂产生的裂纹2602的宽度可以是在大约0.3厘米和大约1厘米之间。在其它实施方案中,裂纹2602的宽度可以是在大约1厘米和大约3厘米之间。该热解区可在垂直水力压裂裂缝的任一侧上在平面区域中形成,这通过利用在平面2605和平面2606中的热源2604加热该平面区域到热解温度范围内的平均温度来实现。在热解区的两侧(高于平面2605和低于平面2606)上低粘度区的产生可通过在该热解区之外的热源来实现。例如,在平面2610,2612,2614,和2616中的热源2608可以加热该低粘度区到足以降低该地层中重质烃类的粘度的温度。在低粘度区中的流动化的流体将由于在低粘度区和热解区之间的压差和由于热致裂纹引起的增加渗透性,而可以流入热解区中。

    图56是在图55中示出的实例的展开图。图56说明了沿着平面2645有两个裂纹2645a和2645b和沿着平面2646有两个裂纹2646a和2646b的地层。各裂纹可使用生产井2640来产生。平面2645和平面2646可以大体上平行。由较低渗透性地层中的水力压裂作用产生的裂纹的长度可以是在大约75m和大约100m之间。在一些实施方案中中,垂直水力压裂裂缝(长度)可以是在大约100m和大约125m之间。这些垂直水力压裂裂缝可以沿着一平面与生产井大体上等距离地增长。所以,由于不希望沿着同一平面的裂纹相结合,因此在沿着同一平面的生产井之间的距离可以是在大约100m和大约150m之间。随着在不同平面上的裂纹之间的距离(例如在平面2645和平面2646之间的距离)增加,距离任一裂纹最远的流动化流体的流动会减少。在不同平面上的裂纹之间的距离,它对于流动化流体输送到热解区来说经济和有效的,可以是大约40m到大约80m。

    平面2648和平面2649可以包括热源,它提供足以在平面2648和平面2649之间产生热解区的热量。平面2651和平面2652可以包括热源,这些热源在平面2651和平面2652之间产生热解区。在区域2650,2660,2655和2656中的热源提供可产生低粘度区的热量。在区域2650,2660,2655和2656中的流动化流体倾向于向着该地层中最近的裂纹方向流动。进入热解区的流动化流体可以热解。热解流体可以从生产井2640生产。

    在一个实施方案中,热量被提供到较低渗透性地层中以产生辐射状的热解区和低粘度区。产生了辐射状的加热区域,倾向于强迫流体流向热解区。流体可以在热解区中热解。热解流体可以从位于热解区中的生产井生产。这些热源能够沿着生产井以同心环如正多边形设置。热源的各种构型都是可能的。在距离生产井最近的环中的热源可以加热流体到热解温度以产生辐射状的热解区。热源的另外的同心环可以从热解区向外辐射扩展,并加热流体以产生低粘度区。在低粘度区中的流动化的流体将由于在低粘度区和热解区之间的压差和由于热应力破裂引起的增加渗透性,而可以流入热解区中。热解流体可以通过生产井从地层生产。

    在沿着生产井的环中排列的热源的几个排列图案可用于在含烃地层中产生辐射状的热解区域。在图57-70中示出的各种排列图案在这里进行描述。虽然在重质烃类的论述中讨论了这些图案,但是应该理解的是,在图57-70中示出的任何排列图案可用于其它含烃地层(例如,煤炭,油页岩,等)。

    图57说明了产生由低粘度区包围的辐射状热解区的热源2705的图案的实例。生产井2701可以被热源2705的同心环2702,2703和2704包围。在环2702中的热源2705加热地层产生辐射状的热解区2710。在热解区2710之外的环2703和2704中的热源可加热该地层,产生低粘度区。流动化流体可以从低粘度区沿径向向内流入该热解区2710中。流体可以通过生产井2701来生产。在一个实施方案中,在热源之间的平均距离可以是在大约2m和大约10m之间。另外地,平均距离该是在大约10m和大约20m之间。

    与其它实施方案中一样,希望按顺序产生热解区和低粘度区。距离生产井2701最近的热源2705可首先活化例如在环2702中的热源2705。经过一段时间以后可以建立大体上均匀温度的热解区。流过热解区的流体会发生热解和蒸发。一旦建立该热解区,在大体上接近热解区的低粘度区中的热源2705(例如,在环2703中的热源2705)可以活化,为低粘度区的一部分提供热量。由于在低粘度区和热解区之间的压差,流体向内流向生产井2701,由箭头表示。通过反复活化稍远离裂纹的热源例如在环2704中的热源2705,形成了较大的低粘度区。

    热源和生产井的几种布井图案可用于辐射状加热区的实例中以处理较低渗透性地层。该热源可以在沿着生产井的环中排列。沿着各生产井的图案可以是含有多个热源的六边形。

    在图58中,生产井2701和热源2712可以位于三角形网格的顶点。该三角形网格可以是具有长度s的边的等边三角形网格。生产井2701能够以大约1.732(s)的距离间隔。生产井2701可以设置在具有六个热源2712的一个环2713的六边形图案的中心。各热源2712可以为三个生产井提供大体上等量的热量。所以,六个热源2712的每一环2713可以贡献大约两个等效热源/每个生产井2701。

    图59说明了具有内部六边形环2713和热源2712的外部六边形环2715的生产井2701的排列图案。在本图案中,生产井2701能够以大约2(1.732)s的距离间隔。热源2712可以位于全部其它网格位置中。这一图案可以导致等效热源与生产井的比率接近十一。

    图60说明了包围生产井2701的热源2712的三个环。生产井2701可以被六个热源2712的环2713包围。十二个热源2712的第二个六边形环2716可以包围环2713。热源2712的第三个环2718可以包括为两个生产井提供大体上等量的热量的十二个热源以及为三个生产井提供大体上等量的热量的六个热源。所以,总共八个等效热源可以设置在第三个环2718中。生产井2701可以从大约二十六个热源的当量物(equivalent)提供热量。图61说明了在生产井2701之间有较大间距的甚至更大的排列图案。

    另外地,方形图案可以提供有生产井,例如,布置在每逢三个正方形的中心,导致每个生产井有四个热源。生产井可以设置在方形图案中的每逢五个正方形中,导致每个生产井有十六个热源。

    图62,63,64和65说明另一实施方案,其中生产井和热源可以位于三角形网格的顶点。在图62中,具有s的间距的三角形网格可具有以2s的距离间隔的生产井2701。六边形图案可以包括六个热源2732的一个环2730。各热源2732可以为两个生产井2701提供大体上等量的热量。所以,六个热源2732的每一环2730可以贡献大约三个等效热源/每个生产井2701。

    图63说明了具有内部六边形环2734和外部六边形环2736的生产井2701的图案。生产井2701能够以3s的距离间隔。热源2732可以位于六边形环2734和六边形环2736的顶点。六边形环2734和六边形环2736可以各自包括六个热源。在图63中的图案可以导致热源2732与生产井2701的比率为八。

    图64说明了也具有包围各生产井的热源的两个六边形环的生产井2701的布井图案。生产井2701可以被六个热源2732的环2738包围。生产井2701能够以4s的距离间隔。第二六边形环2740可以包围环2738。第二个六边形环2740可以包括十二个热源2732。这一布井图案可以导致热源2732与生产井2701的比率接近十五。

    图65说明了也具有包围各生产井2701的热源2732的三个环的热源2732的排列图案。生产井2701可以被六个热源2732的环2742包围。十二个热源2732的第二个环2744可以包围环2742。热源2732的第三个环2746可以包围第二个环2744。第三个环2746可以包括6个等效热源。这一图案可以导致热源2732与生产井2701的比率是大约24∶1。

    图66,67,68和69说明了一种布井图案,其中生产井可以设置在三角形网格的中心,使得生产井与三角形网格的顶点等距离。在图66中,具有s的间距的加热器井的三角形网格可包括以s的距离间隔的生产井2760。各生产井2760可以被三个热源2762的环2764包围。各热源2762可以为三个生产井2760提供大体上等量的热量。所以,三个热源2762的每一环2764可以贡献一个等效热源/每个生产井2760。

    图67说明了具有内部三角形环2766和外部环2768的生产井2760的图案。在这一图案中,生产井2760能够以2s的距离间隔。热源2762可以位于内环2766和外环2768的顶点。内环可以贡献三个等效热源/每个生产井2760。含有三个加热器井的外部六边形环2768可以贡献一个等效热源/每个生产井2760。因此,总共四个等效热源可以为生产井2760提供热量。

    图68说明了具有包围各生产井的热源的一个内部三角形环、一个倒三角形环、和一个不规则六边形外环的生产井图案。生产井2760可以被三个热源2762的环2770包围。生产井2760能够以3s的距离间隔。九个热源2762的不规则六边形环2772可以包围环2770。这一排列图案可以导致热源2762与生产井2760比率为3。

    图69说明具有包围各生产井的热源的三个环的热源三角形图案。生产井2760可以被三个热源2762的环2774包围。九个热源2762的不规则六边形图案2776可以包围环2774。热源2762的第三组2778可以包围六边形图案2776。第三组2778可以为生产井2760贡献四个等效热源。等效热源与生产井2760的比率可以是十六。

    在较低渗透性地层的至少一部分中处理重质烃类的一个实施方案可以包括从三个或更多个热源加热地层。以大体上三角形图案排列至少三个热源。在地层的所选择区段中至少一些重质烃类可通过来自三个或更多个热源的热量来热解。由地层中重质烃类的热解产生的热解流体可以从地层中生产。在一个实施方案中,流体可以经过设置在地层中的至少一个生产井来生产。

    图70描绘了以三角形图案排列的热源2705的排列图案的实例。生产井2701可以被热源2705的三角形2780,2782和2784包围。在三角形2780,2782和2784中的热源2705可以为地层提供热量。提供的热量可以将地层的平均温度提高到热解温度。热解流体流向生产井2701。地层流体可以在生产井2701中生产。

    图71说明了可经过构型设计来处理地层流体的地面设备2800的实例的示意图。该地层流体可以通过这里所述的生产井来生产。该地层流体可以包括由这里所述的任何一种方法生产的地层流体的任何一种。如图71中所示,地面设备2800可以联接于井头2802。井头2802也可联接于在地层中形成的生产井。例如,该井头可以通过靠近地层的上表面的各种机械设备联接于生产井。所以,经生产井生产的地层流体也可流过井头2802。井头2802可以经过构型设计将该地层流体分离成气流2804,液态烃凝析油流2806,和水流2808。

    地面设备2800可以经过构型设计,使得水流2808从井头2802流入到地层的一部分中,流入贮备系统中,或流入加工装置中。例如,水流2808可以从井头2802流入氨生产装置中。该地面设备可以经过构型设计,使得在氨生产设备中生产的氨流入硫酸铵装置中。该硫酸铵装置可以经过构型设计,将氨与H2SO4或SO2/SO3结合,生产硫酸铵。另外,该地面设备可以经过构型设计,使得在氨生产设备中生产的氨流入尿素生产设备中。该尿素生产设备可以经过构型设计将二氧化碳与氨结合以生产尿素。

    地面设备2800可以经过构型设计,使得气流2804经过导管从井头2802流入气体处理装置2810中。该导管可以包括管或现有技术中已知的任何其它流体通道机构。气体处理装置可以经过构型设计来分离气流2804的各种组分。例如,气体处理装置可以经过构型设计将气流2804分离成二氧化碳流2812,硫化氢流2814,氢气流2816,和物流2818,后者包括但不限于,甲烷,乙烷,丙烷,丁烷类(包括正丁烷或异丁烷),戊烷,乙烯,丙烯,丁烯,戊烯,水或它们的结合物。

    地面设备2800可以经过构型设计,使得二氧化碳流可以经过导管流入地层,流入存储(containment)系统,流入废料处理设备,和/或流入另一个加工装置中。另外,该设备经过构型设计,使得硫化氢流也经过导管流入存储系统和/或流入另一加工装置中。例如,该硫化氢流可以在克劳斯工艺装置中被转变成元素硫。气体处理装置也可经过构型设计将气流2804分离成料流2819,后者包括来自气流2804的重烃组分。重烃组分可以包括,例如,碳数大于约5的烃类。地面设备2800可以经过构型设计,使得在料流2819中的重烃组分被提供到液态烃凝析油流2806中。

    地面设备2800也可包括加工装置2821。加工装置2821可以经过构型设计将物流2818分离成几个物流。几个物流中的每一个可以富含预定的组分或预定数的化合物。例如,加工装置2821可以将物流2818分离成物流2818的第一部分2820,物流2818的第二部分2823,物流2818的第三部分2825,和物流2818的第四部分2831。物流2818的第一部分2820包括轻烃组分如甲烷和乙烷。该地面设备可以经过构型设计,使得物流2818的第一部分2820可从气体处理装置2810流入发电装置2822。

    发电装置2822可以经过构型设计,从料流2818的第一部分抽取可用的能量。例如,在压力下生产料流2818。如此,发电装置可以包括经过构型设计从料流2818的第一部分产生电的汽轮机。该发电装置也可包括,例如,熔融碳酸盐燃料电池,固体氧化物燃料电池,或其它类型的燃料电池。该设备可以进一步构型设计,使得所抽取的有用能量被提供给用户2824。用户2824可以包括,例如,地面设备2800,设置在地层内的热源,和/或可用能量的消费者。

    料流2818的第二部分2823也可包括轻质烃组分。例如,料流2818的第二部分2823可包括,但不限于,甲烷和乙烷。地面设备2800也可经过构型设计,使得料流2818的第二部分2823可以提供给天然气管网2827。另外,地面设备也可经过构型设计,使得料流2818的第二部分2823可以提供给当地市场。当地市场包括消费者市场或商业市场。如此,料流2818的第二部分2823可以用作最终产品或中间产品,这取决于例如轻质烃组分的组成。

    料流2818的第三部分2825可包括液化石油气(“LPG”)。LPG的主要成分可以包括含有三或四个碳原子的烃类如丙烷和丁烷。丁烷可以包括正丁烷或异丁烷。LPG也可包括较低浓度的其它烃类如乙烯,丙烯,丁烯,和戊烯。然而,取决于LPG的来源和它如何生产的,LPG也可包括附加的组分。LPG在大气压力和标准环境温度下是气体。然而,当施加中等压力时或足够地降低温度时,LPG可以液化。当所述中等压力释放时,LPG气体具有LPG液体的体积的大约250倍体积。所以,大量的能量可以作为LPG紧凑地储存和运输。

    地面设备2800也可经过构型设计,使得料流2818的第三部分2825可以提供给当地市场2829。当地市场包括消费者市场或商业市场。如此,料流2818的第三部分2825可以用作最终产品或中间产品,这取决于例如LPG的组成。例如,LPG可以用于诸如食品加工、气溶胶喷射剂和车用燃料之类的应用。LPG通常以一种或两种形式用于标准加热和烹饪目的:工业丙烷和工业丁烷。丙烷可以丁烷有更多的用处,因为丙烷具有比丁烷更低的沸点。

    地面设备2800也可经过构型设计,使得料流2818的第四部分2831从气体处理装置流入制氢装置2828中。含氢的料流2830被显示离开制氢装置2828。制氢装置2828的例子可包括蒸气重整炉具有氢气分离膜的催化无焰分布燃烧器。图72说明了催化无焰分布式燃烧器的实例。具有氢气分离膜的催化无焰分布燃烧器的实例被说明在美国专利申请No.60/273,354(2001年3月5日)中,它被引入本文供参考就象全部列于本文中一样。催化无焰分布式燃烧器可以包括油管2850,氧化剂管2852,催化剂2854,和薄膜2856。料流2818的第四部分2831可以作为燃料2858提供到制氢装置2828中。在油管2850内的燃料2858可以在油管和氧化剂管之间的环形空间2859中的反应区中进行混合。燃料与氧化剂在催化剂2854存在下的反应可以生产包括H2的反应产物。薄膜2856可以让所产生的H2的一部分通入在氧化剂管2852的外壁2862和薄膜2856之间的环形空间2860中。从油管2850流出的多余燃料可以循环回到制氢装置2828的入口。离开氧化剂管2852的燃烧产物可以包括二氧化碳和其它反应产物以及一些燃料和氧化剂。该燃料和氧化剂可以分离并再循环回到制氢装置中。二氧化碳可以从排出气流中分离。该二氧化碳可以隐退在地层的一部分内或用于其它目的。

