气体发生器.pdf

上传人:li****8 文档编号:1669443 上传时间:2018-07-03 格式:PDF 页数:50 大小:1.31MB
返回 下载 相关 举报
摘要
申请专利号:

CN201080018926.3

申请日:

2010.04.27

公开号:

CN102414058A

公开日:

2012.04.11

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):B60R 21/264申请公布日:20120411|||实质审查的生效IPC(主分类):B60R 21/264申请日:20100427|||公开

IPC分类号:

B60R21/264(2011.01)I; B01J7/00; C06B45/36; C06D5/00

主分类号:

B60R21/264

申请人:

日本化药株式会社

发明人:

萩原大介; 榎并宏一; 中村公一; 笹本幸一

地址:

日本东京都千代田区富士见1丁目11番2号

优先权:

2009.04.30 JP 2009-110733; 2009.04.30 JP 2009-110734; 2010.01.13 JP 2010-004783

专利代理机构:

中国专利代理(香港)有限公司 72001

代理人:

崔幼平;杨楷

PDF下载: PDF下载
内容摘要

本发明的筒型气体发生器(1A)具备:长条圆筒状的壳体,设在壳体的内部的动作气体生成室以及过滤器室,和点火器(30)。在动作气体生成室中主要收容有区分部件(50)以及粒状的气体发生剂(62)。区分部件(50)具有圆筒状部(52)、底部(53)、和中空部(55),粒状的气体发生剂(62)收容在动作气体生成室中除了上述中空部(55)以外的部分中。区分部件(50)的底部(53)具有随着朝向点火器(30)一侧而其外形逐渐减小的尖细形状。

权利要求书

1: 一种气体发生器, 其特征在于, 具备 : 长条圆筒状的壳体, 轴向的两端被封闭, 在内部含有通过气体发生剂 (62) 燃烧 而生成动作气体的动作气体生成室、 和收容由上述动作气体生成室所生成的动作气体穿过 其中的过滤器 (70) 的过滤器室 ; 点火机构, 配置在上述壳体轴向的一端部, 产生用于使上 述气体发生剂 (62) 燃烧的火焰 ; 分隔部件 (40) , 位于上述壳体的内部, 将上述壳体的内部 空间在轴向上分隔成上述动作气体生成室和上述过滤器室 ; 区分部件 (50) , 位于上述动作 气体生成室的内部, 区分出上述动作气体生成室 ; 上述过滤器室位于比上述动作气体生成室靠近上述壳体轴向的另一端部一侧 ; 在上述壳体的限定上述过滤器室的部分的周壁部上, 设有用于将穿过上述过滤器 (70) 的动作气体向外部喷出的多个气体喷出口 (13) ; 上述区分部件 (50) 由配置在与上述壳体同轴上且内部具有中空部 (55) 的有底筒状的 部件构成, 含有从上述分隔部件 (40) 上的上述动作气体生成室一侧的端部沿着上述壳体的 轴向延伸的筒状部, 和封闭上述筒状部上的上述点火机构一侧的端部的底部 (53) ; 上述区分部件 (50) 的上述底部 (53) 位于比上述动作气体生成室上的上述点火机构一 侧的端部靠近上述分隔部件 (40) 一侧 ; 上述气体发生剂 (62) 收容在除了上述区分部件 (50) 的上述中空部 (55) 以外的部分的 上述动作气体生成室中 ; 在上述区分部件 (50) 的上述筒状部上, 设有连通上述动作气体生成室中的收容了上述 气体发生剂 (62) 的空间、 和上述区分部件 (50) 的上述中空部 (55) 的多个第 1 连通孔 (54) ; 在上述分隔部件 (40)的中央部上, 设有用于连通上述区分部件 (50)的上述中空部 (55) 和上述过滤器室的第 2 连通孔 (43) ; 上述区分部件 (50) 的上述底部 (53) 具有随着朝向上述点火机构一侧而其外形逐渐减 小的尖细形状。
2: 如权利要求 1 所述的气体发生器, 其特征在于, 上述区分部件 (50) 的上述底部 (53) 的外表面具有大致半球面形状。
3: 如权利要求 1 所述的气体发生器, 其特征在于, 上述区分部件 (50) 的上述底部 (53) 的外表面具有大致圆锥面形状。
4: 如权利要求 1 所述的气体发生器, 其特征在于, 上述区分部件 (50) 的上述筒状部具 有沿着上述壳体的轴向内径以及外径为一定的圆筒状部 (52) ; 上述多个第 1 连通孔 (53) 设在上述区分部件 (50) 的上述圆筒状部 (52) 上。