    油管2850可以同心地位于氧化剂管2852内。在油管2850内的临界流量孔经过构型设计后允许燃料进入在油管和氧化剂管2852之间的环形空间2859中的反应区中。该油管可能运输水和汽化烃类的混合物,这些烃类比如是,但不限于,甲烷,乙烷,丙烷,丁烷,甲醇,乙醇,或它们的结合物。该氧化剂管可运输氧化剂,比如但不限于,空气,富氧空气,氧气,过氧化氢,或它们的结合物。

    催化剂2854可以位于该反应区中,以便在较低温度下进行可产生H2的反应。没有催化剂和没有H2的膜分离,蒸汽重整反应需要在一系列反应器中进行,这些反应器具有超过980℃的为转换反应所需要的温度。有着催化剂和从反应料流中分离H2,该反应可以在大约300℃到大约600℃范围内,或在大约400℃到大约500℃范围内的温度下进行。催化剂2854可以是任何蒸汽重整催化剂。在所选择的实施方案中,催化剂2854是VIII族过渡金属,如镍。该催化剂可以担载在多孔基材2864上。该基材可包括III族或IV族元素,比如,但不限于,铝,硅,钛,或锆。在一个实施方案中,该基材是氧化铝(Al2O3)。

    膜2856可以从制氢装置2828的反应区内的反应料流中分出H2。当从反应料流中分出H2时,反应区内的反应产生附加的H2。真空可以从膜2856和氧化剂管2852的壁2862之间的环形区域中抽出H2。另外,H2可以从载气中的环形区域中分出。膜2856可以将H2与反应料流内的其它组分分离。其它组分可包括,但不限于,反应产物,燃料,水,和硫化氢。

    该膜可以氢气是渗透性的和氢气选择性的材料,比如,但不限于,陶瓷,碳,金属,或它们的结合物。该薄膜可包括,但不限于,VIII、V、III或I族的金属,如钯,铂,镍,银,钽,钒,钇,和/或铌。该薄膜可以担载在多孔基材如氧化铝上。该载体可以将薄膜2856与催化剂2854分开。载体的分离距离和绝缘性能有助于保持该薄膜在所需要的温度范围内。如此,制氢装置2828可以经过构型设计后从第二部分料流2818生产富氢料流2830。该地面设备也可经过构型设计,使得富氢料流2830流入氢气流2816中而形成料流2832。如此,料流2832可以包括比富氢料流2830或氢气流2816更多体积的氢气。

    地面设备2800可以经过构型设计,使得烃凝结物流2806经过导管从井头2802流入加氢处理装置2834中。加氢处理装置2834可以经过构型设计,将烃凝结物流2806氢化而形成氢化烃凝结物流2836。该加氢处理装置可以经过构型设计来提高烃凝结物的品级和增加它的价值。例如,地面设备2800也可经过构型设计为加氢处理装置2834提供料流2832(它包括较高浓度的氢气)。如此,在料流2832中的H2可以氢化该烃凝结物的双键,因此减少了烃凝结物的聚合的潜在性。另外,氢气也可中和在烃凝结物中的基团。如此,该氢化的烃凝结物可以包括较短链烃流体。此外,加氢处理装置2834可以经过构型设计来减少在烃凝结物流2806中的硫,氮,和芳族烃。加氢处理装置2834可以是深度加氢处理装置或适度的加氢处理装置。适当的加氢处理装置可以根据例如料流2832的组成,烃凝结物流的组成,和/或氢化烃凝结物流的所选择组成来变化。

    地面设备2800可以经过构型设计,使得氢化的烃凝结物流2836从加氢处理装置2834流入运输装置2838中。运输装置2838可以经过构型设计来收集一定体积的氢化烃凝结物和/或将氢化烃凝结物输送到销售中心2840。例如,销售中心2840可包括,但不限于,消费者市场或商业市场。商业市场可包括,但不限于,精炼厂。如此,氢化烃凝结物可以用作最终产品或中间产品,这取决于例如氢化烃凝结物的组成。

    另外地,地面设备2800可以经过构型设计,使得氢化烃凝结物流2836可以流入分离器(splitter)或乙烯生产设备中。该分离器可以经过构型设计将该氢化烃凝结物分离成包括碳数为5或6的组分的烃流,石脑油流,煤油流,和柴油流。离开该分离器的料流可以供应给乙烯生产设备。另外,该烃凝结物流和该氢化烃凝结物流可以供应给乙烯生产设备。由该乙烯生产设备生产的乙烯可以供应给石油化工联合装置以生产基本化工原料和聚合物。另外地,离开分离器的料流可以供应给氢气转化装置。再循环液流可以经过构型设计从氢气转化装置流入分离器中。离开分离器的烃流,和石脑油流可以供应给车用汽油生产装置。该煤油流和该柴油机油流可以作为产品来分配。

    图73说明了包括在地面设备如在图71中描绘的设备中的附加处理装置的实例。空气分离装置2900可以经过构型设计产生氮气流2902和氧气流2905。氧气流2905和蒸汽2904可以注入到枯竭的煤炭资源2906中以产生合成气2907。生产的合成气2907可以提供到Shell中间馏分加工装置2910中,后者经过构型设计来生产中间馏分2912。另外,生产的合成气2907可以提供到催化甲烷化加工装置2914中,后者经过构型设计可生产天然气2916。生产的合成气2907也可提供到甲醇生产装置2918中生产甲醇2920。此外,生产的合成气2907可以提供到生产氨和/或尿素2924的加工装置2922中,和提供到经过构型设计产生电2928的燃料电池2926中。合成气2907也可输送到发电装置2930,如汽轮机或燃烧器中,以生产电2932。

    图74说明了热源3000和生产井3002的方形图案的实例。热源3000被设置在正方形3010的顶点。生产井3002处于在x方向和y方向上的每逢三个正方形的中心。中线3006与两个生产井3002等距离地形成,并且垂直于连接这些生产井的直线。中线3006在顶点3008处的交叉构成了单元格3012。热源3000b和热源3000c仅仅部分地在单元格3012内。仅仅在单元格3012内的热源3000b的二分之一部分和热源3000c的四分之一部分经过构型设计在单元格3012内提供热量。在单元格3012以外的热源3000的部分经过构型设计为单元格3012以外提供热量。在一个单元格3012内热源3000的数目是地层内热源3000与生产井3002的比率。

    在单元格3012内热源的总数可通过下列方法测定:

    (a)在单元格3012内4个热源3000a各自被视为一个热源;

    (b)在中间线3006上8个热源3000b各自被视为半个热源;和

    (c)在顶点3008处4个热源3000c各自被视为四分之一个热源。

    对于在单元格3012中9个热源3000的总数,热源的总数是通过将由(a)4,(b)8/2=4,和(c)4/4=1计数的热源相加来测定。所以,对于图74中所示的图案,热源3000与生产井3002的比率被确定为9∶1。

    图75说明了热源3000和生产井3002的另一个排列图案的实例。中线3006与两个生产井3002等距离地形成,并且垂直于连接这些生产井的直线。单元格3014通过中线3006在顶点3008处的交点来确定。通过在以上实施方案中所述的方法在单元格3014中计数了十二个热源3000,其中六个是完整热源,和六个是三分之一热源(其中来自该六个井的热源的另外三分之二属于其它排列图案中)。因此,对于图75中所示的图案,热源3000与生产井3002的比率被确定为8∶1。热源图案的实例已在授权于Ljungstrom的美国专利No.2,923,535中进行说明,它被引入本文供参考就象在本文中全部列出一样。

    在某些实施方案中,当与热源的其它图案如正方形,六边形,和具有在六边形的顶角间中途安装的附加加热器的六边形(12比1图案)相比时,热源的三角形排列图案有一定优势。正方形,六边形,和12∶1图案被公开在美国专利No.2,923,535和/或在美国专利No.4,886,118中。例如,热源的三角形图案可以提供含烃地层的更均匀加热,这是由于被该热源排列图案加热的地层区域的更均匀的温度分布所引起的。

    图76说明了热源3102的三角形排列图案3100的实例。图76a说明了热源3103的方形图案3101的实例。图77说明了热源3106的六边形图案3104的实例。图77a说明了热源3107的12比1图案3105的实例。全部图案的温度分布可通过分析方法测定。通过仅仅分析在“所限制”图案(例如六边形)(即完全地被其它包围)内的温度场,来简化该分析方法。另外,该温度场可以可被评估为对应于单个热源的分析解的叠加。

    对于相同的加热器井密度和相同的热输入状态(heating inputregime),评价热源图案的比较。例如,如果在热源之间的间距增大到在三角形图案中的大约12.2m,则在三角形图案中每一单位面积中热源的数目与在10m六边形图案中每一单位面积中热源的数目相同。方形图案的当量间距是11.3m,而12比1图案的当量间距是15.7m。

    图78说明了在典型的Green River油页岩中,在具有12.2m间距的三角形排列图案的加热三年之后的温度分布图3110。该三角形图案可以按照在图76中所示来进行构型设计。温度分布图3110是温度对三角形图案内的位置的三维图。图79说明了在典型的Green River油页岩中,在具有11.3m间距的方形图案的加热三年之后的温度分布图3108。温度分布图3108是温度对方形图案内的位置的三维图。该方形图案可以按照在图76a中所示来进行构型设计。图79a说明了在典型的GreenRiver油页岩中,在具有10.0m间距的六边形图案的加热三年之后的温度分布图3109。温度分布图3109是温度对六边形图案内的位置的三维图。该六边形图案可以按照在图77中所示来进行构型设计。

    如图78,79和79a的对比中所示,三角形图案的温度分布比正方形或六边形图案的温度分布更加均匀。例如,方形图案的最低温度是大约280℃,和六边形图案的最低温度是大约250℃。相反,三角形图案的最低温度是大约300℃。所以,在加热3年之后在三角形图案内的温度变化比在方形图案内的温度变化低20℃并且比在六边形图案内的温度变化低50℃。对于反应速率与温度的指数成正比的化学反应过程,即使20℃的差异也是相当大的。

    图80说明了在平均图案温度(摄氏温度)和各图案的最冷点的温度之间的对比曲线,作为时间的函数(年)。各图案的最冷点位于图案中心(质心)。如图76中所示,三角形图案的最冷点是位点3118,而位点3117是方形图案的最冷点,如图76a中所示。如图77中所示,六边形图案的最冷点是位点3114,而位点3115是12比1图案的最冷点,如图77a中所示。在平均图案温度和最冷点的温度之间的差异表示了对于给定的图案来说温度分布如何均匀。该加热越均匀,制造的产品质量越好。过热的资源的体积分数越大,将产生更多的不希望有的产品组成。

    如图80中所示,对于在图案的平均温度3120和最冷点的温度之间的差异,三角形图案3118低于方形图案3117、六边形图案3114、或12比1图案3115。再次表明在三角形和六边形图案之间有相当大的差异。

    分析温度分布的均匀性的另一个途径是将图案的最冷点的温度与位于介于这些加热器中间的图案的边的中心上的位点进行对比。如图77中所示,点3112位于介于这些加热器中间的六边形图案的边的中心上。如图76中所示,点3116位于介于这些加热器中间的三角形图案的边的中心上。点3119位于介于这些加热器中间的方形图案的边的中心上,如图76a中所示。

    图81说明了在平均图案温度(摄氏度),与,在三角形图案的最冷点3118、六边形图案的最冷点3114、位于介于这些加热器中间的三角形图案的一边的中心上的位点3116和位于介于这些加热器中间的六边形图案的一边的中心上的位点3112上的3120温度之间的对比曲线,作为时间的函数(年)。图81a说明了在平均图案温度3120(摄氏度),与,对于方形图案,在最冷点3117和位于介于这些加热器中间的图案的一边的中心上的位点上的温度之间的对比曲线,作为时间的函数(年)。

    如图81和81a的对比所示,对于各图案,在介于加热器中间的一边的中心上的温度高于在图案中心上的温度。在介于加热器中间的边的中心上的温度与六边形图案的中心上的温度之间的差异将在第一年的加热中显著增加,然后保持相对固定。然而,在外边线上的温度与三角形图案的中心上的温度之间的差异是可以忽略的。所以,在三角形图案中的温度分布比六边形图案中的温度分布大体上更均匀。方形图案也比六边形图案提供更均匀的温度分布,但不如三角形图案中的温度分布那样均匀。

    热源的三角形图案可具有,例如,对于同样的加热器井密度,比热源的正方形、六边形或12比1图案更短的总加工时间。总加工时间可以包括地层的加热部分的平均温度达到目标温度所需要的时间和在加热部分内最冷点上的温度达到目标温度所需要的时间。例如,热量可以提供到地层的该部分中,直至加热部分的平均温度达到目标温度为止。在加热部分的平均温度达到目标温度之后,供应到热源的能量减少,使得较少或最低量的热量被提供给该加热部分。目标温度的一个例子是大约340℃。然而,目标温度可以取决于地层组成和/或地层条件如压力来变化。

    图81b说明了当在平均温度达到了目标温度值之后加热器被关停时,平均图案温度与各图案的最冷点上的温度之间的对比曲线,作为时间的函数。如图81b所示,地层的平均温度在大约3年内达到目标温度(大约340℃)。如图81b中所示,在三角形图案内最冷点上的温度在0.8年后达到了目标温度(大约340℃)。如此,当在达到目标平均温度时中断热量输入时,该三角形图案的总加工时间是大约3.8年。如图81b中所示,在方形图案内最冷点上的温度或在六边形图案内最冷点上的温度达到目标温度之前,在三角形图案内的最冷点上的温度已达到目标温度(大约340℃)。然而,当在达到目标温度后关闭加热器时,在六边形图案内最冷点上的温度另外在约2年的附加时间之后达到了目标温度。所以,六边形图案的总加工时间是大约5.0年。如此,用三角形图案加热地层的一部分的总加工时间比用六边形图案加热地层的一部分的总加工时间短了1.2年(大约25%)。在优选的模式中,当图案的平均温度达到目标水平时,供给加热器的功率可以减少或关停。这可防止过热该资源,浪费能量和得到低产品质量。该三角形图案具有最均匀温度和最少的过热。虽然该三角形图案的资本成本与六边形图案的资本成本大约相同,但是三角形图案可以加速石油开采和需要较短的总加工时间。如此,该三角形图案可以比六边形图案更经济。

    在三角形图案中热源的间距一它得到与在热源之间具有大约10.0m间距的六边形图案相同的加工时间-可以等于大约14.3m。如此,六边形图案的总加工时间可通过使用比该六边形图案中包括的热源少大约26%的热源来实现。如此,该三角形图案具有更低的投资和生产费用。照这样,该三角形图案也可以比六边形图案更经济。

    图12描绘了天然分布燃烧器的实例。在一个实施方案中,在图12中以图解法显示的实施方案用于现场加热高挥发分沥青质C煤炭。加热井经过构型设计用电阻加热器和/或在图12中以图解法示出的天然分布式燃烧器来加热。沿着天然分布式燃烧器的长度(按照图12中图示,沿着导管532)每2英尺设置热电偶。该煤炭首先用电阻加热器加热,直至在井附近热解完成为止。图130描绘了在温度分布曲线已稳定之后在煤炭矿的各种深度处的电阻式加热过程中所测量的正方形数据点(该煤层在大约28英尺的深度处起始,大约16英尺厚)。在这一点上热能是以大约300瓦/每英尺供给。空气随后经导管532以逐渐增加的速率被注入,并且电力大体上同时减少。燃烧产物从包围导管532和该电阻加热器的环状空间中的反应区中排出。该电力以一定的速率减少,大致上由天然分布式燃烧器引起的煤炭的燃烧所提供的加热进行补偿。在大约2小时的时间内,空气速率增加并且电力供应量减少,直至不供给电力为止。图130描绘了在温度分布曲线已稳定之后在煤炭的各种深度处的天然分布式燃烧加热(没有任何电阻式加热)过程中测量的菱形数据点。从图130中可以看出,该天然分布式燃烧加热提供了可与电阻温度分布曲线相当的温度分布曲线。这一实验举例说明了天然分布燃烧器能够提供与由电阻加热器提供的地层加热相当的地层加热。在不同温度下和在两个其它井中重复这一实验,全部获得类似的结果。