5: 如权利要求 4 所述的气体发生器, 其特征在于, 上述区分部件 (50) 的上述筒状部还 具有从上述圆筒状部 (52) 上的上述分隔部件 (40) 一侧的端部连续地伸出, 且随着朝向上 述分隔部件 (40) 一侧而逐渐扩径的扩径部 (52a) 。
6: 如权利要求 1 所述的气体发生器, 其特征在于, 上述壳体含有构成上述壳体的上述 另一端部以及上述周壁部的长条有底圆筒状的第 1 壳体部件 (10) 、 和通过封闭上述第 1 壳 体部件 (10) 的开口端而构成上述壳体的上述一端部的第 2 壳体部件 (20) ; 上述第 1 壳体部件 (10) 由对电焊钢管的轴向端部的一侧进行闭合处理而成的成形品 构成 ; 上述第 1 壳体部件 (10) 的外径 R1 充分满足 15mm ≤ R1 ≤ 22mm 的条件 ; 2 上述区分部件 (50) 上从上述底部 (53) 和上述筒状部的边界部分到上述区分部件 (50) 的上述底部 (53) 上的上述点火机构一侧的端部的距离 L1 充分满足 1mm ≤ L1 ≤ 7mm 的条 件; 从上述区分部件 (50) 的上述底部 (53) 上的上述点火机构一侧的端部到上述动作气体 生成室上的上述点火机构一侧的端部的距离 L2 和上述动作气体生成室的直径 R2 充分满足 0.026 ≤ L2/R2 ≤ 0.71 的条件 ; 上述区分部件 (50) 的上述中空部 (55) 的直径 R3 和上述动作气体生成室的直径 R2 充 分满足 0.28 ≤ R3/R2 ≤ 0.54 的条件。
7: 如权利要求 1 所述的气体发生器, 其特征在于, 上述气体发生剂 (62) 作为燃料而含 有胍系化合物, 作为氧化剂而含有碱式硝酸铜。
8: 如权利要求 1 所述的气体发生器, 其特征在于, 还具备用于防止上述气体发生剂 (62) 因振动而破碎的破碎防止部件 (64) , 和位于上述壳体的内部且具有密闭的收容空间 (83) 的第 1 密闭容器 (80) ; 上述气体发生剂 (62) 、 上述区分部件 (50) 以及上述破碎防止部件 (64) 收容在上述第 1 密闭容器 (80) 的上述收容空间 (83) 中。
9: 如权利要求 8 所述的气体发生器, 其特征在于, 还具备位于上述壳体的内部且具有 密闭的收容空间 (93) 的第 2 密闭容器 (90) ; 上述点火机构含有包含通过燃烧而产生火焰的引火药的点火器 (30) 、 和将由上述点火 器 (30) 所产生的火焰向上述气体发生剂 (62) 传递的引火药 (61) ; 上述引火药 (61) 收容在上述第 2 密闭容器 (90) 的上述收容空间 (93) 中。
10: 如权利要求 1 所述的气体发生器, 其特征在于, 上述过滤器 (70) 具有沿着上述壳 体的轴向延伸的中空连通部 (71) ; 上述中空连通部 (71) 至少到达上述过滤器 (70) 上的上述动作气体生成室一侧的端 面; 上述分隔部件 (40) 含有覆盖上述过滤器 (70) 的上述端面的环状板部 (41) 、 和通过从 上述环状板部 (41) 的内周缘朝向上述过滤器 (70) 的上述中空连通部 (71) 内连续地延伸而 覆盖上述过滤器 (70) 的靠近上述端面的内周面的筒状突出部 (42) ; 上述第 2 连通孔 (43) 由上述分隔部件 (40) 的上述筒状突出部 (42) 的内周面限定 ; 上述分隔部件 (40) 的上述筒状突出部 (42) 以随着远离上述分隔部件 (40) 的上述环状 板部 (41) 而上述第 2 连通孔 (43) 的开口面积减小的方式逐渐缩径。
11: 如权利要求 1 所述的气体发生器, 其特征在于, 上述过滤器 (70) 具有沿着上述壳 体的轴向延伸的中空连通部 (71) ; 上述中空连通部 (71) 至少到达上述过滤器 (70) 上的上述动作气体生成室一侧的端 面; 上述分隔部件 (40) 含有覆盖上述过滤器 (70) 的上述端面的环状板部 (41) 、 和通过从 上述环状板部 (41) 的内周缘朝向上述过滤器 (70) 的上述中空连通部 (71) 内连续地延伸而 (42) ; 覆盖上述过滤器 (70) 的靠近上述端面的内周面的筒状突出部 上述第 2 连通孔 (43) 由上述分隔部件 (40) 的上述筒状突出部 (42) 的内周面限定 ; 上述分隔部件 (40) 的上述筒状突出部 (42) 以随着远离上述分隔部件 (40) 的上述环状 3 板部 (41) 而上述第 2 连通孔 (43) 的开口面积增加的方式逐渐扩径。
12: 如权利要求 1 所述的气体发生器, 其特征在于, 上述第 1 壳体部件 (10) 的外径与 上述第 2 壳体部件 (20) 的外径相同。