    对于经过构型设计来加热含烃地层的天然分布式燃烧器系统已进行数值计算。称作PRO-II的市场上可买到的程序用于以直径6.03厘米与厚壁0.39厘米的导管为基础进行范例计算。该导管被设置在具有14.4厘米直径的地层内的开孔中。该导管具有以183厘米间隔的1.27毫米直径的临界流量孔。该导管经过构型设计来加热91.4米厚的地层。空气穿过临界流量孔的流速是1.70标准立方米/每分钟。在导管的进口处空气在的压力是7巴(绝对)。排出气体具有3.3巴(绝对)的压力。使用1066瓦/每米的加热输出量。孔中的温度设定在760℃。在导管内计算测定了大约0.023巴的最低压降。在孔内的压降低于0.0013巴。

    图说明了根据在计算中设定的参数,在煤层内的反应区随时间(年)推移的延长(米)。当碳在该中心附近被氧化时,反应区的宽度随时间推移而增加。

    对于使用导管内装导体型加热器的热传递进行数值计算。对于在具有大约3英寸(7.62cm)的直径的导管内设置的具有大约1英寸(2.54厘米)的直径的导体进行计算。该导管内装导体型加热器被设置在具有大约6英寸(15.24厘米)的直径的含碳地层的钻孔内。含碳地层的热发射率(emissivity)被保持在0.9的值,它是对于地质材料所预计的。该导体和该导管都被赋予高发射率(0.86)(为氧化金属表面所常见的值)和低发射率(0.1)(为抛光和/或未氧化金属表面的值)的交替热发射率值。该导管充满空气或氦气。氦气已知是比空气具有更高传热性的气体。在该导管和该孔之间的空间充填了甲烷,二氧化碳和氢气的气体混合物。使用两种不同的气体混合物。第一气体混合物具有甲烷的摩尔分数为0.5,二氧化碳的摩尔分数为0.3,和氢气的摩尔分数为0.2。第二气体混合物具有甲烷的摩尔分数为0.2,二氧化碳的摩尔分数为0.2,和氢气的摩尔分数为0.6。

    图说明了对于空气充填的导管,传导传热与辐射传热的计算比率与在开孔内含烃地层的层面的温度之间的关系。导管的温度从93℃线性地增加到871℃。传导式传热与辐射式传热的比率是以热发射率值,传热性,导体、导管和开孔的尺寸,和导管的温度为基础来计算的。线3204是对于低发射率值(0.1)计算。线3206是对于高发射率值(0.86)计算。导体和导管的低发射率提供了转移到地层中的传导式与辐射式传热的高比率。伴随温度提高的该比率下降的现象可以归因于随着提高温度而使传导式传热的减少。随着在地层的层面上的温度提高,在层面和加热器之间的温差减少,因此减少了驱动传导式传热的温度梯度。

    图84说明了对于氦气充填的导管,传导传热与辐射传热的计算比率与在开孔内含烃地层的层面的温度之间的关系。导管的温度从93℃线性地增加到871℃。传导式传热与辐射式传热的比率是以热发射率值,传热性,导体、导管和开孔的尺寸,和导管的温度为基础来计算的。线3208是对于低发射率值(0.1)计算。线3210是对于高发射率值(0.86)计算。导体和导管的低发射率再次提供了转移到地层中的传导式与辐射式传热的高比率。在导管中氦气代替空气的使用会显著提高传导式传热与辐射式传热的比率。这归因于氦气的热导率比空气的热导率大了约5.2到约5.3倍。

    图85说明了对于氦气充填的导管和0.86的高发射率,导体、导管和开孔的温度与在含烃地层的层面上的温度之间的关系。该开孔具有气体混合物,后者相当于具有0.6的氢摩尔分数的以上所述的第二混合物。开孔温度3216从93℃线性地提高到871℃。开孔温度3216被假设与在含烃地层的层面上的温度相同。导体温度3212和导管温度3214是通过使用导体、导管和开孔的尺寸,导体、导管和层面的热发射率值,气体(氦,甲烷,二氧化碳,和氢气)的导热性从开孔温度3216计算的。从对于氦气充填的导管来说的导体、导管和开孔的温度的曲线可以看出,在接近871℃的较高温度下,导体、导管和开孔的温度开始大体上平衡。

    图86说明了对于空气充填的导管和0.86的高发射率,导体、导管和开孔的温度与在含烃地层的层面上的温度之间的关系。该开孔具有气体混合物,后者相当于具有0.6的氢摩尔分数的以上所述的第二混合物。开孔温度3216从93℃线性地提高到871℃。开孔温度3216被假设与在含烃地层的层面上的温度相同。导体温度3212和导管温度3214是通过使用导体、导管和开孔的尺寸,导体、导管和层面的热发射率值,气体(空气,甲烷,二氧化碳,和氢气)的导热性从开孔温度3216计算的。从对于空气充填的导管来说的导体、导管和开孔的温度的曲线可以看出,在接近871℃的较高温度下,导体、导管和开孔的温度开始大体上平衡,与对于高发射率的氦气充填的导管所看见的一样。

    图87说明了对于氦气充填的导管和0.1的低发射率,导体、导管和开孔的温度与在含烃地层的层面上的温度之间的关系。该开孔具有气体混合物,后者相当于具有0.6的氢摩尔分数的以上所述的第二混合物。开孔温度3216从93℃线性地提高到871℃。开孔温度3216被假设与在含烃地层的层面上的温度相同。导体温度3212和导管温度3214是通过使用导体、导管和开孔的尺寸,导体、导管和层面的热发射率值,气体(氦,甲烷,二氧化碳,和氢气)的导热性从开孔温度3216计算的。从对于氦气充填的导管来说的导体、导管和开孔的温度的曲线可以看出,在接近871℃的较高温度下,导体、导管和开孔的温度没有开始与图85中所示的高发射率的实例中所出现的大体上的平衡。同时,与图85中所示的实例相比,在导体和导管中的较高温度是871℃的开孔和层面温度所需要的。因此,提高导体和导管的热发射率可以理想地降低为了在含烃地层中产生所希望的温度所需要的操作温度。这一降低的操作温度可以允许使用价格比较低廉合金用于金属导管。

    图88说明了对于空气充填的导管和0.1的低发射率,导体、导管和开孔的温度与在含烃地层的层面上的温度之间的关系。该开孔具有气体混合物,后者相当于具有0.6的氢摩尔分数的以上所述的第二混合物。开孔温度3216从93℃线性地提高到871℃。开孔温度3216被假设与在含烃地层的层面上的温度相同。导体温度3212和导管温度3214是通过使用导体、导管和开孔的尺寸,导体、导管和层面的热发射率值,气体(空气,甲烷,二氧化碳,和氢气)的导热性从开孔温度3216计算的。从对于氦气充填的导管来说的导体、导管和开孔的温度的曲线可以看出,在接近871℃的较高温度下,导体、导管和开孔的温度没有开始与图86所示的高发射率的实例所出现的大体上的平衡。同时,在导体和导管中的较高温度是871℃的开孔和层面温度所需要的,与图86中所示的实例相比。因此,提高导体和导管的热发射率可以理想地降低为了在含烃地层中产生所希望的温度所需要的操作温度。这一降低的操作温度可以需求与需要较低耐热性(例如较低熔点)的材料相关的较少冶金成本。

    使用具有0.2的氢气摩尔分数的气体的第一混合物也进行计算。该计算获得了与0.6的氢气摩尔分数所获得的那些结果大体上类似的结果。

    图89描绘了用于进行某些实验的干馏和收集系统。蒸馏罐3314是316不锈钢制成的压力容器,经过构型设计容纳所试验的材料。该容器和适当的流径线用0.0254米×1.83米电加热带包裹。包裹物经过构型设计在整个干馏系统中提供大体上均匀的加热。通过用热电偶测量蒸馏罐的温度和用比例控制器改变罐的温度,来控制温度。该加热带进一步用所示的绝热体包裹。该罐座落于仅仅从侧边加热的0.0508米厚的绝缘块上。该加热带延伸经过不锈钢罐的底部以抵销从罐底的热损失。

    0.00318m不锈钢浸管(dip tube)3312穿过筛网3310而插入到罐3314的底部的小凹座中。浸管3312在底部上开缝,以使得固体物不堵塞该管并防止产品的排出(removal)。筛3310利用大约0.00159m厚度的小环沿着罐的圆柱形壁上被支承。所以,该小环在浸管3312的一端和罐3314的底部之间提供了空间,这也抑制固体物堵塞该浸管。热电偶附于罐的外面以测量钢圆柱体的温度。该热电偶被绝热体层保护,避免被加热器的直接加热。气动的隔膜型背压阀门3304被提供来用于在升高的压力下的试验。在大气压力下的该产品进入常规的玻璃实验室冷凝器3320中。在冷凝器3320中放置的冷却剂是具有大约1.7℃的温度的冷水。油汽和蒸汽产品在冷凝器的流送线中冷凝并流入有刻度的玻璃接收管中。目测产出油和水的体积。不凝结性气体从冷凝器3320流过气体球囊3316。气体球囊3316具有500cm3的容积。另外,气体球囊3316最初用氦气充填。在球囊上的阀门是双通阀3317,以便于球囊3316的容易冲洗和不可凝结气体的排出以供分析用。考虑到球囊的清扫效率(a sweep efficiency),该球囊希望含有预先生产的1到2升气体的复合样品。标准气体分析方法被用于测定气体组成。离开球囊的气体被通入到处于水浴3324内的水3322中的收集器3318中。该水浴3324渐变,提供了在该程序的一段时间中所产生气体的容积的估测值(水位变化,由此指示了所产生气体的量)。该收集器3318还包括在收集系统的底部的处于水下的进气阀和在收集系统的顶部的用于将气体样品输送到分析器的隔膜。

    在位置3300处一种或多种气体可以注入到在图89中示出的系统中以便增压,维持压力,或清扫系统中的流体。压力计3302可用来监测该系统中的压力。加热/绝缘材料3306(例如,绝热体或温度控制浴)可用来调整和/或维持温度。控制器3308可用来控制罐3314的加热。

    所生产气体的最终容积不是在水上方收集的气体体积,因为二氧化碳和硫化氢可溶于水。水的分析显示,在水上方的气体收集系统除去了在典型的实验中所产生的二氧化碳的大约一半。二氧化碳在水中的浓度影响了在水上方收集的非可溶性气体的浓度。另外,发现在水上方收集的气体的体积可以从所产生的气体体积的大约一半到三分之二变化。

    该系统用大约5-10孔隙体积的氦气冲洗,以除去所有的空气和增压到大约20巴(绝对)的压力保持24小时以检查压力漏洞。加热然后缓慢地开始,花费大约4天才达到260℃。在260℃下大约8-12小时后,按照为具体的试验所希望的时间表的规定提高温度。在罐的内部和外部的温度读数经常被记录,以确保控制器是否正常工作。

    在一个实验中,在图89中示出的系统中测试油页岩。在这一实验中,270℃大约是以任何明显的速率产油的最低温度。因此,在这一范围中的任何时间开始了油的读数。对于水,生产是在大约100℃下开始并在实验过程的全部时间中进行监测。对于气体,在生产过程中产生了各种量。所以,在整个实验中需要进行监测。

    生产的油和水在整个实验中分4或5个馏分收集。这些馏分是在所涉及的具体时间间隔中的复合样品。在各馏分中油和水的累积体积是在它增长时测量的。在各馏分收集后,根据需要来分析该油。测量油的密度。

    在试验之后,干馏罐被冷却,打开,并且检查任何液体残留物的证据。装入干馏罐中的破碎页岩的代表性样品被取出并由费歇分析法分析产油潜力。在试验之后,在干馏罐中废油页岩的三个样品被取出:一个靠近顶部,一个在中间,和一个靠近底部。这些都被测试剩余有机物质和元素分析。

    来自以上实验的实验数据用于测定与产出流体的质量有关的压力-温度关系。改变操作条件包括改变温度与压力。油页岩的各种样品在各种操作条件下进行热解。产出流体的质量由多个所要求的性质来表述。所要求的性质包括API比重,乙烯/乙烷比率,碳/氢原子比率,生产的当量液体(气体和液体),生产的液体,费歇分析的百分数,和碳数大于约25的流体的百分数。基于这些平衡实验所收集的数据,这些性质中的每一种的几个值的曲线族如图90-96中所示构建。从这些图中,下列关系用于表述性质的给定值的函数关系:

    P=exp[(A/T)+B],

    A=a1*(性质)3+a2*(性质)2+a3*(性质)+a4

    B=b1*(性质)3+b2*(性质)2+b3*(性质)+b4

    所产生的曲线用于确定可生产出具有所需性质的流体的优选温度和优选压力。用于说明Green River油页岩的多个所需性质的压力-温度关系的数据被描绘在若干下列附图中。

    在图90中,描绘了计示压力对温度的曲线(在图90-96中压力以巴表示)。描绘了代表碳数大于约25的产品的分数的线。例如,当在375℃的温度和2.7巴(绝对)的压力下操作时,15%的该产出流体烃类具有等于或大于25的碳数。在低的热解温度和高的压力下,碳数大于约25的产出流体的分数会下降。所以,在高的压力和处于热解温度区的低端的热解温度下操作倾向于减少从油页岩生产的碳数大于25的流体的分数。

    图91说明了从含有油页岩的地层生产的油质量与压力和温度的关系。描绘了表示不同的油质量(由API比重定义)的线。例如,当压力保持在大约6巴(绝对)和温度是大约375℃时,产出油的质量是45°API。正如在以上实施方案中所述,低的热解温度和较高的压力可以生产高API比重油。

    图92说明了从含有油页岩的地层生产的乙烯/乙烷比率与压力和温度的关系。例如,在11.2巴(绝对)的压力和375℃的温度下,乙烯/乙烷比率是大约0.01。乙烯与乙烷的体积比可以预测在热解过程中生产的烃类的烯烃/链烷烃比率。为了控制烯烃含量,在较低的热解温度和较高的压力下操作是有益的。在上述实施方案中的烯烃含量可通过在低的热解温度和高的压力下操作来减少。

    图93描绘了从含有油页岩的地层生产的当量液体的产量与温度和压力的依赖关系。线3340表示了压力-温度联合,此时8.38×10-5m3的流体/每千克的油页岩(20加仑/吨)。压力/温度描绘获得了对于每吨油页岩而言全部流体的生产量等于1.05×10-5m3/kg(25加仑/吨)的线3342。线3344说明了从1千克的油页岩生产了1.21×10-4m3的流体(30加仑/吨)。例如,在大约325℃的温度和大约8巴(绝对)的压力下,所获得的当量液体是8.38×10-5m3/kg。随着干馏罐的温度提高和压力下降,所产生的当量液体的产量会增加。所生产的当量液体被定义为相当于所生产的气体和液体的能量值的那一液体量。

    图94说明了从处理含有油页岩的地层所生产的油产量(作为液体体积/每吨地层来测量)作为干馏罐的温度和压力的函数的曲线。温度是在X轴上以摄氏度单位表示,和压力是在Y轴上以巴绝对的单位表示。如图94中所示,随着干馏罐的温度提高和干馏罐的压力下降,液体/可凝结产品的产量提高。在图94上的线对应于作为每单位重量油页岩所生产的液体体积来测量的不同液体生产速率并示于表3中。表3线 生产的体积/单位质量的油页岩(m3/kg)3350 5.84×10-53352 6.68×10-53354 7.51×10-53356 8.35×10-5

    图95说明了从处理含有油页岩的地层生产的油的产量(以费歇分析的百分数表达)与温度和压力的关系。温度是在X轴上以摄氏度单位表示,和计示压力是在Y轴上以巴的单位表示。费歇分析法用作分析从油页岩获取烃凝结物的回收率的方法。在这种情况下,最大回收率是费歇分析值的100%。当温度提高和压力下降时,费歇分析产量的百分数会下降。

    图96说明了从含有油页岩的地层中生产的烃凝结物的氢/碳比率与温度和压力的关系。温度是在X轴上以摄氏度单位表示,和压力是在Y轴上以巴的单位表示。如图96中所示,当温度提高和压力下降时,从含有油页岩的地层生产的烃凝结物的氢/碳比率会下降。正如针对这里的其它实施方案所详细描述的,在高温下处理含有油页岩的地层会减少所生产的烃凝结物的氢气浓度。

    图97说明了在含有油页岩的地层内的压力和温度对于烯烃/链烷烃比率的影响。性质(R)中的一种的值与温度的关系具有与前面讨论的压力-温度关系同样的函数形式。在这种情况下该性质(R)能够明确地表示为压力和温度的函数。

    R=exp[F(P)/T)+G(P)]

    F(p)=f1*(P)3+f2*(P)2+f3*(P)+f4

    G(p)=g1*(p)3+g2*(P)2+g3*(p)+g4

    其中R是该性质的值,T是绝对温度(开氏度),F(P)和G(P)是表示R对1/T的曲线的斜率和截距的压力函数。

    图97是烯烃与链烷烃比率的曲线的实例。以上实验的数据与来自其它来源的数据进行对比。通过使用来自各种来源的数据,在温度对烯烃/链烷烃比率的曲线图上描绘等压线。来自上述实验的数据包括在1巴(绝对)下的等压线3360,2.5巴(绝对)下的3362,4.5巴绝对下的3364,7.9巴绝对下的3366,和14.8巴绝对下的3368。描绘的附加数据包括来自地面上干馏罐的数据,来自Ljungstrom 3361的数据和来自由Lawrence Livermore Laboratories 3363进行的油页岩外研究的数据。如图97中所说明,该烯烃/链烷烃比率看来似乎随着热解温度提高而增加。然而,对于固定温度,该比率随着压力提高而快速下降。较高的压力和较低的温度看来似乎有利于获得最低的烯烃/链烷烃比率。在大约325℃的温度和大约4.5巴(绝对)3366的压力下,烯烃与链烷烃的比率是大约0.01。在降低的温度和提高的压力下的热解会降低烯烃/链烷烃比率。长时间热分解烃类-它通过提高系统内的压力来实现-倾向于获得较低平均分子量的油。另外,气体的生产量会增加和形成非挥发性焦炭。

    图98说明了在烃凝结物流体的API比重,流体内分子氢的分压,和含有油页岩的地层内的温度之间的关系。如图98中所说明,随着在流体内氢分压的提高,API比重通常增加。另外,较低的热解温度看来似乎会提高产出流体的API比重。保持在含烃地层的加热部分内分子氢的分压可以提高产出流体的API比重。

    在图99中,以m3液体/每kg的含有油页岩的地层表示的所生产油液体的量是针对H2的分压来描绘的。也在图99中说明的是在不同温度下发生的热解的各种曲线。在较高的热解温度下,油液体的生产量高于在较低热解温度下的所述生产量。另外,高压倾向于减少从含有油页岩的地层生产的油液体的量。在低压和高温下运行该现场转化方法可以生产出比在低温和高压下运行时更高量的油液体。

    如图100中所说明,在生产气体中乙烯/乙烷比率将随着提高温度而提高。另外,压力的应用会显著降低该乙烯/乙烷比率。如图100中所示,较低的温度和较高的压力会降低该乙烯/乙烷比率。乙烯/乙烷比率表征在冷凝的烃类中烯烃/链烷烃比率。

    图101说明了在烃类液体中原子氢与原子碳比率。通常,较低的温度和较高的压力会提高所生产的烃类液体的原子氢与原子碳比率。

    进行在油页岩中的该现场方法的小规模野外实验。这一试验的目的是使实验室实验(它利用现场蒸馏罐方法生产出高质量的粗产物)进入具体的实施。

    如图104所述,该野外实验是由留有八英尺间距的单个无限制六边形七点井网图案组成。钻探到40m深度的六个热注入井3600含有17m长的加热元件,后者将热能注入21m到39m的地层中。在图案的中心的单个生产井3602捕获了来自现场干馏的液体和蒸汽。在图案内的三个观测井3603和在图案外的一个井记录地层温度和压力。六个脱水井3604以6m间距包围该图案并在低于该加热间隔的活跃含水层(从44m到61m)中结束。图105是野外实验的剖视图。生产井3602包括泵3614。生产井3602的较低部分填充砂砾。生产井3602的上部用水泥巩固。加热器井3600设置在与生产井3602相距大约2.4米的距离处。加热元件位于加热器井内并且该加热器井已注水泥完毕。脱水井3604设置在与加热器井3600相距大约4.0米处。

    产出的油、气和水在整个实验过程中被取样并进行分析。地面上和地下压力和温度和能量注入数据都通过电子方式获取,并保存以供将来评价用。从该试验生产的复合油具有36°API比重,1.1wt%的低烯烃含量和66wt%的链烷烃含量。该复合油还包括0.4wt%的硫含量。这一凝凝结物状的粗产物证实了从实验室实验预测的质量。在整个试验中气体的组成发生变化。正如所料,该气体具有高的氢气含量(平均大约25mol%)和CO2含量(平均大约15mol%)。

    后热芯(post heat core)的评价表明,石油磺酸(mahogany)区已彻底地干馏,只是顶部和底部1m到1.2m除外。显示出油回收效率是在75%到80%范围内。在该图案以外的至少两英尺也发生一些干馏。在ICP实验过程中,用压力监测井来监测地层压力。压力提高到在9.4巴(绝对)下的最高压力,然后慢慢地衰减。在最高压力和低于350℃的温度下生产高的油质量。随着温度升高到370℃以上,压力下降到大气压。正如所预测的,在这些条件下的显示出油组成具有较低的API比重,高分子量,在碳数分布中更大的碳数,更高的烯烃含量,和更高的硫和氮含量。

    图106说明了在三个最内观测井3603(参见图104)的每一个内的最高温度与时间的曲线。该温度分布曲线非常类似于三个观测井的情况。在216天中为含有油页岩的地层提供热量。如图106中所示,在观测井中的温度稳定地提高,直至加热停止为止。

    图175说明了烃类液体生产量(每天桶数)对于同样的现场实验结果的曲线。在该图中,标记为“商品原油(separator oil)”的线表示在产出流体被冷却到环境条件和进行分离之后所生产的烃类液体。在该图中,标记为“Oil & C5+Gas Liquids(油和C5+液化石油气)”的线包括在产出流体被冷却到环境条件和进行分离之后所生产的烃类液体,以及另外,被放空燃烧(flared)的计算在内(assessed)的C5和更重化合物。在实验过程中生产到储罐中的总液烃是194桶。生产的总当量液烃(包括C5和更重化合物)是250桶。如图175中所示,在第216天停止加热,在此之后继续生产一些烃类。

    图176说明了在相同的现场实验中烃类液体(每天桶数),气体(每天MCF),和水(每天桶数)的生产量针对所注入的热能(兆瓦-小时)的曲线。如图176中所示,在注入大约440兆瓦-小时的能量之后,加热被停止。

    如图107中所示,在含有油页岩的材料内的压力在不同深度最初显示出一些变化,然而,经过一段时间后这些变化便达到相等。图107描绘了在观察井3603中的计示流体压力针对在与生产井3602相距2.1m的径向距离处测量的时间(天)。在24m和33m的深度监测流体压力。这些深度对应于在24m深度的8.3×10-5m3油/kg油页岩和在33m深度的1.7×10-4m3油/kg油页岩的含有油页岩的材料中的丰度。在33m最初观察的较高压力可能是由于在该深度的该含有油页岩的材料的富含,导致流体的更多产生的结果。另外,在较低深度岩石静压力是较高的,引起在33m深度的含有油页岩的材料在比24m深度更高的压力下破裂。在实验过程中,在含有油页岩的地层内的的压力要求相等。压力的均等可以从含有油页岩的地层内裂纹形成来实现。

    图108是API比重对时间(以天计)的曲线。如图108中所述,该API比重是较高的(即,一直徘徊在40左右,一直到大约140天为止)。该API比重(虽然它仍然改变)在此之后稳定地下降。在第110天之前,在较浅的深度测量的压力会提高,而在第110天之后它开始显著地下降。在大约140天,在较深的深度的压力开始下降。在大约140天,在观测井测量的温度提高到高于大约370℃。

    在图109中,产出流体的平均碳数针对所测量的时间(天)来描绘曲线。在大约第140天,产出流体的平均碳数提高。这大致相当于分别在图106和图107中所示的温度升高和压力下降。另外,如图110中所述,生产的烃类液体的密度(克/立方厘米)在大约第140天提高。如图108,图109和图110中所示,随着温度提高和压力下降,所生产的烃类液体的质量下降。

    图111描绘了在所生产的烃类液体中特定碳数的烃类的wt%的曲线。各种曲线表示了生产液体的不同的时间。在首先的136天中所生产的烃类液体的碳数分布显示出了较窄的碳数分布,而碳数高于16的具有低wt%。在136天之后随着时间的推移,所生产的烃类液体的碳数分布逐渐地变宽(例如,从199天到206天到231天)。随着温度继续提高,和压力向着一个绝对大气压下降,该产品质量稳定地劣化。

    图112说明了在所生产的烃类液体中特定碳数的烃类的wt%的曲线。曲线3620表示了在整个现场转化方法(“ICP”)野外实验过程中烃类液体的复杂混合物的碳数分布。为了对比,从同一Green River油页岩的地面上干馏生产的烃类液体的碳数分布的曲线也被描绘为曲线3622。在地面上干馏中,油页岩被开采,放入干馏罐中,在大气压力下快速加热到超过500℃的高温。如图112中所示,从ICP野外实验生产的大部分烃类液体的碳数分布是在8到15的范围内。在ICP野外实验过程中来自油的生产中的峰值碳数是大约13。相反,地面上干馏物3622具有相对扁平的碳数分布,碳数大于25的组分有较大量。

    在ICP实验过程中,用压力监测井来监测地层压力。压力提高到在9.3巴(绝对)的最高压力,然后慢慢地衰减。在最高压力和低于350℃的温度下生产高的油质量。随着温度升高到370℃以上,压力下降到大气压。正如所预测的,在这些条件下的油组成被显示具有较低的API比重,高分子量,在碳数分布中更大的碳数,更高的烯烃含量,和更高的硫和氮含量。

    来自由Lawrence Livermore National Laboratories(LLNL)进行的研究中的实验数据与来自在大气压力下从含有油页岩的地层的现场转化方法(ICP)获得的实验数据一起被描绘在图113中。作为费歇分析值的百分数表示的油回收率是针对加热速率的log值来描绘的。来自LLNL 3642的数据包括在大气压力下和在大约2巴(绝对)到大约2.5巴(绝对)的范围内,从热解粉末油页岩所获得的数据。如图113所述,来自LLNL 3642的数据具有线性走势。来自ICP 3640的数据说明,对于ICP方法,由费歇分析法测量的油回收率大大高于LLNL所预示的数据3642。图113说明了从油页岩获得的油回收率沿着S形曲线提高。

    油页岩野外实验的结果(例如,所测量的压力,温度,产出流体量和组成,等)被输入数值模拟模型中,试图分析地层流体转运机理。图114显示了计算机模拟的结果。在图114中,油产量3670(储罐桶数/天)是针对时间来描绘曲线。区域3674表示了在野外实验中测量的地层条件下在地层中的液烃。图114表明在地层中超过90%的该烃类是蒸汽。基于这些结果和在野外实验中的井生产大部分蒸汽(一直到这些蒸汽被冷却,在生产烃类液体的温度下)的事实,可以相信,当按照以上对于油页岩野外实验所描述的那样加热时,在地层中的烃类会作为蒸汽穿过地层。

    进行一系列的实验以确定含烃地层的各种性质对从含有煤炭的地层生产的流体的性质的影响。根据这里所述实施方案的任何一个来生产流体。一系列的实验包括有机岩相研究,近似/最终分析,生油岩评价(Rock-Eval)热解,Leco总有机质含量(“TOC”),费歇分析法,和热解-气相色谱法。岩相研究和化学分析技术的这一结合可以提供了测定煤炭的物理和化学性质的快而廉价的方法并且为地球化学参数对于利用煤的热解法达到的潜在油和气生产量的影响提供全面的理解。针对四十五块立方体(cubes)的煤炭进行一系列实验,以测定各煤炭的源岩性质和从各煤炭分析潜在的油和气生产量。

    有机岩石学是煤炭和其它岩石的有机组分的研究,主要在显微镜下观察。煤炭的岩相研究是重要的,因为它影响着煤炭的物理和化学性质。最终分析是指用于测定煤炭的碳,氢,硫,氮,灰分,氧和热值的一系列规定方法。近似分析是对煤炭的水分,灰分,挥发物,和固定碳含量的测量。

    Rock-Eval热解是被开发来分析预期源岩的生产潜力和热成熟度的石油勘探工具。研磨的样品可以在氦气氛中热解。例如,样品可以最初被加热和保持在300℃的温度下达5分钟。样品能够以25℃/min的速率进一步加热至600℃的最终温度。最终温度可以保持1分钟。热解的产物可以在单独的室中于580℃下氧化以测定总有机碳含量。所产生的全部组分被分成两股料流,分别通过火焰电离检测器(它测量烃类)和热导探测器(它测量CO2)。

    Leco总有机质含量(“TOC”)包括煤炭的燃烧。例如,小样品(大约1克)在氧气氛中在高频电场中被加热至1500℃。以体积测量从碳到二氧化碳的转化。热解-气相色谱法可以用于热解气体的定量和定性分析。

    不同等级和镜质体反射的煤炭可以在实验室中进行处理以模拟现场转化方法。不同的煤样品以大约2℃/天的速率和大约4.4巴(绝对)的压力进行加热。图5显示了链烷烃的重量百分数针对镜质体反射的曲线。如图115中所示,当煤炭的镜质体反射低于约0.9%时,在产出油中链烷烃的重量百分数会增加。另外,在产出油中链烷烃的重量百分数在大约0.9%的镜质体反射率下接近最大值。图116描绘了在产出油中环烷烃的重量百分数针对镜质体反射的曲线。如图116中所示,随着镜质体反射提高,在生产的油中环烷烃的重量百分数会增加。链烷烃和环烷烃的总量的重量百分数针对镜质体反射在图117中被描绘成曲线。在一些实施方案中,现场转化方法可用于生产苯酚。当地层内的流体压力保持在较低压力下时会增加苯酚的产生。在产出油中苯酚重量百分数被描绘在图118中。随着镜质体反射提高,在产出油中苯酚的重量百分数减少。图119说明了在烃流体中芳族烃的重量百分数针对镜质体反射的曲线。如图119中所示,在低于大约0.9%的镜质体反射率下,在产出油中芳族烃的重量百分数会下降。在高于大约0.9%的镜质体反射下,在产出油中芳族烃的重量百分数会提高。图120描绘了链烷烃与芳族烃的比率3680和脂肪族与芳族烃的比率3682针对镜质体反射的曲线。在大约0.7%和大约0.9%之间的镜质体反射下两比率提高到最大值。在大约0.9%的镜质体反射下,两比率都随着镜质体反射提高而下降。

    图134描绘了当各种品级的煤按照以上图115-120所述进行处理时所生产的可凝结烃类组成和可凝结烃类API比重。在图134中,“SubC”是指亚沥青质C煤炭的等级,“SubB”是指亚沥青质B煤炭的等级,“SubA”是指亚沥青质A煤炭的等级,“HVC”是指高挥发性沥青质C煤炭的等级,“HVB/A”是指在B和A等级煤炭之间的边界上高挥发性沥青质煤的等级,“MV”是指中等挥发性沥青质煤的等级,和“Ro”是指镜质体反射。从图134中可以看出,当在这里所述的某些实施方案中处理时,某些等级的煤将产生不同的组成。例如,在许多情况下希望处理具有HVB/A等级的煤炭,因为这种煤在处理时具有最高API比重,最高链烷烃重量百分数,和链烷烃和环烷烃总和的最高重量百分数。

    结果也以产品的产量显示。图121-124说明了当以干燥、无灰分的基础测量时,各组分的产量,以m3产品/kg含烃地层表示。如图121中所示,随着煤炭的镜质体反射提高,链烷烃的产量会提高。然而,对于镜质体反射大于约0.7到0.8%的煤炭,链烷烃的产量急剧下降。另外,环烷烃的产量按照与链烷烃类似的趋势,随着煤炭的镜质体反射提高而提高并对于镜质体反射大于约0.7%或0.8%的煤炭而下降,如图122中所述。图123说明了随着煤炭的镜质体反射提高到大约0.7%或0.8%,链烷烃和环烷烃两者都会增加。如图124中所述,对于镜质体反射低于大约0.3%和大于大约1.25%的含有煤炭的材料,酚类的产量是较低的。酚类的生产是所想望,因为酚作为化学合成的原料的价值。