说明书


气体发生器

    技术领域 本发明涉及一种组装在搭载于汽车等上作为乘员保护装置的安全气囊装置中的 气体发生器, 更为特定的是涉及具有长条圆柱状的外形的所谓筒型气体发生器。
     背景技术 以往, 从保护汽车等中的乘员的观点考虑, 作为乘员保护装置的安全气囊装置已 经普及。 安全气囊装置以在保护乘员免受车辆等碰撞时所产生的冲击为目的而装备在车辆 等上, 通过在车辆等碰撞时使安全气囊瞬间膨胀以及展开, 由展开的安全气囊承接乘员的 身体。气体发生器是组装在该安全气囊装置中, 在车辆等碰撞时瞬间产生气体而使安全气 囊膨胀以及展开的设备。
     在气体发生器中, 基于相对于车辆等的设置位置或输出等规格, 存在各种结构, 其 中之一存在被成为 「筒型」 构造的气体发生器。筒型气体发生器其外形为长条圆柱状, 适于 组装在侧安全气囊装置或副驾驶席用的安全气囊装置、 气帘安全气囊装置、 膝部安全气囊 装置等中。 另外, 作为具有长条圆柱状的外形的气体发生器, 除了该筒型气体发生器之外还 存在所谓 T 字型气体发生器等。
     作为公开了上述的筒型气体发生器的具体构造的文献, 例如有特开 2005-313812 号公报 (专利文献 1) 及特开平 11-78766 号公报 (专利文献 2) 、 特开 2002-166818 号公报 (专 利文献 3) 等。在这些文献中所公开的筒型气体发生器中, 是在长条圆筒状的壳体轴向一端 部配置点火器以及引火药, 在轴向的大致中央部设有收容气体发生剂、 通过该气体发生剂 燃烧而生成动作气体的动作气体生成室, 在轴向的另一端部设有收容过滤器的过滤器室以 及气体喷出口。
     在该结构的筒型气体发生器中, 通过点火器动作而产生的火焰经由引火药的燃烧 而向气体发生剂传递, 这样一来, 气体发生剂燃烧, 在动作气体生成室中生成高温高压的动 作气体, 生成的动作气体沿着壳体的轴向从动作气体生成室流入过滤器室, 通过了过滤器 后从气体喷出口向壳体的外部喷出。 从气体喷出口喷出的动作气体其后用于安全气囊的膨 胀以及展开。
     其中, 在上述特开 2002-166818 号公报中, 公开了在动作气体生成室中配置有底 圆筒状的区分部件而成的筒型气体发生器 (特别是特开 2002-166818 号公报) 。由于在该 动作气体生成室中配置区分部件而成的筒型气体发生器中, 能够将壳体的内部空间区分成 动作气体生成室和过滤器室, 进而能够在动作气体生成室的内部形成轴心与壳体相同的中 空空间, 所以来自气体发生剂的气体随时在该中空空间的内部流入、 放出, 能够使装置小型 化, 同时能够使安全气囊渐进地膨胀展开。
     专利文献 1 : 特开 2005-313812 号公报, 专利文献 2 : 特开平 11-78766 号公报, 专利文献 3 : 特开 2002-166818 号公报。
     在筒型气体发生器中, 改进向车辆等上的搭载性的要求非常强, 其小型轻量化成
     为重要的问题。因此, 近年来一直尝试将作为筒型气体发生器的主要构成零件的壳体及过 滤器这种重量较重的零件变更成小型且轻量的零件。其中之一, 研究了将作为强度零件的 壳体从以往所利用的由不锈钢或钢铁等构成的部件变更成以 SPCC 或 SPCD、 SPCE 为代表的 轧钢板等小直径的压力成形品或者以 STKM 为代表的电焊钢管的成形品等的尝试。
     在此, 近年来作为气体发生器中使用的气体发生剂, 非叠氮基系气体发生剂已经 普及。 在使用该非叠氮基系气体发生剂的情况下, 生成的动作气体温度较低, 得到了能够适 用于安全气囊装置中的优点, 但与使用其它组成的气体发生剂的情况相比, 将产生点燃性 差的问题, 或为了稳定地燃烧而要预先置于高压环境下的问题。 因此, 为了使筒型气体发生 器的壳体小型轻量化必须要考虑这些点。
     而且, 在将筒型气体发生器的壳体小直径化了的情况下, 有由于所生成的动作气 体在动作气体生成室内停滞, 至从气体喷出口喷出动作气体的时间加长的倾向。这是由于 未燃烧的气体发生剂及燃烧中的气体发生剂自身成为了所生成的动作气体的流动阻力的 缘故。 因此, 在简单地将筒型气体发生器的壳体小直径化了的情况下, 在动作初期时动作气 体生成室的内压急剧上升, 难以满足所要求的输出特性, 产生特别是难以适用在要求动作 初期的动作速度快的侧安全气囊装置或气帘安全气囊装置等上的问题。 而且, 在筒型气体发生器中, 需要使壳体带有耐压性, 以能够充分耐受气体发生剂 燃烧、 动作气体生成所产生的动作气体生成室的内压上升。在为了使壳体带有这样的耐压 性而对高张力钢板那样的高强度的部件进行压力成形而构成小直径的壳体的情况下, 能够 使其充分耐受动作气体生成室的内压上升, 但由于在压力加工之际在壳体上明显地产生残 留应力, 特别是在低温环境下, 难以使壳体带有充分的强度。为了解决这一问题, 要进行退 火等处理, 但在这种实施了退火处理的情况下, 将不再能够维持能够耐受上述的动作气体 生成室的内压上升的耐压性。因此, 为了谋求既确保低压环境下的强度又确保动作时的耐 压性, 其结果要使壳体的厚度厚到相当程度, 将产生成形性差的问题或重量增加的问题, 有 损于原本进行小直径化的意义。
     另一方面, 在欲由上述的轧钢板构成的小直径的压力成形品或电焊钢管的成形品 等构成壳体的情况下, 能够在低温环境下具有充分的强度, 但难以使壳体带有能够耐受上 述的动作气体生成室的内压上升的耐压性。
     这样, 为了谋求筒型气体发生器的小型轻量化 (特别是小直径化以及轻量化) , 需 要充分满足在动作时将动作气体生成室维持在适于气体发生剂的燃烧的高压环境下, 防止 所生成的动作气体在动作气体生成室中停滞以加速初期的动作速度, 以及使壳体带有充分 的耐压性和低温环境下的充分强度等所有条件, 其实现起来非常困难。
     而且, 在谋求筒型气体发生器的小型轻量化的情况下, 除了上述这各点之外, 为了 稳定地得到所希望的输出特性还需要研究装置结构。一般来说, 气体发生剂是作为粒状的 小型圆片而成形的, 但事实上一边分别地调整这些粒状的气体发生剂的每一个的配置位置 及朝向一边将其填充到动作气体生成室中是不可能的。因此, 粒状的气体发生剂大多是不 调整其配置位置及朝向地随机填充到动作气体生成室中。
     但是, 在随机地将粒状的气体发生剂填充到了动作气体生成室中的情况下, 有在 动作气体生成室中的气体发生剂的密度上产生偏差的情况。 在产生了这种气体发生剂的密 度偏差的情况下, 将对筒型气体发生器的输出特性带来很大影响, 其结果, 产品之间将在输
     出特性上产生很大的差异。 在此, 在未充分谋求小型化的筒型气体发生器中, 由于可以是使 收容气体发生剂的动作气体生成室的容积较大结构, 所以不易产生上述的气体发生剂的密 度偏差的问题, 但在谋求了小型化的筒型气体发生器中, 由于动作气体生成室的容积必然 减小, 所以该气体发生剂的密度偏差的问题将成为非常重大的问题。
     该气体发生剂的密度偏差的问题即使在如上述的特开 2002-166818 号公报中公 开的那样结构的筒型气体发生器中也不例外, 可以成为非常重大的问题。即, 若是结构为 该特开 2002-166818 号公报中公开的筒型气体发生器, 则通过在动作气体生成室中配置区 分部件而输出特性优良, 但因气体发生剂的填充状态的不同将在其输出特性上产生大的差 异。 发明内容 因此, 本发明是为了解决上述问题点而提出的, 其目的在于提供一种稳定地得到 所希望的输出特性的小型轻量化的气体发生器。
     基于本发明的气体发生器具备壳体, 点火机构, 分隔部件, 和区分部件。上述壳体 由轴向的两端被封闭的长条圆筒状的部件构成, 在内部含有通过气体发生剂燃烧而生成动 作气体的动作气体生成室、 和收容由上述动作气体生成室所生成的动作气体穿过其中的过 滤器的过滤器室。上述点火机构产生用于使上述气体发生剂燃烧的火焰, 配置在上述壳体 轴向的一端部。上述分隔部件位于上述壳体的内部, 将上述壳体的内部空间在轴向上分隔 成上述动作气体生成室和上述过滤器室。上述区分部件位于上述动作气体生成室的内部, 区分出上述动作气体生成室。 上述过滤器室位于比上述动作气体生成室靠近上述壳体轴向 的另一端部一侧。在上述壳体的限定上述过滤器室的部分的周壁部上, 设有用于将穿过上 述过滤器的动作气体向外部喷出的多个气体喷出口。 上述区分部件由配置在与上述壳体同 轴上且内部具有中空部的有底筒状的部件构成, 含有从上述分隔部件上的上述动作气体生 成室一侧的端部沿着上述壳体的轴向延伸的筒状部, 和封闭上述筒状部上的上述点火机构
     一侧的端部的底部。 上述区分部件的上述底部位于比上述动作气体生成室上的上述点火机 构一侧的端部靠近上述分隔部件一侧。 上述气体发生剂收容在除了上述区分部件的上述中 空部以外的部分的上述动作气体生成室中。在上述区分部件的上述筒状部上, 设有连通上 述动作气体生成室中的收容了上述气体发生剂的空间、 和上述区分部件的上述中空部的多 个第 1 连通孔。在上述分隔部件的中央部上, 设有用于连通上述区分部件的上述中空部和 上述过滤器室的第 2 连通孔。在此, 上述区分部件的上述底部具有随着朝向上述点火机构 一侧而其外形逐渐减小的尖细形状。
     在上述基于本发明的气体发生器中, 优选地是, 上述区分部件的上述底部的外表 面具有大致半球面形状。
     在上述基于本发明的气体发生器中, 上述区分部件的上述底部的外表面也可以具 有大致圆锥面形状。
     在上述基于本发明的气体发生器中, 优选地是, 上述区分部件的上述筒状部具有 沿着上述壳体的轴向内径以及外径为一定的圆筒状部, 在这种情况下, 优选地是 , 上述多 个第 1 连通孔设在上述区分部件的上述圆筒状部上。
     在上述基于本发明的气体发生器中, 上述区分部件的上述筒状部也可以还具有从上述圆筒状部上的上述分隔部件一侧的端部连续地伸出, 且随着朝向上述分隔部件一侧而 逐渐扩径的扩径部。
     在上述基于本发明的气体发生器中, 上述壳体也可以含有构成上述壳体的上述 另一端部以及上述周壁部的长条有底圆筒状的第 1 壳体部件、 和通过封闭上述第 1 壳体 部件的开口端而构成上述壳体的上述一端部的第 2 壳体部件 (电爆管保持器) , 在这种情 况下, 优选地是, 上述第 1 壳体部件由对电焊钢管的轴向端部的一侧进行闭合处理而成 的成形品构成。在这样构成的情况下, 优选地是, 上述第 1 壳体部件的外径 R1 充分满足 15mm ≤ R1 ≤ 22mm 的条件, 上述区分部件上从上述底部和上述筒状部的边界部分到上述 区分部件的上述底部上的上述点火机构一侧的端部的距离 L1 充分满足 1mm ≤ L1 ≤ 7mm 的条件, 从上述区分部件的上述底部上的上述点火机构一侧的端部到上述动作气体生成 室上的上述点火机构一侧的端部的距离 L2 和上述动作气体生成室的直径 R2 充分满足 0.026 ≤ L2/R2 ≤ 0.71 的条件, 并且上述区分部件的上述中空部的直径 R3 和上述动作气体 生成室的直径 R2 充分满足 0.28 ≤ R3/R2 ≤ 0.54 的条件。
     在上述基于本发明的气体发生器中, 优选地是, 上述气体发生剂作为燃料而含有 胍系化合物, 作为氧化剂而含有碱式硝酸铜。 在上述基于本发明的气体发生器中, 优选地是, 还具备用于防止上述气体发生剂 因振动而破碎的破碎防止部件, 和位于上述壳体的内部且具有密闭的收容空间的第 1 密闭 容器, 在这种情况下, 优选地是, 上述气体发生剂、 上述区分部件以及上述破碎防止部件收 容在上述第 1 密闭容器的上述收容空间中。
     在上述基于本发明的气体发生器中, 也可以还具备位于上述壳体的内部且具有密 闭的收容空间的第 2 密闭容器。在这种情况下, 优选地是, 上述点火机构含有包含通过燃烧 而产生火焰的引火药的点火器、 和将由上述点火器所产生的火焰向上述气体发生剂传递的 引火药, 且优选地是其中的上述引火药收容在上述第 2 密闭容器的上述收容空间中。
     在上述基于本发明的气体发生器中, 优选地是 , 上述过滤器具有沿着上述壳体的 轴向延伸的中空连通部, 该中空连通部优选至少到达上述过滤器上的上述动作气体生成室 一侧的端面。 在这种情况下, 优选地是, 上述分隔部件含有覆盖上述过滤器的上述端面的环 状板部、 和通过从该环状板部的内周缘朝向上述过滤器的上述中空连通部内连续地延伸而 覆盖上述过滤器的靠近上述端面的内周面的筒状突出部, 上述第 2 连通孔优选由上述分隔 部件的上述筒状突出部的内周面限定。 并且在这种情况下, 优选地是, 上述分隔部件的上述 筒状突出部以随着远离上述分隔部件的上述环状板部而上述第 2 连通孔的开口面积减小 的方式逐渐缩径。