    如图125中所述,当镜质体反射大于大约0.4%时,该API比重看来似乎显著地提高。图126说明了在煤的品级(即镜质体反射),和从含有煤炭的地层获得的可凝结烃类的产量(加仑/吨,按无水无灰基)之间的关系。当煤炭具有大于大约0.4%到低于大约1.3%的镜质体反射时,在这一实验中的产量看来是在最佳范围内。

    图127说明了具有不同镜质体反射的煤炭的CO2产量的曲线。在图127和128中,CO2产量是按照无水无灰基,以wt%给出。如图127中所示,从所有煤样品中释放出至少一些CO2。这种CO2生产量可以对应于在原煤样品中存在的各种氧化的官能团。从低等级煤生产的CO2的产量显著高于从高等级煤样品生产的CO2产量。低等级煤可以包括褐煤和亚沥青质褐煤。高等级煤可以包括半无烟煤和无烟煤。图128说明了从含有煤炭的地层的一部分生产的CO2产量针对在含有煤炭的地层的一部分中O/C原子比率的曲线。随着O/C原子比增加,CO2产量提高。

    缓慢的加热过程可以生产API比重在22°-50°范围内和平均分子量在大约150g/gmol到大约250g/gmol范围内的冷凝烃流体。这些性质与通过在英国出版专利申请No.GB2,068,014 A中报道的煤炭的井外干馏所生产的冷凝烃流体的性质进行对比,该专利文献被引入本文供参考就象全部列于这里一样。例如,通过(井)外部干馏过程生产的冷凝烃流体的性质包括分别在521℃和427℃的温度下生产的1.9°-7.9°的API比重。

    表4显示了从使用空气注入法加热煤炭的煤炭就地气化,使用氧气注入法加热煤炭的煤炭就地气化,和通过这里的实施方案中所述的热解加热方法在还原性气氛中的煤炭就地气化所获得的气体组成(按体积百分比)的对比。

                                 表4用空气的气化用氧气的气化热解加热H218.6%35.5%16.7%甲烷3.6%6.9%61.9%氮气和氩气47.5%0.00.0一氧化碳16.5%31.5%0.9%二氧化碳13.1%25.0%5.3%乙烷0.6%1.1%15.2%

    如表4中所示,根据这里所述的实施方案生产的气体可以通过现有的天然气系统来处理和销售。相反,由典型的原地气化过程生产的气体不能通过现有的天然气系统来处理和销售。例如,通过用空气的气化所生产的气体的热值是6000KJ/m3,和通过用氧气的气化所生产的气体的热值是11,439KJ/m3。相反,通过热传导式加热生产的气体的热值是39,159KJ/m3。

    进行实验来测定在处理煤炭的较大固体块与处理煤炭的较小松散颗粒之间的差异。

    如图129中所述,立方体形的煤炭3700被加热以使煤炭发生热解。从插入立方体3700的中心的热源3704以及位于立方体的侧边的热源3702将热量提供给立方体。立方体被绝热体3705包围。通过在大气压力下使用热源3704、3702以大约2℃/天的速率来同时提高温度。来自温度计3706的测量值用于测定立方体3700的平均温度。在立方体3700中的压力用压力计3708来监测。从煤的立方体生产的流体被收集和流过导管3709。产品流体的温度用导管3709上的温度计3706监测。产品流体的压力用导管3709上的压力计3708监测。在分离器3710中烃凝结物与不凝结的流体分离。在分离器3710中的压力用压力计3708来监测。不凝结流体的一部分经由导管3711流入气体分析器3712中以供表征用。从抓取样品口3714随机取出抓取样品。不凝结的流体的温度用导管3711上的温度计3706监测。不凝结的流体的压力用导管3711上的压力计3708监测。剩余的气体流经流量计3716,活性碳床3718,并排放到大气。所生产的烃凝结物被收集和分析以测定烃凝结物的组成。

    图102说明了油桶实验装置。这一装置用于试验煤炭。电热器3404和珠粒加热器3402用于均匀地加热油桶3400的内容物。绝热体3405包围油桶3400。油桶3400的内容物在各种压力下以大约2℃/天的速率加热。来自温度计3406的测量值用于测定油桶3400中的平均温度。油桶中的压力用压力计3408监测。经过导管3409从油桶3400中排出产品流体。产品流体的温度用导管3409上的温度计3406监测。产品流体的压力用导管3409上的压力计3408监测。产品流体在分离器3410中进行分离。分离器3410将产品流体分离成可凝结和不凝结的产品。分离器3410中的压力用压力计3408监测。经过导管3411排出不凝结的产品流体。从分离器3410中排出的不凝结的产品流体的一部分的组成通过气体分析器3412测定。从分离器3410中排出可凝结产品流体的一部分。所收集的可凝结产品流体的一部分的组成通过外部分析方法测定。不凝结的流体的温度用导管3411上的温度计3406监测。不凝结的流体的压力用导管3411上的压力计3408监测。不凝结的流体从分离器3410中流出的流量通过流量计3416测定。在流量计3416中测量的流体被收集并在活性碳床3418中中和。在容气器3414中收集气体样品。

    将一大块的高挥发性沥青质B Fruitland煤炭分成两个部分。一个部分(大约550千克)被研磨成小块并在煤炭桶中试验。该煤炭被研磨成大约6.34×10-4m的近似直径。该试验的结果在图131和133中用圆描绘。在煤炭立方体实验中试验一个部分(具有尺寸为.3048m的侧边的立方体)。该试验的结果在图131和133中用正方形描绘。

    图131是针对煤炭立方体和煤炭桶从对于H2 3724,甲烷3726,乙烷3780,丙烷3781,正丁烷3782,和其它烃类3783的的实验获得的气相组成与温度之间关系的曲线。从图131中能够看出,从立方体和桶的热解生产的非冷凝流体具有在煤炭产生的各种烃类的类似组成。在图131中,这些结果是如此类似,以致于对于立方体和桶结果两者,对于乙烷3780,丙烷3781,正丁烷3782,和其它烃类3783描绘出仅仅一条线,和对于H2描绘的两条线(3724a和3724b)和对于甲烷描绘的两条线(3726a和3726b)在两种情况下彼此非常接近。破碎该煤炭对于煤炭的热解没有明显的影响。甲烷生产的峰3726出现在大约450℃。在较高温度下甲烷裂解成氢气,因此甲烷浓度下降,与此同时该氢含量3724增加。

    图132说明了气体的累计产量与加热该立方体中的煤炭和该桶中的煤炭的温度之间的关系。线3790表示从桶内的煤炭的气体生产量和线3791表示从该立方体内的煤炭的气体生产量。如图132所述,在两实验中气体的生产得到了类似的结果,即使在两实验之间粒度明显不同。

    图133说明了在立方体和桶实验中生产的累积的可凝结烃类。线3720表示从立方体实验获得的累积的可凝结烃类生产量,和线3722表示从桶实验获得的累积的可凝结烃类生产量。如图133所述,在两实验中可凝结烃类的生产得到了类似的结果,即使在两实验之间粒度明显不同。当温度达到约390℃时,可凝结烃类的生产大体上完成。在两实验中,可凝结烃类具有大约37度的API比重。

    如图131中所示,在大约270℃或高于大约270℃的温度下开始生产甲烷。因为该实验是在大气压力下进行的,可以相信该甲烷是从热解生产,而不是从纯粹的解吸生产。在大约270℃和大约400℃之间,生产出了可凝结烃类、甲烷和H2,如图131,132,和133中所示。图131显示,高于大约400℃的温度,甲烷和H2继续产生。然而,高于大约450℃,在产出气体中甲烷浓度下降,而产出气体含有增加量的H2。如果加热继续,最终保留在煤炭中的全部H2将枯竭,气体从煤炭中的产生就会停止。图131-133表明,气体的产量与可凝结烃类的产量的比率将随着温度提高到高于约390℃而提高。

    图131-133证明,粒度大体上没有影响从处理过的煤炭生产的可凝结烃类的质量,从处理过的煤炭生产的可凝结烃类的数量,从处理过的煤炭生产的气体的量,从处理过的煤炭生产的气体的组成,从处理过的煤炭生产可凝结烃类和气体所需要的时间,或从处理过的煤炭生产可凝结烃类和气体所需要的温度。实质上大块的煤获得了大体上与小颗粒状煤相同的处理结果。照这样,可以相信,在处理煤炭时按比例放大的做法大体上不影响处理结果。

    进行实验以确定加热对于含有煤炭的地层的一部分的热导率和热扩散性的影响。在野外试验区中在高挥发性沥青质C煤炭中现场进行的热脉冲试验显示出了在20℃下在2.0×10-3到2.39×10-3cal/cm sec℃(0.85-1.0W/(m°K))之间的热导率。这些数值的范围归因于在不同的井之间的不同的测量值。该热扩散性是在20℃下4.8×10-3cm2/s(该范围是在20℃下大约4.1×10-3到大约5.7×10-3cm2/s)。可以相信,对于热导率和热扩散性的这些所测量的值大体上高于以文献来源为基础所预计的值(例如,在许多情况下高大约三倍)。

    从现场实验获得的热导率的初始值针对温度的曲线被描绘在图135中(这一初始值是在图135中的点3743)。通过使用在图137中所示的全部井中的温度测量值,从图137中所示全部加热器中输入的总热量,对于被处理的煤炭所测量的热容量和密度,气体和液体生产数据(例如,组成,数量等),计算热导性来分析热导率的附加点(即,对于图135中所示的线3742的全部其它值)。为了对比,这些所分析的热导率值(参见线3742)与S.Badzioch等人(1964)和R.E.Glass(1984)的两篇论文中报道的数据(参见线3740)来描绘曲线。如图135中所说明,来自现场实验的所分析的热导率高于所报道的热导率值。该差异可以至少部分地归因于如果假设所报道的值没有考虑到在现场应用中煤炭的被限制的属性。因为煤炭的所报道的热导率值较低,它们阻碍了煤炭的现场加热的使用。

    图135说明在大约100℃下所分析的热导率值3742的下降。可以相信,热导率的这一减少是由在裂缝和空隙空间中汽化的水引起的(水汽具有比液态水更低的热导率)。在大约350℃下,热传导率开始增加,并且它随着温度提高到700℃而大体上增加。可以相信,热导率的增加是在碳结构中分子变化的结果。当该碳被加热时它变得更象石墨,这可通过在表5中的在热解之后增加的镜质体反射来证明。当由于流体生产而增加空隙空间时,热量越来越多地通过辐射和/或对流方式转移。另外,由于合成气的热解和产生,在空隙空间中氢气的浓度提高。

    在高应力下热传导率的三个数据点3744来源于针对用于现场试验区的同样的高挥发性沥青质C煤炭所进行的实验室试验(参见图135)。在实验室试验中,这些煤炭的样品从全部方向施加应力,并较快速地加热。这些热导率是在更高的应力下测定的(即,27.6巴(绝对)),与现场试验区中的应力相比(它是大约3巴(绝对))。热导率值3744证明,应力的施加会提高在150℃,250℃,和350℃的温度下煤炭的热传导率。可以相信,较高的热导率值是从施加应力的煤炭获得的,因为应力封闭了至少一些裂纹/空隙空间和/或防止新的裂纹/空隙空间的形成。

    通过使用煤炭的热导率和热扩散性的报道值和在等边三角形图案上12m热源间距,计算表明,将煤炭的平均温度提高到大约350℃需要大约10年的加热时间。该加热时间在经济上不可行。提高使用热导率和热扩散性的实验值和同样的12m热源间距,计算表明,达到350℃的平均温度的加热时间将是大约3年。加热该地层省去大约7年将在许多情况下显著改进煤炭的现场转化方法的经济可行性。

    分子氢具有较高的热导率(例如,分子氢的热传导率是氮气或空气的热传导率的大约6倍)。因此可以相信,当地层空隙空间中氢气量增加时,地层的热传导率也将提高。由于氢气在空隙空间中的存在而使热导率的提高多少补偿了由空隙空间本身所引起的热导率的下降。可以相信,由于氢气的存在而导致的热导率提高幅度,对于煤层来说将大于其它含烃地层,因为在热解过程中产生的空隙空间的量是更大的(煤炭具有更高的烃密度,因此热解将在煤炭中产生更多的空隙空间)。

    烃流体是通过在含有煤炭的地层的一部分中进行的现场实验从含有煤炭的地层的一部分中生产的。该煤炭是高挥发性沥青质C煤炭。它用电热器加热。图136说明了实验现场试验系统的剖视图。如图136中所示,实验现场试验系统包括在开挖和灌浆(ground and grout)的壁3800内的至少该含有煤炭的地层3802。含有煤炭的地层3802以大约36°的角度和大约4.9米的厚度倾斜。图137说明了用于实验现场试验系统中的热源3804a,3804b,3804c,生产井3806a,3806b,和温度观察井3803a,3808b,3808c,3808d的位置。三个热源以三角形构型设置。生产井3806a位于热源排列图案的中心附近并与每一个热源等距离。第二个生产井3806b位于热源排列图案之外并与两个最近的热源以等距离间隔。沿着热源排列图案和生产井形成了灌浆壁3800。该灌浆壁可以包括基柱(pillar)1-24。灌浆壁3800经过构型设计在现场实验过程中抑制水流入该部分中。另外,灌浆壁3800经过构型设计后大体上抑制所产生的烃流体损失到地层的未加热部分中。

    在位于热源排列图案之内和之外的四个温度观察井3808a,3808b,3808c,3808d当中的每一个上,在实验过程中的不同时间测量温度,如图137中所述。在温度观察井的每一个上测定的温度(摄氏温度)在图138中作为时间的函数被显示。在观测井3808a(3820),3808b(3822),和3808c(3824)上的温度彼此相对接近。在温度观察井3808d(3826)上的温度低得多。这一温度观察井位于图137中所示的加热器井三角形图案之外。这一数据证明,在热量有很少重叠的区域中温度低得多。图139说明了在热源3804a(3830),3804b(3832),和3804c(3834)上测量的温度分布曲线。该温度分布曲线在热源处是相对均匀的。

    图140说明了所生产的液烃3840的累积体积(m3)与时间(天)的关系。图149说明了对于同一现场实验,所生产的气体3910的累积体积(标准立方英尺)与时间(天)的关系。图140和图149两者显示了在现场实验的仅仅热解阶段中的结果。

    图141说明了通过使用如上所述的缓慢、低温的罐式干馏过程生产的可凝结烃类的碳数分布。从图141可以看出,在处理过程中生产出了较高质量的产品。图141的结果与图146的结果一致,它们显示,在实验室中对于类似范围的加热速率,加热来自与现场使用的相同的地层中的煤炭所获得的结果。

    表5说明了在煤炭如上所述被处理(包括与图139中同样方式加热升高温度)之前和之后(即在热解和合成气的生产之后)分析煤炭的结果。在“处理之前”和“处理之后”的两个实例中,该煤炭在距离地表的大约11-11.3米、到煤床的中途被钻取岩芯。在几乎同样的位置取两个岩芯。在图137中,在距离井3804c大约0.66米处(在灌浆壁和井3804c之间)取两岩芯。在下表5中,“FA”是指Fisher Assay(费歇尔分析),“as rec’d”是指按照接收时的原样和没有任何进一步处理的情况下进行试验的样品,“Py-水”是指在热解过程中产生的水,“H/C原子比”是指氢与碳的原子比,“daf”是指“无水无灰的”,“dmmf”是指“无水无矿物的”,和“mmf”是指“无矿物的”。“处理后”岩芯样品的相对密度是大约0.85,而“处理前”岩芯样品的相对密度是大约1.35。

                                表5分析 在处理之前 在处理之后%镜质体反射率FA(加仑/吨,as-rec’d)FA(wt%,as rec’d)FA Py-水(加仑/吨,as-rec’d)H/C原子比H(wt%,daf)O(wt%,daf)N(wt%,daf)灰分(wt%,as rec’d)固定的碳(wt%,dmmf)挥发分(wt%,dmmf)热值(Btu/lb,湿,mmf) 0.54 11.81 6.10 10.54 0.85 5.31 17.08 1.43 32.72 54.45 45.55 12048 5.16 0.17 0.61 2.22 0.06 0.44 3.06 1.35 56.50 94.43 5.57 14281