     在上述基于本发明的气体发生器中, 上述过滤器优选具有沿着上述壳体的轴向延 伸的中空连通部, 该中空连通部优选至少到达上述过滤器上的上述动作气体生成室一侧的 端面。在这种情况下, 优选地是, 上述分隔部件含有覆盖上述过滤器的上述端面的环状板 部、 和通过从该环状板部的内周缘朝向上述过滤器的上述中空连通部内连续地延伸而覆盖 上述过滤器靠近上述端面的内周面的筒状突出部, 上述第 2 连通孔优选由上述分隔部件的 上述筒状突出部的内周面限定。 并且在这种情况下, 优选地是, 上述分隔部件的上述筒状突 出部以随着远离上述分隔部件的上述环状板部而上述第 2 连通孔的开口面积增加的方式 逐渐扩径。
     在上述基于本发明的气体发生器中, 优选地是, 上述第 1 壳体部件的外径与上述 第 2 壳体部件的外径相同。
     根据本发明, 能够成为稳定地得到所希望的输出特性的小型轻量化的气体发生 器。 附图说明
     图 1A 是本发明的实施方式 1 中的筒型气体发生器的主视图 ; 图 1B 是本发明的实施方式 1 中的筒型气体发生器图的右侧视图 ; 图 2 是本发明的实施方式 1 中的筒型气体发生器的示意剖视图 ; 图 3A 是表示制造本发明的实施方式 1 中的筒型气体发生器之际的气体发生剂的填充 以及封堵工序的示意剖视图 ; 图 3B 是表示制造本发明的实施方式 1 中的筒型气体发生器之际的气体发生剂的填充 以及封堵工序的示意剖视图 ; 图 3C 是表示制造本发明的实施方式 1 中的筒型气体发生器之际的气体发生剂的填充 以及封堵工序的示意剖视图 ; 图 4A 是将本发明的实施方式 1 中的筒型气体发生器的设置了分隔部件的位置附近放 大后的主要部分放大剖视图, 是表示筒型气体发生器的动作刚开始后的状态的附图 ; 图 4B 是将本发明的实施方式 1 中的筒型气体发生器的设置了分隔部件的位置附近放 大后的主要部分放大剖视图, 是表示筒型气体发生器的动作开始并经过了规定时间后的状 态的附图 ; 图 5 是表示在验证试验中使用的实施例所涉及的筒型气体发生器的结构的示意剖视 图; 图 6 是表示在验证试验中使用的比较例所涉及的筒型气体发生器的结构的示意剖视 图; 图 7 是用于说明由验证试验测定的各种参数的曲线图 ; 图 8 是表示验证试验的试验结果的表 ; 图 9 是表示验证试验的试验结果的曲线图, 是表示 10ms 时的罐压的差异的曲线图 ; 图 10 是表示验证试验的试验结果的曲线图, 是表示罐压最大值的差异的曲线图 ; 图 11 是表示验证试验的试验结果的曲线图, 是表示罐压达到最大值的时间的差异的 曲线图 ; 图 12 是表示验证试验的试验结果的曲线图, 是表示在动作气体生成室观测的内压最 大值的差异的曲线图 ; 图 13 是本发明的实施方式 2 中的筒型气体发生器的示意剖视图 ; 图 14 是本发明的实施方式 3 中的筒型气体发生器的示意剖视图 ; 图 15 是本发明的实施方式 4 中的筒型气体发生器的示意剖视图 ; 图 16A 是将本发明的实施方式 4 中的筒型气体发生器的设置了分隔部件的位置附近放 大后的主要部分放大剖视图, 是表示筒型气体发生器的动作刚开始后的状态的附图 ; 图 16B 是将本发明的实施方式 4 中的筒型气体发生器的设置了分隔部件的位置附近放 大后的主要部分放大剖视图, 是表示筒型气体发生器的动作开始并经过了规定时间后的状态的附图 ; 图 17A 是将本发明的实施方式 5 中的筒型气体发生器的设置了气体喷出口的位置附近 放大后的主要部分放大主视图 ; 图 17B 是将本发明的实施方式 5 中的筒型气体发生器的设置了气体喷出口的位置附近 放大后的主要部分放大剖视图 ; 图 18A 是示意表示本发明的实施方式 5 中的筒型气体发生器动作时的初期气体的流动 状态的附图 ; 图 18B 是示意表示本发明的实施方式 5 中的筒型气体发生器的动作开始并经过了规定 时间后的气体流动状态的附图。
     附图标记说明 : 1A ~ 1E、 1X: 筒型气体发生器, 10 : 第 1 壳体部件, 11 : 周壁部, 12 : 底壁部, 13 : 气体喷 出口, 14 : 铆接部, 20 : 第 2 壳体部件, 21 : 槽, 22 : 凹部, 23 : 贯通部, 24 : 铆接部, 30 : 点火器, 31 : 基部, 32 : 点火部, 33 : 端子销, 40 : 分隔部件, 41 : 环状板部, 42 : 筒状突出部, 43 : 第2连 通孔, 50 : 区分部件, 51 : 凸缘部, 52 : 圆筒状部, 52a : 扩径部, 53 : 底部, 54 : 第 1 连通孔, 55 : 中空部, 61 : 引火药, 62 : 气体发生剂, 63 : 第 1 缓冲材料, 64 : 第 2 缓冲材料, 70 : 过滤器, 71 : 中空连通部, 80 : 第 1 密闭容器, 81 : 杯部, 81a : 轴向端部, 82 : 盖部, 83 : 收容空间, 90 : 第2 密闭容器, 91 : 杯部, 92 : 盖部, 93 : 收容空间, MP : 传感器安装端口, SE : 压力传感器。 具体实施方式 以下, 参照附图详细地对本发明的实施方式进行说明。 另外, 以下所示的实施方式 例示了将本发明适用在适于组装在侧安全气囊装置等中的所谓筒型气体发生器中的情况。
     (实施方式 1) 图 1A 以及图 1B 是表示本发明的实施方式 1 中的筒型气体发生器的外观构造的附图, 图 1A 是主视图, 图 1B 是右侧视图。图 2 是表示本实施方式中的筒型气体发生器的内部构 造的附图, 是沿着图 1A 以及图 1B 中所示的Ⅱ - Ⅱ线的示意剖视图。以下, 参照这些图 1A、 图 1B 以及图 2 对本实施方式中的筒型气体发生器的外观构造以及内部构造进行说明。
     如图 1A、 图 1B 以及图 2 所示, 本实施方式中的筒型气体发生器 1A 包括具有长条 圆柱状的外形、 轴向的两端封闭而成的作为外壳部件的壳体。作为外壳部件的壳体含有具 有周壁部 11 和底壁部 12 的轴向的一侧被封闭的有底圆筒状的第 1 壳体部件 10, 以及沿着 与第 1 壳体部件 10 的轴向同方向延伸的贯通部 23 的筒状的第 2 壳体部件 (电爆管保持器) 20。第 2 壳体部件 20 具有用于后述的铆接固定在其外周面的规定位置上的槽 21, 该槽 21 在第 2 壳体部件 20 的外周面上沿着圆周方向延伸地形成为环状。另外, 在本实施方式中的 筒型气体发生器 1A 中, 构成为第 1 壳体部件 10 的外径与第 2 壳体部件 20 的外径相同。
     第 2 壳体部件 20 固定在第 1 壳体部件 10 上, 且封闭第 1 壳体部件 10 的开口端。 具体地说, 在第 2 壳体部件 20 的一部分内插在了第 1 壳体部件 10 的开口端中的状态下, 通 过使与设在该第 2 壳体部件 20 的外周面上的槽 21 相对应的部分的第 1 壳体部件 10 的周 壁部 11 朝向径向内侧缩径而卡合在该槽 21 中, 第 2 壳体部件 20 相对于第 1 壳体部件 10 铆接固定。这样一来, 壳体轴向的一端部由第 2 壳体部件 20 构成, 壳体轴向的另一端部由 第 1 壳体部件 10 的底壁部 12 构成。
     该铆接固定是使第 1 壳体部件 10 的周壁部 11 朝向径向内侧均等地缩径的被称为 八方铆接的铆接固定。通过进行该八方铆接, 铆接部 14 设在第 1 壳体部件 10 的周壁部 11 上。
     第 1 壳体部件 10 既可以由不锈钢或钢铁, 铝合金, 不锈钢合金等金属制的部件构 成, 也可以由通过对以 SPCC 或 SPCD、 SPCE 为代表的轧钢板进行压力加工而成形为有底圆筒 状的金属制的压力成形品, 或者对以 STKM 为代表的电焊钢管 (碳素钢管) 的轴向端部的一侧 进行闭合处理而成形为有底圆筒状的金属制的成形品, 或者对以 SWCH 为代表的碳素钢进 行冷压而成形为有底圆筒状的成形品构成。特别是, 在由轧钢板的压力成形品或电焊钢管 的成形品构成第 1 壳体部件 10 的情况下, 与使用了不锈钢或钢铁等金属制的部件的情况相 比, 能够廉价且容易地形成第 1 壳体部件 10, 同时能够大幅度地轻量化。另一方面, 第2壳 体部件 20 由不锈钢或钢铁, 铝合金, 不锈钢合金等金属制的部件构成。
     在由第 1 壳体部件 10 以及第 2 壳体部件 20 构成的壳体的内部空间中配置有分隔 部件 40。 该分隔部件 40 将壳体的内部空间在轴向上分隔成动作气体生成室和过滤器室。 动 作气体生成室位于壳体轴向的大致中央部, 内部收容有后述的第 1 密闭容器 80 的一部分。 过滤器室位于壳体轴向的另一端部一侧 (即第 1 壳体部件 10 的底壁部 12 一侧) , 内部收容 有后述的过滤器 70。 如图 2 所示, 在壳体部件轴向的一端部 (即靠近第 2 壳体部件 20 的部分) 上, 配置 有作为点火机构的点火器 (电爆管) 30 以及引火药 (增强剂) 61。作为点火机构的点火器 30 以及引火药 61 用于产生使后述的粒状的气体发生剂 62 燃烧的火焰, 其中的引火药 61 收容 在第 2 密闭容器 90 中。该点火器 30 以及第 2 密闭容器 90 所收容的部分的壳体的内部空 间相当于点火室。即, 点火室位于壳体轴向上靠近一端部的位置, 由第 1 壳体部件 10 的周 壁部 11, 第 2 壳体部件 20, 和后述的第 1 密闭容器 80 限定。
     点火器 30 内插在第 2 壳体部件 20 的贯通部 23 中并铆接固定。更详细地说, 第2 壳体部件 20 在面对壳体的内部空间一侧的端部具有铆接部 24, 通过在点火器 30 内插在贯 通部 23 中并顶在第 2 壳体部件 20 上的状态铆接该铆接部 24, 点火器 30 被第 2 壳体部件 20 夹持, 点火器 30 固定在第 2 壳体部件 20 上。
     点火器 30 是用于产生火焰的点火装置, 含有基部 31, 点火部 32, 和端子销 33。基 部 31 是通过一对端子销 33 插入其中而对其进行保持的部位, 与点火部 32 邻接地设置。点 火部 32 在其内部含有动作时点燃的点火药, 和用于使该点火药燃烧的电阻器。端子销 33 为了使点火药点燃而与点火部 32 相连。
     更详细地说, 在点火器 30 中, 由基部 31 保持的一对端子销 33 插入点火部 32 内, 连 结其前端地安装有电阻器 (电桥标准导线) , 点火药在点火部 32 内填充成包围该电阻器或者 与该电阻器相接。 作为电阻器, 一般利用镍铬合金线或含有铂以及钨的合金制的电阻线等, 作为点火药, 一般利用 ZPP(锆、 过氯酸钾) 、 ZWPP(锆、 钨、 过氯酸钾) 、 收敛酸铅等。而且, 包 围点火部 32 的电爆管杯一般是金属制或塑料制的。
     在检测到碰撞之际, 规定量的电流经由端子销 33 在电阻器中流动。通过规定量的 电流在电阻器中流动, 在电阻器中产生焦耳热, 点火药受到该热而开始燃烧。 燃烧所产生的 高温的火焰使收纳点火药的电爆管杯破裂。从电流在电阻器中流动到点火器 30 动作为止 的时间在电阻器利用了镍铬合金线的情况下为 3 毫秒以下。
     如上所述, 引火药 61 收容在第 2 密闭容器 90 中。第 2 密闭容器 90 含有有底筒状 的杯部 91, 和封闭该杯部 91 的开口的盖部 92, 与点火器 30 相连地内插在靠近壳体轴向的 一端部的位置上。杯部 91 和盖部 92 组合并接合在第 2 密闭容器 90 中, 这样一来, 形成在 第 2 密闭容器 90 的内部的收容空间 93 与该第 2 密闭容器 90 的外部气密地封堵。作为杯 部 91 以及盖部 92, 利用对铜或铝, 铜合金, 铝合金等金属薄板 (箔) 进行压力加工等而成形 出的金属部件、 通过进行注射成形或片材成形等而形成的树脂部件等。而且, 在杯部 91 和 盖部 92 的接合上适合使用钎焊或粘接, 卷边接缝 (铆接) 等。如果在该接合之际使用密封 剂, 则还能够进一步提高气密性。