    即使在图137中在由三个加热器形成的三角形内的区域以外选取岩芯,该岩芯仍然表明,在处理过程中显著地改变了保留在地层中的煤炭。在表5中示出的镜质体反射结果表明,在处理过程中保留在地层中的煤炭的品级大体上发生变化。在处理之前该煤炭是高挥发性沥青质C煤炭。然而在处理后该煤炭基本上是无烟煤。在表5中示出的费歇分析法结果表明,在处理过程中了除去在煤炭中烃类的大部分。H/C原子比证明,在处理过程中在煤炭中的氢的大部分已除去。大量的氮和灰分保留在该地层中。

    总而言之,在表5中示出的结果表明,在通过热解和合成气的产生来处理煤炭的过程中除去了大量的烃类和氢。大量的所不需要的产品(灰分和氮气)保留在地层中,而大量的所需产物(例如,可凝结的烃类和气体)则被排出。

    图142说明了所生产的烃类的重量百分数与对于来自野外实验现场的煤炭所进行的两个实验室实验获得的碳数分布的关系。该煤炭是高挥发性沥青质C煤炭。如图142中所示,从地层生产的流体的碳数分布将取决于压力来变化。例如,第一压力3842是大约1巴(绝对)和第二压力3844是大约8巴(绝对)。在图142中示出的实验室碳数分布类似于也在1巴(绝对)下的在图141的野外现场实验中生产的该分布。如图142中所示,随着压力提高,烃流体的碳数的范围会下降。当在8巴(绝对)下操作时,观察到了碳数低于20的产品的增加。将压力从1巴(绝对)提高到8巴(绝对)也提高了冷凝的烃流体的API比重。所生产的冷凝的烃流体的API比重分别是大约23.1°和大约31.3°。API比重的这一增加代表了更加了更有价值的产品的生产。

    图143说明了从由费歇分析法产生的烃类液体的沸点分离和从这里所述的煤炭立方体实验产生的烃类液体的沸点分离(参见例如图129中示出的系统)获得的馏分的直方图。该实验是在低得多的加热速率(2摄氏度/每天)下进行的并且油是在比费歇分析法更低的最终温度下生产的。图143显示了从Fruitland高挥发性沥青质B煤炭生产的烃类液体的各种沸点截分的重量百分数。不同的沸点截分可以代表不同的烃流体组成。所述的沸点截分包括石脑油3860(初始沸点到166℃),喷气燃料3862(166℃到249℃),柴油机油3864(249℃到370℃),和残渣3866(沸点大于370℃)。来自煤炭立方体的烃类液体大体上是更有价值的产品。这种烃类液体的API比重显著大于该费歇分析液体的API比重。来自煤炭立方体的烃类液体也包括比从费歇分析烃类液体生产的低得多的残留残渣。

    图144说明了从煤层生产的乙烯(它是烯烃)与乙烷的百分比作为加热速率的函数的曲线。这些数据点是从在大气压力下缓慢加热高挥发性沥青质C煤炭的实验室实验数据(参见在图89中示出的系统和相关的文本)和从费歇分析法结果获得的。如图144中所说明,该乙烯/乙烷的比率随着加热速率提高而增加。照这样,可以相信降低煤炭的加热速率将减少烯烃的生产。地层的加热速率可部分地通过在地层内热源的间距,和通过从热源转移到地层的热量的量来确定。

    地层压力也对烯烃生产具有重要的影响。高的地层压力倾向于导致少量烯烃的生产。在地层内的高压力可导致在地层内高的H2分压。高的H2分压可以导致在地层内流体的氢化。氢化可以导致在从地层生产的流体中烯烃的减少。高压力和高H2分压也可导致在地层内烃类的芳构化的抑制。芳构化可以包括从烃混合物内的烷烃和/或烯烃形成芳族和环状化合物。如果希望增加烯烃从地层中的生产,从地层生产的流体的烯烃含量可通过降低地层内的压力而提高。该压力可以通过从所要产生的地层的一部分中排出较大量地层流体来降低。该压力可以通过对所要生产的地层的一部分抽真空来降低。

    在图89中描绘的系统和使用该系统的方法(参见这里关于使用该系统进行油页岩实验的其它讨论)用于对高挥发性沥青质C煤炭进行实验,当该煤炭在大气压力下以5℃/天速率加热时。图103描绘了这种实验的某些数据点(在图103中描绘的线是从此类数据点的线性回归分析产生的)。图103说明了乙烯/乙烷摩尔比率作为在实验过程中从煤炭生产的不凝烃类中氢气摩尔浓度的函数。在不凝烃类中乙烯/乙烷比率是在从煤炭生产的全部烃类中烯烃含量的反映。从图103中可以看出,当在热解过程中氢气的浓度自生增加时,乙烯/乙烷的比率会减少。可以相信,在热解过程中氢气的浓度(和分压)的提高将引起从热解生产的流体中烯烃浓度下降。

    图145说明了产品质量(由API比重测量)作为从高挥发性沥青质“C”煤炭生产的流体的温度升高速率的函数。数据点是从费歇分析数据,现场转化方法和实验室实验获得的。对于费歇分析数据,该温度升高速率是大约17,100℃/天和所获得的API比重是低于11°。对于现场转化方法,该温度升高速率是大约10℃/天和所获得的API比重是大约23.1°。对于实验室实验,该温度升高速率是大约2℃/天到大约6℃/天,和所获得的API比重是大约24°到大约26°。随着加热速率的对数值的增加,显示了质量的大体上直线下降(API比重下降)。

    图146说明了当在各种加热速率下加热煤炭时,从高挥发性沥青质“C”煤炭中分出的各种碳数产品的重量百分数。数据点是从实验室实验和费歇分析获得的。对于以2℃/天3870,3℃/天3872,5℃/天3874,和10℃/天3876的速率进行加热的曲线是为了在产出流体中类似的碳数分布而提供的。煤样品以在费歇分析试验中以大约17,100℃/天的速率进行加热。来自费歇分析的数据是由附图标记3878表示。与费歇分析结果3878相比,缓慢的加热速率导致了碳数大于20的组分的更少产生。较低的加热速率也生产出更高重量百分数的碳数低于20的组分。较低的加热速率生产出大量的碳数接近12的组分。接近12的碳数分布中的峰在煤炭和油页岩的现场转化方法中是典型的。

    对于根据现场转化方法处理的含有煤炭的地层进行实验,以测量在热解之后地层的均匀渗透性。在加热含有煤炭的地层的一部分之后,将十分钟脉冲的CO2注入在第一生产井3806a处的地层中,并在井3804a处进行生产,如图137中所示。从生产井3806a到井3804b和从生产井3806a到井3804c,重复CO2示踪试验。如上所述,三个不同热源中的每一个均与生产井等距离设置。该CO2是以4.08m3/hr(144标准立方英尺/小时)的速率注入。如图147中所示,该CO2在大约相同的时间到达三个不同热源的每一个。线3900说明了在热源3804a处CO2的生产,线3902说明了在热源3804b处CO2的生产,和线3904说明了在热源3804c处CO2的生产。如图149中所示,从三个不同井中的每一个中CO2的产量也在一定时间内大致相同。CO2的示踪脉冲的该大致等同的转移穿过该地层以及从地层中CO2的产量都表明了该地层大体上是均匀渗透性的。在CO2脉冲开始后的大约18分钟仅仅有第一CO2到达的事实表明,在井3806a和3804a,3804b,和3804c之间没有产生优先渗透通道。

    在热解和合成气形成阶段完成之后,通过将气体注入在不同井之间来测量现场渗透性。测量的渗透性将从大约8达西变化到20达西,因此表明该渗透性是高的和相对均匀的。处理前的渗透性是仅仅大约50毫达西。

    在现场实验中从图136和图137中所示的含有煤炭的地层的一部分中也产生合成气。在本实验中,加热器井也经过构型设计来注射流体。图148是挥发分(可凝结和不可凝结的)的重量(以千克计)作为从实验现场试验中获得的产品的累积内能(千瓦/每小时)的函数的曲线。该图说明了从地层生产的热解流体和合成气的数量和内能。

    图150是在实验现场试验中,所生产的油当量的体积(m3)作为输入到煤层中的能量(kW·hr)的函数的曲线。油当量的体积(立方米)是通过将所生产的油加上气体的体积的内能换算成具有相同的内能的油的体积来测定的。

    合成气生产的开始(由箭头3912表示)是大约77,000kW·hr的能量输入。在热解区域中平均煤炭温度已升高到620℃。因为在图150中在热解区域中曲线的平均斜率大于在合成气区域中曲线的平均斜率,图150说明了在生产的合成气中含有的可用能量的量低于在热解流体中含有的量。所以,合成气生产与热解相比有较低能量效率。对于这一结果有两个理由。首先,在合成气反应中生产的两个H2分子具有比在热解中生产的低碳数烃类有更低的内能。其次,吸热的合成气反应消耗能量。

    图151是从煤层中获得的总合成气生产量(m3/min)针对总进水量(由于从实验现场试验设备注入地层中)(kg/h)的曲线。由于流进热煤层的天然水的存在,在水或蒸汽的注入之前在地层中在合成气产生温度下就产生了合成气。天然水来自地层之下。

    从图151,最大的天然水入流量是大约5kg/h,如箭头3920所示。箭头3922,3924和3926表示注入到中心井3806a中的分别为大约2.7kg/h,5.4kg/h和11kg/h的注入水速率。合成气的生产是在加热器井3804a,3804b,和3804c中。图151表明,在大约2.7kg/h注入水或7.7kg/h总流入水下,每单位体积注入水的合成气生产量将在箭头3922处减少。减少的原因是蒸汽太快地流过煤层而无法让反应接近平衡条件。

    图152说明了合成气的生产速率(m3/min)作为煤层中的蒸汽注入速率(kg/h)的函数。第一批实验的数据3930对应于在图137中的生产井3806a中的注入,和在加热器井3804a,3804b,和3804c中的合成气生产量。第二批实验的数据3932对应于在加热器井3804c中蒸汽的注入,和在生产井3806a中附加气体的生产。第一批实验的数据3930对应于在图151中示出的数据。如图152中所示,该注入水与地层处于反应平衡至大约2.7kg/hr的注入水。第二批实验获得了与第一批达到大约1.2kg/hr注入蒸汽大体上相同量的所生产的附加合成气(由数据3932显示)。在大约1.2kg/hr下,数据3930开始偏离平衡条件,因为该停留时间不足以让附加的水与煤炭起反应。随着温度提高,对于给定的注入水速率生产出了更大量的附加的合成气。原因是在较高温度下水的反应速率和水转化成合成气的速率都增加。

    图153是说明了在实验现场试验中甲烷注入到加热的煤层中的效果的曲线图(在图153-156中全部的装置均是m3/每小时)。图153说明了被加入到合成气生产流体中的烃类在地层中裂解。图137说明了加热器和生产井在野外试验装置中的布局。甲烷被注入到生产井3806a和3806b中并且流体是从加热器井3804a,3804b和3804c中生产。在各井中测量的平均温度如下:3804a(746℃),3804b(746℃),3804c(767℃),3808a(592℃),3808b(573℃),3808c(606℃),和3806a(769℃)。当甲烷接触该地层时,它在地层内裂解而生产H2和焦炭。图153显示,随着甲烷注入速度的提高,H2的生产量3940增加。这表明甲烷裂解成H2。甲烷生产量3942也增加,这表明并不是所有的注入甲烷都裂解。乙烷,乙烯,丙烷,和丁烷的所测量的组成是可以忽略的。

    图154是说明了在实验现场试验中乙烷注入加热的煤层中的效果的曲线图。乙烷被注入到生产井3806a和3806b中并且流体是从加热器井3804a,3804b和3804c中生产。在各井中测量的平均温度如下:3804a(742℃),3804b(750℃),3804c(744℃),3808a(611℃),3808b(595℃),3808c(626℃),和3806a(818℃)。当乙烷接触该地层时,它发生裂解而生产H2,甲烷,乙烯,和焦炭。图154显示,当乙烷注入速度增加时,H2 3950,甲烷3952,乙烷3954和乙烯3956的生产量会增加。这表明乙烷发生裂解而形成H2和低分子量烃类。更高碳数的产品(即丙烷和丙烯)的生产速率不受乙烷注入速率的影响。

    图155是说明了在实验现场试验中丙烷注入加热的煤层中的效果的曲线图。丙烷被注入到生产井3806a和3806b中并且流体是从加热器井3804a,3804b和3804c中生产。在各井中测量的平均温度如下:3804a(737℃),3804b(753℃),3804c(726℃),3808a(589℃),3808b(573℃),3808c(606℃),和3806a(769℃)。当丙烷接触该地层时,它发生裂解而生产H2,甲烷,乙烷,乙烯,丙烯和焦炭。图155显示随着该丙烷注入速度提高,H2 3960,甲烷3962,乙烷3964,乙烯3966,丙烷3968和丙烯3969的生产会增加。这表明丙烷发生裂解而形成H2和低分子量组分。

    图156是说明了在实验现场试验中丁烷注入加热的煤层中的效果的曲线图。丁烷被注入到生产井3806a和3806b中并且流体是从加热器井3804a,3804b和3804c中生产。在各井中测量的平均温度如下:3804a(772℃),3804b(764℃),3804c(753℃),3808a(650℃),3808b(591℃),3808c(624℃),和3806a(830℃)。当丁烷接触该地层时,它发生裂解而生产H2,甲烷,乙烷,乙烯,丙烷,丙烯,和焦炭。图156显示随着该丁烷注入速度提高,H2 3970,甲烷3972,乙烷3974,乙烯3976,丙烷3978,和丙烯3979的生产会增加。这表明丁烷发生裂解而形成H2和低分子量组分。

    图157是在实验现场试验中从加热的煤层中生产的气体的组成(体积百分比)对时间(天)的曲线。物料组成包括3980-甲烷,3982-H2,3984-二氧化碳,3986-硫化氢,和3988-一氧化碳。图157显示了在大约150天后或当合成气生产开始时,H2 3982浓度的急剧增长。

    图158是在分开的数天中进行的实验现场试验中合成气转化率针对合成气产生实验过程的时间的曲线图。地层的温度是大约600℃。该数据说明了在油/水分离器中测量值的初始不确定性。在大约2小时的合成气生产流体注入之后,合成气转化一致地接近在大约40%和50%之间的转化率。

    表6包括在现场煤田实验中合成气生产的组成。

    表6    组分    Mol%    Wt%    甲烷    12.263    12.197    乙烷    0.281    0.525    乙烯    0.184    0.320    乙炔    0.000    0.000    丙烷    0.017    0.046    丙烯    0.026    0.067    丙二烯    0.001    0.004    异丁烷    0.001    0.004    正丁烷    0.000    0.001    1-丁烯    0.001    0.003    异丁烯    0.000    0.000    cis-2-丁烯    0.005    0.018    trans-2-丁烯    0.001    0.003    1,3-丁二烯    0.001    0.005    异戊烷    0.001    0.002    正戊烷    0.000    0.002    戊烯-1    0.000    0.000    T-2-戊烯    0.000    0.000    2-甲基-2-丁烯    0.000    0.000    C-2-戊烯    0.000    0.000    己烷    0.081    0.433    H2    51.247    6.405    一氧化碳    11.556    20.067    二氧化碳    17.520    47.799    氮气    5.782    10.041    氧气    0.955    1.895    硫化氢    0.077    0.163    总计    100.000    100.000

    实验是按间歇氧化模式在大约620℃下进行。氮和氧的存在应归因于样品被空气的污染。对于以上数据,都可以确定H2、一氧化碳和二氧化碳的mol%,忽略全部其它物质的组成。例如,H2、一氧化碳和二氧化碳的mol%可以按比例增加,要求三种组分的mol%等于约100%。如此,H2、一氧化碳和二氧化碳的mol%,忽略所有其它物质的组成,分别是63.8%,14.4%和21.8%。该甲烷被认为主要来源于在加热器的三角形之外的热解。这些值与图159中示出的平衡计算的结果基本一致。