     引火药 61 是通过点火器 30 动作而产生的火焰来点燃, 通过燃烧而产生热粒子。 作 为引火药 61, 需要能够可靠地使后述的气体发生剂 62 开始燃烧, 一般来说, 使用以 B/KNO3、 B/NaNO3、 Sr(NO3) 2 等为代表的金属粉 / 氧化剂构成的组成物等燃烧速度比后述的气体发 生剂 62 还快且高发热性的组成物。引火药 61 利用粉状的物质或通过粘合剂而成形为规定 的形状的物质等。 作为通过粘合剂成形出的引火药的形状, 例如是颗粒状, 圆柱状, 片状, 球 状, 单孔圆筒状, 多孔圆筒状, 圆片状等形状。另外, 作为粘合剂, 虽然能够合适地使用水滑 石类、 硝酸纤维素等, 但并不是特别限定于这些。 另外, 在第 2 密闭容器 90 与第 2 壳体部件 20 之间且围着点火器 30 的点火部 32 的部分的点火室中配置有第 1 缓冲材料 63。该第 1 缓冲材料 63 是将后述的各种内部结构 零件在壳体的内部沿着轴向固定的部件, 同时也是用于吸收上述的内部结构零件的轴向长 度的差异的部件。因此, 第 1 缓冲材料 63 由上述的第 2 密闭容器 90 和第 2 壳体部件 20 在 壳体的轴向上夹入而固定。作为第 1 缓冲材料 63, 例如能够利用陶瓷纤维的成形体或发泡 硅等。
     如图 2 所示, 在壳体的内部空间中与配置了第 2 密闭容器 90 的空间邻接的空间中 配置有第 1 密闭容器 80。第 1 密闭容器 80 含有有底筒状的杯部 81, 和封闭该杯部 81 的开 口的盖部 82, 内插在壳体的内部空间中。通过杯部 81 和盖部 82 组装并接合在第 1 密闭容 器 80 中, 形成在第 1 密闭容器 80 内部的收容空间 83 与该第 1 密闭容器 80 的外部气密地 封堵。作为杯部 81 以及盖部 82, 利用对铜或铝, 铜合金, 铝合金等金属薄板 (箔) 进行压力 加工等而成形出的金属部件、 通过进行注射成形或片材成形等而形成的树脂部件等。 而且, 在杯部 81 和盖部 82 的接合上适合使用钎焊或粘接, 卷边接缝 (铆接) 等。如果在该接合之 际使用密封剂, 则还能够进一步提高气密性。
     在第 1 密闭容器 80 的收容空间 83 中收容有粒状的气体发生剂 62, 区分部件 50, 和第 2 缓冲材料 64。更详细地说, 在第 1 密闭容器 80 上的第 2 密闭容器 90 所在的一侧的 端部部分配置有第 2 缓冲材料 64, 在除了配置了该第 2 缓冲材料 64 的部分之外的部分配置 有气体发生剂 62 以及区分部件 50。在此, 上述的动作气体生成室由被第 1 壳体部件 10 的 周壁部 11、 第 2 缓冲材料 64、 后述的分隔部件 40 限定的空间构成。并且该动作气体生成室 被其内部收容的上述区分部件 50 进一步区分成两个空间。
     区分部件 50 由内部具有中空部 55 且一端被封闭的有底筒状的部件构成, 具有凸 缘部 51, 作为筒状部的圆筒状部 52, 和底部 53。凸缘部 51 配置在第 1 密闭容器 80 上的分 隔部件 40 一侧的端部, 凸缘部 51 以及分隔部件 40 一侧的主面与第 1 密闭容器 80 的分隔 部件 40 一侧的轴向端部 81a 抵接。圆筒状部 52 具有沿着壳体的轴向以内径以及外径为一
     定的直管状延伸的圆筒形状, 从凸缘部 51 的内周缘上连续地伸出, 从第 1 密闭容器 80 上的 区分部件 40 一侧的端部朝向收容空间 83 的内部突出。底部 53 从圆筒状部 52 上连续地伸 出, 封闭圆筒状部 52 上的点火器 30 一侧的端部。另外, 底部 53 离开第 1 密闭容器 80 上的 点火器 30 一侧的端部规定的距离地配置, 具有随着朝向点火器 30 一侧其外形逐渐缩小的 尖细形状。在此, 区分部件 50 的轴向长度优选地是第 1 密闭容器 80 的轴向长度的 40%以 上且 90%以下, 更优选地是第 1 密闭容器 80 的轴向长度的 70%以上且 85%以下。
     在此, 在动作气体生成室中除了区分部件 50 的中空部 55 以外的部分收容有上述 粒状的气体发生剂 62。即, 气体发生剂 62 填充在动作气体生成室中沿着径向围着区分部 件 50 的圆筒状部 52 以及底部 53 的空间, 和沿着壳体的轴向位于区分部件 50 与第 2 缓冲 材料 64 之间的空间中。
     粒状的气体发生剂 62 通过被点火器 30 点燃的引火药 61 的每一个燃烧而产生的 热粒子点燃, 通过燃烧而产生气体。粒状的气体发生剂 62 一般是作为含有燃料、 氧化剂和 添加剂的成形体形成的。 作为燃料, 例如适于使用三唑电介体, 四唑电介体, 胍电介体, 偶氮 甲酰胺电介体, 肼电介体等或者这些的组合。具体地说, 例如适于利用硝基胍或硝酸胍, 氰 基胍, 氨基四唑等。 而且, 作为氧化剂, 例如适于使用碱式硝酸铜等碱式硝酸盐、 或者从高氯 酸铵或过氯酸钾等高氯酸盐, 碱金属、 碱土类金属、 过渡性金属、 氨中选出的含有阳离子的 硝酸盐等。作为硝酸盐, 例如适于使用硝酸钠, 硝酸钾等。而且, 作为添加剂, 可列举出粘合 剂或渣料形成剂, 燃烧调整剂等。 作为粘合剂, 例如适于使用羟丙甲基纤维束等纤维束电介 体、 羟甲基纤维束的金属盐、 硬脂酸盐等有机粘合剂、 合成羟基己六醇、 酸性白土等无机粘 合剂。作为渣料成形剂, 适于利用氮化硅、 二氧化硅、 酸性白土等。而且, 作为燃烧调整剂, 适于利用金属氧化物、 硅铁合金、 活性炭、 石墨等。
     作为成形为粒状的每个气体发生剂 62 的成形体的形状, 列举出颗粒状、 圆片状、 圆柱状、 盘状等各种形状。而且, 也可以利用有孔状 (例如单孔筒形状或多孔筒形状等) 的成 形体。这些形状优选地是根据组装筒型气体发生器 1A 的安全气囊装置的规格适当选择, 例 如优选地是选择在气体发生剂 62 燃烧时动作气体的生成速度在时间上变化的形状等选择 与规格相对应的最佳的形状。而且, 除了气体发生剂 62 的形状之外, 优选地是考虑了气体 发生剂 62 的线燃烧速度、 压力指数等后适当选择成形体的尺寸及填充量。