    图159是对于煤炭与水反应的所计算的平衡气体干燥摩尔分数的曲线图;图159-160不包括甲烷反应。该分数代表从含烃地层生产的并已流过冷凝器以从产出气体中除去水的合成气。平衡气体干摩尔分数对于H2 4000,一氧化碳4002,和二氧化碳4004示于图159中,作为在2巴(绝对)的压力下温度的函数。如图159中所示,在390℃下,液体生产倾向于停止,并且气体的产生倾向于开始。在这一温度下生产的气体包括大约67%H2,和大约33%二氧化碳。一氧化碳在低于大约410℃下以可以忽略的量存在。然而,在大约500℃的温度下,一氧化碳以可测量的数量存在于产出气体中。例如,在500℃下,存在大约66.5%H2,大约32%二氧化碳,和大约2.5%一氧化碳。在700℃下,产出气体包括大约57.5%H2,大约15.5%二氧化碳,和大约27%一氧化碳。

    图160是对于煤炭与水反应的所计算的平衡湿摩尔分数的曲线图;对于水4006,H2 4008,一氧化碳4010,和二氧化碳4012,平衡湿摩尔分数作为在2巴(绝对)的压力下温度的函数示出。在390℃下,产出气体包括大约89%水,大约7%H2和大约4%二氧化碳。在500℃下,产出气体包括大约66%水,大约22%H2,大约11%二氧化碳,和大约1%一氧化碳。在700℃下,产出气体包括大约18%水,大约47.5%H2,大约12%二氧化碳,和大约22.5%一氧化碳。

    图159和图160说明了在生产合成气的温度范围的低端(即大约400℃)下,平衡气相分数可能不会有利于在地层内H2的生产。随着温度提高,该平衡气相分数逐渐地有利于H2的生产。例如,如图160中所示,H2的气相平衡湿摩尔分数可从400℃下的大约9%提高到在610℃下的大约39%并在大约800℃下达到50%。图159和图160进一步说明,在大于约660℃的温度下,平衡气相分数倾向于有利于一氧化碳的生产,与二氧化碳相比。

    图159和图160说明,随着温度从大约40℃提高到大约1000℃,所生产的合成气的H2与一氧化碳比率将在这一范围内连续地下降。例如,如图160中所示,在500℃、660℃和1000℃下平衡气相H2与一氧化碳比率分别是大约22∶1,大约3∶1,和大约1∶1。图160也表明,在较低温度下生产的合成气具有比在较高温度下更大量的水和二氧化碳。随着温度提高,在合成气中一氧化碳和氢气的总百分数会增加。

    图161是在高挥发性类型A或B沥青质煤中具有热量-物料平衡的热解阶段4020和合成气生产阶段4022的实例的流程图。在热解阶段4020中,热4024被提供给煤层4026。液体和气体产品4028和水4030离开该地层4026。在经历热解加热之后,进行热解的地层的部分基本上由炭组成。炭是指从有机材料的热解获得的固体碳质残渣。在合成气生产阶段4022中,蒸汽4032和热4034被提供给已经历热解的地层4036中并生产出合成气4038。

    在图162-164中的实施方案中,包括在反应式(4)和(5)中的甲烷反应。这里列出的计算可以假设炭仅仅由碳组成,而且有过量的碳和蒸汽。需要大约890MWe的能量4024来热解大约105,800公吨/天的煤。该热解产物4028包括液体和气体,生产量为23,000立方公尺/每天。热解过程也生产大约7,160公吨/每天的水4030。在合成气阶段中,注入23,000公吨/每天的蒸汽4032和输入2,000MWe的能量4034,大约57,800公吨/每天的炭将以20%转化率生产12,700立方公尺当量油/每天的合成气4038。

    图162是在预先热解的含烃地层中在具有热量-物料平衡的情况下,在大约450℃的温度下进行的低温现场合成气生产的实例。总共大约42,900公吨/每天的水被注入到地层4100中,后者可以是炭。图162说明了在25℃下一部分的水4102直接注入到地层4100中。一部分的水4102通过使用大约1227MWe的能量4106被转化成在大约130℃的温度和大约3巴(绝对)的压力下的蒸汽4104并注入到地层4100中。一部分的剩余蒸汽可以通过使用大约318MWe的能量4110被转化成在大约450℃的温度和大约3巴(绝对)的压力下的蒸汽4108。该合成气生产牵涉到13,137公吨/每天的炭的大约23%转化率以生产56.6百万立方公尺/每天的合成气,具有5,230MW的内能。大约238MW的能量4112被提供给地层4100,用于补偿合成气反应的吸热。合成气反应的产品料流4114包括29,470公吨/每天的水(占46体积%),501公吨/每天的一氧化碳(占0.7体积%),540吨/每天的H2(占10.7体积%),26,455公吨/每天的二氧化碳(占23.8体积%),和7,610公吨/每天的甲烷(占18.8体积%)。

    图163是在预先热解的含烃地层中在具有热量-物料平衡的情况下,在大约650℃的温度下进行的高温现场合成气生产的实例。将总共大约34,352公吨/每天的水注入到地层4200中。图163说明了在25℃下一部分的水4202直接注入到地层4200中。一部分的水4202通过使用大约982MWe的能量4206被转化成在大约130℃的温度和大约3巴(绝对)的压力下的蒸汽4204并注入到地层4200中。一部分的剩余蒸汽可以通过使用大约413MWe的能量4210被转化成在大约650℃的温度和大约3巴(绝对)的压力下的蒸汽4208。该合成气生产牵涉到12,771公吨/每天的炭的大约22%转化率以生产56.6百万立方公尺/每天的合成气,具有5,699MW的内能。大约898MW的能量4212被提供给地层4200,用于补偿合成气反应的吸热。合成气反应的产品料流4214包括10,413公吨/每天的水(占22.8体积%),9,988公吨/每天的一氧化碳(占14.1体积%),1771吨/每天的H2(占35体积%),21,410公吨/每天的二氧化碳(占19.3体积%),和3535公吨/每天的甲烷(占8.7体积百分数)。

    图164是具有热量-物料平衡的在含烃地层中的现场合成气生产的实例。包括水4302的合成气产生流体被提供给该地层4300中。对于低温方法需要总共大约22,000公吨/每天的水而对于高温方法需要大约24,000公吨/每天的水。一部分的水作为蒸汽被引入到地层中。通过从外部热源将热量提供给水来生产蒸汽4304。对于低温方法需要提供大约7,119公吨/每天的蒸汽而对于高温方法需要提供大约6913公吨/每天的蒸汽。

    离开地层4300的含水流体4306的至少一部分被再循环4308回到地层中以产生合成气。对于低温方法大约21,000公吨/每天的含水流体被再循环,而对于高温方法大约10,000公吨/每天的含水流体被再循环。生产的合成气4310包括一氧化碳,H2,和甲烷。生产的合成气具有对于低温方法而言的大约430,000MMBtu/每天的热含量和对于高温方法而言的大约470,000MMBtu/每天的热含量。在合成气方法生产的二氧化碳4312包括在低温方法中的大约26,500公吨/每天和在高温方法中的大约21,500公吨/每天。所生产的合成气4310的至少一部分用于燃烧来加热该地层。对于低温方法在蒸汽4308中有大约7,119公吨/每天的二氧化碳而对于高温方法在蒸汽中有大约6,913公吨/每天的二氧化碳。对于低温方法在热库(heat reservoir)中有大约2,551公吨/每天的二氧化碳和对于高温方法在热库中有大约9,628公吨/每天的二氧化碳。对于低温方法在合成气的燃烧中有大约14,571公吨/每天的二氧化碳和对于高温方法在生产的燃烧合成气中有大约18,503公吨/每天的二氧化碳。生产的二氧化碳具有对于低温方法而言的大约60千兆焦耳(“GJ”)/每公吨的热含量和对于高温方法而言的大约6.3GJ/每公吨的热含量。

    表7是由湿式氧化生产的合成气的应用的潜在生产体积的概述。估算是基于在在700℃下每天生产的56.6百万标准立方米的合成气。

                   表7应用生产量(主要产品)电力2,720兆瓦氢气2,700公吨/天NH313,800公吨/天CH47,600公吨/天甲醇13,300公吨/天Shell中间馏分5,300公吨/天

    实验的吸附数据已经证明二氧化碳可以贮存在已经热解的煤炭中。图165是累积吸附的甲烷和二氧化碳(立方公尺/每公吨)针对在煤炭上在25℃下的压力(巴(绝对))的曲线。该煤样品是来自Gillette,Wyoming的亚烟煤。数据集4401,4402,4403,4404,和4405属于在已热解和经历合成气产生的处理后煤炭样品上的二氧化碳吸附。数据集4406属于在来自同一地层的未热解的煤样品上的吸附。数据集4401对应在25℃下甲烷的吸附。数据集4402,4403,4404和4405分别对应在25℃,50℃,100℃和150℃下二氧化碳的吸附。数据集4406对应在25℃下二氧化碳在未热解煤样品上的吸附。图165显示,在25℃和100℃之间的温度下二氧化碳比在25℃的甲烷更强烈地吸附在热解煤炭中。图165证明,流过处理后煤炭的二氧化碳流倾向于从处理后煤炭中置换甲烷。

    计算机模拟已经证明,二氧化碳可以同时隐退在深的煤层中和处理后的煤层中。Comet2模拟器确定能够隐退在San Juan Basin型深埋煤层和处理后煤层中的二氧化碳的量。该模拟器也确定由于二氧化碳注入,从San Juan Basin型深埋煤层生产的甲烷的量。用于深埋煤层和处理后煤层两者的模型是1.3公里2区域,具有重复的5点井网图案。5点井网图案包括以正方形排列的四个注入井和在正方形的中心的一个生产井。San Juan Basin型和处理后煤层的性质示于表8中。二氧化碳隐退在深埋煤层中以及与野外试验对比结果的模拟的细节能够见于Pilot Test Demonstrates How Carbon Dioxide Enhances Coal BedMethane Recovery,Lanny Schoeling and Michael McGovern,Petroleum Technology Digest,2000年9月,14-15页。

    表8    深埋煤层(San Juan Basin)   处理后煤层   (后热解过程) 煤炭厚度(m)    9    9 煤炭深度(m)    990    460 初始压力 (巴(绝对))    114    2 初始温度    25℃    25℃ 渗透性(md)    5.5(水平)    0(垂直)    10,000(水平)    0(垂直) 内生裂隙(cleat) 孔隙度    0.2%    40%

    该模拟模型用于分析煤炭和处理后煤炭的基岩和双孔隙性质。例如,煤炭和处理后煤炭由基岩块组成。在块之间的空间被称作“内生裂隙”。内生裂隙孔隙度是流体在地层内流动的有效空间。为了模拟所需要的在内生裂隙内气体和水的相对渗透性是由来自San Juan煤炭的现场实验数据获得的。相对渗透性的相同值用于处理后煤层模拟。二氧化碳和甲烷被认为具有相同的相对渗透性。

    深埋煤层的内生裂隙系统被构建为最初用水饱和。二氧化碳和水的相对渗透率数据证明,高度水饱和抑制二氧化碳在内生裂隙内的吸附。所以,在将二氧化碳注入地层中之前从地层中除去水。

    另外,在内生裂隙内的气体可以吸附在煤炭基岩中。基岩孔隙度是流体可吸附到基岩中的可用空间的量度。对于煤炭和处理后煤炭,基岩孔隙度和表面积与实验的质量传递和等温线吸附数据一起考虑。所以,不需要规定在模型中基岩孔隙度和表面积的值。

    在处理后煤炭中二氧化碳相对甲烷的优先吸附被引入到基于实验吸附数据的模型中。例如,图165证明,在规定温度下在整个压力变化范围中,二氧化碳比甲烷具有高得多的累积吸附。一旦二氧化碳进入内生裂隙系统,甲烷从基岩中扩散出来并解除吸附。类似地,二氧化碳扩散进入和吸附在基岩之上。另外,图165也显示二氧化碳在热解的煤样品上比在未热解煤炭上具有更高的累积吸附。

    该模型所需要的压力-体积-温度(PVT)性质和粘度可以取自对于纯组分气体的文献数据。

    模型模拟了对于深埋煤层模型在大约3700天的时间中的隐退过程。在煤层中水的除去是通过从全部五个井的生产来模拟的。水的生产速率对于大约第一个370天是大约40m3/天。在第一个370天之后水的生产速率显著地下降。它在模拟实验的剩余部分中继续下降,最后达到约零。二氧化碳注入是在大约370天以大约113,000标准(在全文中“标准”是指1个大气压力和15.5摄氏温度)m3/天的流速来起始的。二氧化碳的注入速度在大约1440天时翻倍到大约226,000标准m3/天。注入速度保持在大约226,000标准m3/天,直到模拟实验结束为止。

    图177说明了在模拟过程中在注入井的井头上的压力作为作为时间的函数。经过第一个370天,压力从114巴(绝对)下降到大约20巴(绝对)。压力的下降归因于水从煤层中从除去。在370天开始二氧化碳注入时,压力开始大体上提高。该压力达到98巴的最大值。在480天之后该压力然后开始逐渐地减少。在大约1440天,压力再次提高到大约143巴(绝对),由于二氧化碳注入速率的提高。该压力逐渐地增加,一直到大约3640天时为止。该压力在大约3640天时跃升,因为该生产井被封闭。

    图178说明了在模拟中二氧化碳5060和甲烷5070的生产速率作为作为时间的函数。图178显示,在大约第一个2400天的过程中,以大约0-10,000m3/天之间的速率生产二氧化碳。二氧化碳的生产速率显著地低于该注入速度。所以,该模拟预计大部分的所注入二氧化碳被隐退在该煤层中。然而,在大约2400天时,由于煤层的饱和的开始,二氧化碳的生产速率开始显著地升高。

    另外,图178显示,随着二氧化碳被吸附在煤层中,甲烷解吸。在大约370-2400天之间,该甲烷生产速率5070从大约60,000提高到大约115,000标准m3/天。在大约1440-2400天之间甲烷生产速率的增加是由在大约1440天时二氧化碳注入速率的增加所引起的。在大约2400天之后甲烷的生产速率开始减少。这归因于煤层的饱和。该模拟预测在大约2700天时50%突破(breakthrough)。“突破”被定义为二氧化碳的流速与总生产气体的总流速的比率乘以100%。同时,该模拟预测在大约3600天时大约90%突破。

    图179说明在模拟过程中所生产的累积甲烷5090和所注入的累积净二氧化碳5080与时间的关系。所注入的累积净二氧化碳是所生产的总二氧化碳减去所注入的总二氧化碳。图179显示,到模拟注入的结束时,比所生产的甲烷多大约两倍的二氧化碳被贮存。另外,在50%二氧化碳突破下,甲烷生产量是大约0.24十亿标准m3。同时,在50%二氧化碳突破下,二氧化碳隐退量是大约0.39十亿标准m3。另外,在90%二氧化碳突破下,甲烷生产量是大约0.26十亿标准m3。同时,在90%二氧化碳突破下,二氧化碳隐退量是大约0.46十亿标准m3。

    表8中显示,在处理后煤层中模拟的渗透性和孔隙度都显著高于在处理之前在深埋煤层中的这些性质。同时,初始压力低得多。处理后煤层的深度比深埋煤床甲烷地层更窄。与用于深埋煤层的相同的相对渗透率数据和PVT数据可用于煤层模拟。处理后煤层的初始含水饱和度被设定在70%。存在着水,因为它用于将热的废弃煤层冷却到25℃。最初在处理后煤炭中贮存的甲烷的量是极低的。

    模型模拟了对于处理后煤层模型在大约3800天的时间中的隐退过程。该模型模拟了从全部5个井生产时水从处理后煤层中的除去。在大约第一个200天的过程中,水的生产速率是大约680,000标准m3/天。从大约200-3300天,水生产速率是在大约210,000到大约480,000标准m3/天之间。水的生产速率在大约3300天后可以忽略。二氧化碳注入是以大约113,000标准m3/天的流速在大约370天时开始。二氧化碳的注入速度在大约1440天时增加到大约226,000标准m3/天。注入速度保持在大约226,000标准m3/天,直到模拟注入结束为止。

    图180说明了在处理后煤层模型的模拟过程中在注入井的井头上的压力作为作为时间的函数。该压力相对恒定达大约370天。在模拟实验的剩余部分的大部分中压力提高到大约36巴(绝对)。该压力在大约3300天时开始陡升,因为该生产井被封闭。

    图181说明在处理后煤层模型的模拟中,二氧化碳的生产速率与时间的关系。图181显示,在大约第一个2200天的过程中,二氧化碳的生产速率几乎可以忽略。所以,该模拟预计几乎所有的所注入二氧化碳被隐退在该处理后煤层中。然而,在大约2240天,所生产的二氧化碳开始增加。由于处理后煤层的饱和的开始,二氧化碳的生产速率开始显著地升高。

    图182说明了在处理后煤层模型的模拟过程中,所注入的累积净二氧化碳与时间的关系。所注入的累积净二氧化碳是所生产的总二氧化碳减去所注入的总二氧化碳。图182显示,该模拟预测0.56Bm3的二氧化碳的潜在净隐退量。这一数值在深埋煤层中90%二氧化碳突破下大于0.46Bm3的值。然而,图177与图180的对比显示,在处理后煤层模型中在低得多的压力下发生隐退。所以,对于在处理后煤层中的隐退需要较少压缩能量。

    该模拟显示,大量的二氧化碳可以隐退在深埋煤层中和在已冷却的处理后煤层中。二氧化碳可以隐退在处理后煤层中、在没有热解的煤层中、和/或在两种类型的煤层中。

    图166是与具有热量-物料平衡的SMDS Fischer-Tropsch和石蜡裂化方法相结合的现场合成气生产方法的实例的流程图。被注入到地层中的合成气产生流体包括大约24,000公吨/每天的水4530,它包括大约5,500公吨/每天的从SMDS Fischer-Tropsch和石蜡裂化方法4520回用的水4540。总共大约1700MW的能量被提供给现场合成气生产过程。大约1700MW能量当中的大约1020MW的能量4535通过氧化性流体与地层的就地反应提供,并且大约680MW的能量4550以蒸汽形式由SMDSFischer-Tropsch和石蜡裂化过程4520提供。大约12,700立方公尺当量油/每天的合成气4560用作原料气提供到SMDS Fischer-Tropsch和石蜡裂化过程4520中。SMDS Fischer-Tropsch和石蜡裂化过程4520生产大约4,770立方公尺/每天的产品4570,它可以包括石脑油,煤油,柴油,和为发电设备生产大约5,880立方公尺当量油/每天的废气4580。

    图167是在作为时间函数的数值模拟和所生产的合成气的现场实验煤田试验组成之间的对比。曲线排除了在气体取样过程中的属于污染物的氮气和痕量氧气。符号表示实验数据和曲线表示模拟结果。烃类4601是甲烷,因为所有其它重质烃类在优势温度下已分解。该模拟结果是原始结果的移动平均值,它显示出平均值的大约±10百分点的波峰和波谷。在该模型中,当流体被注入煤层中时出现H2的峰,并与低CO2和CO含量一致。

    H2 4604的模拟为H2 4603的观察分数提供了良好的拟合。甲烷4602的模拟为甲烷4601的观察分数提供了良好的拟合。二氧化碳4606的模拟为二氧化碳4605的观察分数提供了良好的拟合。CO 4608的模拟将CO4607的分数过高估计了4-5个百分点。一氧化碳是最难以模型模拟的的合成气组分。同时,一氧化碳的不相符之处可以归因于以下事实:排列图案温度超过550℃,即超过了数字模型被校正的上限。

    生产合成气的其它方法成功地在实验现场试验中得到验证。这些包括蒸汽和空气,蒸汽和氧,水和空气,水和氧,蒸汽,空气和二氧化碳的连续注入。全部这些注入都成功地在热焦炭地层中产生合成气。

    用焦油砂进行低温热解实验来确定热解温度区以及在加热部分中的温度对所生产的热解流体的质量的影响。该焦油砂是从Athabasca焦油砂区域中收集的。图89描绘了用于进行实验的干馏和收集系统。干馏和收集按照这里所述进行构型设计。

    对于三种焦油样品进行实验室实验,该焦油含在它们的天然砂基岩中。该三种焦油样品是从位于加拿大西部的Athabasca焦油砂区域收集的。在各种情况下,从井接收的岩芯材料被混合和然后被分割。分割岩芯材料的一个等分试样用于干馏,并且复制的等分试样保存下来用于对比分析。材料样品包括在砂岩骨架内的焦油样品。

    实验的加热速率可以改变为1℃/天,5℃/天和10℃/天。压力条件对于该实验改变为1巴,7.9巴,和28.6巴的压力。进行实验#78,使用没有背压的1巴(绝对)压力和使用1℃/天的加热速率。进行实验#79,使用没有背压的1巴(绝对)压力和使用5℃/天的加热速率。进行实验#81,使用没有背压的1巴(绝对)压力和使用10℃/天的加热速率。进行实验#86,使用7.9巴(绝对)的压力和10℃/天的加热速率。进行实验#96,使用28.6巴(绝对)的压力和10℃/天的加热速率。通常,需要0.5到1.5kg初始重量的样品来填充可利用的干馏隔室。

    实验的内部温度从环境温度提高到110℃,200℃,225℃和270℃,在每次温度升高之间有24小时的保留时间。在这一加热过程中大部分的水分从样品中除去。在270℃开始,温度以1℃/天,5℃/天或10℃/天提高,直到不再生产出流体为止。在这一阶段的加热过程中监视与控制该温度。

    生产的液体被收集在有刻度的玻璃接收管中。生产的气体被收集在有刻度的玻璃收集瓶中。每天读取流体体积并记录下来。油和气体读数的准确度分别是+/- 0.6%和2%。当流体生产停止时,结束实验。电力被停止,允许有12小时以上的时间让蒸馏罐降至室温。热解的样品剩余物被排放出来,称重量,和贮存在密封的塑料杯中。流体生产和剩余的岩石材料被送去进行分析实验。

    另外,迪安-斯达克(Dean Stark)甲苯溶剂抽提法用于分析在样品中含有的焦油的量。在该抽提程序中,溶剂如甲苯或甲苯/二甲苯混合物可以与样品混合和可以在冷凝器下进行回流操作,使用接收器。当回流的样品冷凝时,在它们流入接收器中时样品的两相可以分离。例如,焦油可以保持在该接收器中而溶剂回到该烧瓶中。迪安-斯达克甲苯溶剂抽提的详细程序由美国测试和材料学会(ASTM)提供。该ASTM被引入本文中就象它全部列于本文中一样。来自各深度的30g样品被送至迪安-斯达克抽提分析中。

    表9说明了初始焦油和对于实验#81、#86和#96的生产流体的元素分析结果。这些数据全部对应于10℃/天的加热速率。在各实验之间仅仅压力是变化的。

    表9  实验#P(巴)C(wt%)H(wt%)N(wt%)O(wt%)S(wt%)  初始焦油----76.5811.281.875.964.32  81185.3112.170.08----2.47  867.981.7811.690.064.711.76  9628.682.6811.650.034.311.33

    如表9中所述,焦油砂的热解减少了在产出流体中氮和硫重量百分数和提高了产出流体的碳重量百分数。提高热解实验中的压力看来似乎进一步减少在产出流体中氮和硫重量百分数。

    表10说明了对于实验#81、#86和#96和初始焦油的NOISE(NitricOxide Ionization Spectrometry Evaluation)分析。NOISE已经被商业实验室开发为在油中主要成分的重量百分数的定量分析。在初始焦油中的剩余重量百分数(47.2%)可以在残留物中找到。

    表10  实验#    P    (巴)   链烷烃   (wt%)   环链烷烃    (wt%)  酚类  (wt%)  单芳族烃    (wt%)  初始焦油    ----    7.08    29.15    0    6.73  81    1    15.36    46.7    0.34    21.04  86    7.9    27.16    45.8    0.54    16.88  96    28.6    26.45    36.56    0.47    28.0  实验#    P    (巴)    二芳族烃    (wt%)    三芳族烃    (wt%)    四芳族烃    (wt%)  初始焦油    ----    8.12    1.70    0.02  81    1    14.83    1.72    0.01  86    7.9    9.09    0.53    0  96    28.6    8.52    0    0

    如表10中所述,焦油砂的热解生产出了产品流体,它具有显著地更高的重量百分数的可在初始焦油砂中见到的链烷烃、环烷烃和单芳族烃。将压力提高到7.9巴(绝对)看来似乎大体上避免了四芳族烃的生产。进一步将压力提高到28.6巴(绝对)看来似乎大体上避免了三芳族烃的生产。压力的提高也看来似乎减少了二芳族烃的生产。将压力提高到28.6巴(绝对)也看来似乎显著地增加了单芳族烃的生产。这归因于在较高压力下增加的氢分压。增加的氢分压可以多芳族烃化合物还原成单芳族烃。

    图168说明了碳化物的重量百分数对于初始焦油4703的碳数以及在1巴(绝对)4704、7.9巴(绝对)4705和28.6巴(绝对)4706的压力下以10℃/天的加热速率的实验的曲线图。从初始焦油4703和1巴(绝对)4704的压力的曲线能够看出,热解将平均碳数分布转换到较低碳数。例如,曲线4703的碳分布中的平均碳数是大约碳数十九和在曲线4704的碳分布的平均碳数是大约碳数十七。提高该压力到7.9巴(绝对)4705进一步将平均碳数分布转换成甚至更低的碳数。提高该压力到7.9巴(绝对)4705也将碳分布中的平均碳数转换成大约十三的碳数。进一步提高该压力到28.6巴绝对4706可减少平均碳数到大约十一。增加该压力被认为可通过提高产品流体中的氢分压来减少该平均碳数分布。该增加产品流体中的氢分压可以将大分子氢化、去芳烃和/或热解形成较小的分子。增加该压力也提高了产出流体的质量。例如,流体的API比重从初始焦油的低于约10°,提高到对于1巴(绝对)的压力而言的大约31°,对于7.9巴(绝对)的压力而言的大约39°,对于28.6巴(绝对)的压力而言的大约45°。

    图169说明了对于各种热解加热速率和压力而言碳化物的重量百分数的直方图。直方图4710说明了在1巴(绝对)的压力下以1℃/天的加热速率进行热解的重量百分数。直方图4712说明了在1巴(绝对)的压力下以5℃/天的加热速率进行热解的重量百分数。直方图4714说明了在1巴(绝对)的压力下以10℃/天的加热速率进行热解的重量百分数。直方图4716说明了在7.9巴(绝对)的压力下以10℃/天的加热速率进行热解的重量百分数。链烷烃4720,环烷烃4722,单芳族烃4724,二芳族烃4726,和三芳族烃4728的重量百分数在直方图中列出。直方图证明了加热速率在1℃/天到10℃/天之间变化没有显著地影响该产品流体的组成。然而,将压力从1巴(绝对)提高到7.9巴(绝对),会影响产品流体的组成。该影响是在图168和以上表9和10中描述的效果的特征。

    三维(3-D)模拟模型用于模拟含有焦油砂的地层的现场转化方法。使用单独的数值码(CFX)计算热注入速率。该热注入速率是在500瓦/每英尺(1640瓦/每米)下计算的。3-D模拟是以焦油砂矿的扩张-再压制模型为基础的。使用50米的目标区厚度。模拟的输入数据如下:

    目标区深度=280米;

    厚度=50米;

    孔隙度=0.27;

    油饱和度=0.84;

    水饱和度=0.16;

    渗透性=1000毫达西;

    垂向渗透率/水平渗透率=0.1;

    上覆地层=页岩;和

    基岩=湿碳酸盐。

    六个组分流体是基于在Athabasca焦油砂矿中发现的流体来使用的。该六组分流体是:重液;轻液;气体;水;前炭(pre-char);和炭。井之间的间距在三角形排列图案上被设定在9.1米。使用具有300m加热器长度的十一个水平加热器,热输出设定在1640瓦/每米的预先计算值。

    图170说明了对于在生产井中各种井底压力,油产量(立方公尺)与时间(天)的曲线。曲线4742说明了对于1.03巴(绝对)的压力的油产量。曲线4740说明了对于6.9巴(绝对)的压力的油产量。图170说明了提高井底压力将减少在焦油砂地层中的油产量。

    图171说明了来自储层中的产出流体的热含量与加热该储层的输入热量之比率相对时间(天)的曲线。曲线4752说明了该比率相对于加热整个储层到热解温度的时间的关系。曲线4752说明了该比率相对于使储层中部分排水到所选择的热解区段4750中的时间的关系。图171说明了对于输入到该储层的给定热量,使储层中部分排水趋于提高产出流体的热含量相对于加热整个储层的关系。

    图172说明重量百分数相对于模拟的碳数分布的曲线。曲线4760说明了初始焦油砂的碳数分布。初始焦油砂具有6°的API比重。曲线4762说明了对于高达350℃的温度下焦油砂的现场转化的碳数分布。曲线4762具有30°的API比重。从图172能够看出,该现场转化方法大体上提高了在焦油砂矿中见到的油的质量,这可通过增加的API比重和碳数分布转换到低碳数来证明。较低的碳数分布也可通过另一种结果来证明,该结果显示产出流体的大部分是作为蒸汽生产的。

    图102说明了用于进行实验的焦油砂桶实验装置。桶3400填充了Athabasca焦油砂并加热。全部实验是通过使用在图102中示出的系统进行的(参见这里的其它描述)。蒸汽是从该桶中产生,冷却,分成液体和气体,然后进行分析。进行两个单独的实验,各实验使用来自同一批次的焦油砂,但是在一个实验(低压实验)中桶压力保持在1巴(绝对),而在另一个实验(高压实验)中桶压力保持在6.9巴(绝对)。桶压力自然提高以便在温度提高时保持压力。

    图173说明了在实验过程中(即,当桶温度以2摄氏度/每天的速率提高时)在气体中氢气的mol%。线4770说明了当桶压力保持在1巴(绝对)时所获得的结果。线4772说明了当桶压力保持在6.9巴(绝对)时所获得的结果。图173说明了当桶保持在较低压力时,在气体中生产的氢气的较高mol%。可以相信提高桶压力可驱使氢气进入桶内液体中。该氢气将倾向于氢化重质烃类。

    图174说明了当在桶内提高温度时,从桶生产的液体的API比重。线4782描绘了高压实验的结果和线4780描绘了低压实验的结果。如图174所说明,在较高桶压力下生产出了较高质量的液体。可以相信能够生产更高质量的液体,因为在高压实验过程中在桶内发生了更多的氢化(虽然在高压实验中在气体中氢气浓度是较低的,桶压力明显更高,和因此在高压实验中在桶内的氢分压更大)。

    本发明的各个方面的其它改进和另一些实施方案对于本技术领域中的技术人员来说在阅读本叙述之后变得显而易见。因此,本描述将被认为仅仅是举例说明而已,和为了教导本技术领域中的普通技术人员实施本发明的一般方式。需要理解的是,这里显示和描述的本发明的形式被看作是优选的实施方案。可以取代这里所说明和描述的要素和材料,一些部分和方法过程可以反转,以及本发明的某些特征可以独立地使用,在阅读本发明的说明书之后所有这些对于本技术领域中技术人员来说是显而易见的。在不脱离在所附权利要求中描述的本发明的精神和范围的前提下,可以对这里描述的要素加以变化。

处理含烃地层的方法和系统.pdf_第1页
第1页 / 共376页
处理含烃地层的方法和系统.pdf_第2页
第2页 / 共376页
处理含烃地层的方法和系统.pdf_第3页
第3页 / 共376页
点击查看更多>>
资源描述

《处理含烃地层的方法和系统.pdf》由会员分享,可在线阅读,更多相关《处理含烃地层的方法和系统.pdf(376页珍藏版)》请在专利查询网上搜索。

公开了现场处理含烃地层和从该地层生产烃流体的方法,该方法包括应用压力/温度控制对于在从地层中生产烃流体的过程中在地层中存在的烃类进行热解,以使得该压力是至少对于所选择温度计算的压力,或该温度是至多对于所选择压力从等式(I)计算的温度,其中P是压力(巴,绝对),T是温度(),以及A和B是预先测定的参数,后者涉及与所生产的烃流体的量、组成或质量有关的性质。任选地,该方法继之以现场生产合成气的步骤,该步。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 土层或岩石的钻进;采矿


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1