     另外, 作为粒状的气体发生剂 62, 利用作为燃料而含有胍系化合物, 作为氧化剂而 含有碱式硝酸铜的气体发生剂特别合适。 如果利用该含有胍系化合物和碱式硝酸铜的气体 发生剂, 则不会产生迭氮化合物那种毒性的问题, 而且燃烧温度比渣料的熔点低, 能够使渣 料为固形物而有效地由过滤器 70 捕捉。
     在区分部件 50 的圆筒状部 52 上, 沿着圆周方向以及轴向设有多个第 1 连通孔 54。 第 1 连通孔 54 是用于使收容了粒状的气体发生剂 62 的空间与区分部件 50 的中空部 55 连 通的孔, 由直径比粒状的气体发生剂 62 小的孔构成。另外, 第 1 连通孔 54 优选地是不设在 区分部件 50 的底部 53 上。这是由于如果在该底部 53 上存在第 1 连通孔 54, 则在筒型气体 发生器 1A 动作时该孔将被封闭, 容易在性能上产生差异的缘故。
     区分部件 50 作为用于在动作时在上述中空部 55 与收容有粒状的气体发生剂 62 的空间之间产生压力差的压力隔壁发挥作用, 由具有规定强度的部件构成。 具体地说, 区分 部件 50 例如由不锈钢或钢铁、 铝合金、 不锈钢合金等金属制的部件构成。第 2 缓冲材料 64 相当于用于防止由成形体构成的气体发生剂 62 因振动等而破碎 的破碎防止部件, 适于利用陶瓷纤维的成形体或发泡硅等。该第 2 缓冲材料 64 在动作时因 引火药 61 的燃烧而开口或分断, 在某些情况下烧毁。
     如上所述, 在本实施方式中的筒型气体发生器 1A 中, 由于是将气体发生剂 62 和引 火药 61 分别封入第 1 密闭容器 80 和第 2 密闭容器 90 中的结构, 所以通过预先将这些药剂 封入密闭容器中, 不仅筒型气体发生器 1A 的组装作业容易, 而且也无需在壳体上施加另外 的气密处理, 能够减少零件数量及使结构简单化。 而且, 在本实施方式中的筒型气体发生器 1A 中, 由于是除了气体发生剂 62 以外还将区分部件 50 以及第 2 缓冲材料 64 预先封入第 1 密闭容器 80 中的结构, 所以也获得了筒型气体发生器 1A 的组装作业更容易的效果。
     如图 2 所示, 分隔部件 40 将壳体的内部空间沿着轴向分隔成动作气体生成室和过 滤器室。分隔部件 40 在壳体的内部空间中配置成与上述的第 1 密闭容器 80 相接, 具有环 状板部 41, 筒状突出部 42, 和第 2 连通孔 43。环状板部 41 配置成与第 1 密闭容器 80 相接 且与壳体的轴正交。筒状突出部 42 从环状板部 41 的内周缘上连续地伸出, 向远离上述第 1 密闭容器 80 的方向突出。第 2 连通孔 43 是由筒状突出部 42 限定、 用于连通区分部件 50 的中空部 55 与过滤器室的孔。
     分隔部件 40 相对于壳体嵌合或者松嵌, 在壳体上未施加用于固定该分隔部件 40 的铆接加工。在此, 嵌合包括所谓压入固定, 是指以分隔部件 40 的环状板部 41 的外周端与 壳体的内周面相接触的状态安装的状态。而且, 松嵌是指分隔部件 40 的环状板部 41 的外 周端与壳体的内周面不必在整周上相接触, 而是以微小的间隙 (空隙) 内插的状态。另外, 从 组装的容易化的观点考虑, 优选地是将分隔部件 40 松嵌在壳体中。
     分隔部件 40 安装在后述的过滤器 70 上的动作气体生成室一侧的端部上, 被过滤 器 70 和收容上述粒状的气体发生剂 62 的第 1 密闭容器 80 夹在中间地支撑在壳体的内部。 另外, 分隔部件 40 例如是通过对不锈钢或钢铁、 铝合金、 不锈钢合金等金属制的板状部件 进行压力加工等而形成的。
     如图 2 所示, 在由第 1 壳体部件 10 的周壁部 11 以及底壁部 12, 分隔部件 40 限定 的过滤器室中配置有过滤器 70。 收容有过滤器 70 的过滤器室经由分隔部件 40 与动作气体 生成室邻接地设置, 位于与动作气体生成室相比在壳体的另一端部一侧 (即第 1 壳体部件 10 的底壁部 12 一侧) 。
     过滤器 70 由具有沿着与壳体的轴向相同的方向伸出且达到其轴向端面的中空连 通部 71 的圆筒状的部件构成, 其轴向的动作气体生成室一侧的端面与分隔部件 40 抵接, 另 一个端面与第 1 壳体部件 10 的底壁部 12 抵接。而且, 过滤器 70 的外周面与第 1 壳体部件 10 的周壁部 11 的内周面抵接。若利用这样的由圆筒状的部件构成的过滤器 70, 则在动作 时将在过滤器室中流动的动作气体的流动阻力抑制得较低, 能够实现高效的动作气体的流 动。
     过滤器 70 例如利用将不锈钢或钢铁等金属线材卷绕并烧结的结构, 通过对织入 了金属线材的网材进行压力加工而压紧的结构, 或者卷绕开孔金属板的结构等。 在此, 作为 网材, 具体地说利用针织编织的金属网或平编织的金属网, 织缩编织的金属线材的集合体 等。而且, 作为开孔金属板, 例如利用在金属板上加入锯齿状的切缝、 同时将其扩张而形成 孔, 且加工成网眼状的网眼钢板、 在金属板上穿孔、 同时通过将此时在孔的周缘产生的毛刺压扁而将其平坦化的钩状金属等。在这种情况下, 形成的孔的大小及形状能够根据需要而 适当变更, 也可以在同一金属板上含有不同大小及形状的孔。另外, 作为金属板, 例如能够 适于使用钢板 (低碳钢) 或不锈钢板, 而且也可以利用铝、 铜、 钛、 镍或这些合金等非铁金属 板。
     通过这样将金属线材或网材卷绕成圆筒状并烧结或压紧而形成的过滤器、 由网眼 钢板以及钩状金属构成的过滤器在其内部含有空隙, 能够使上述动作气体流动。过滤器 70 在由动作气体生成室所生成的动作气体通过该过滤器 70 中之际, 作为通过夺取该动作气 体所具有的高温热而对其进行冷却的冷却机构发挥作用, 同时也作为除去动作气体中含有 的残渣 (渣料) 等的除去机构发挥作用。
     如图 2 所示, 在限定过滤器室的部分的第 1 壳体部件 10 的周壁部 11 上设有气体 喷出口 13。 该气体喷出口 13 是将在筒型气体发生器 1A 的内部所生成的动作气体向外部放 出的孔, 沿着第 1 壳体部件 10 的周壁部 11 的圆周方向以及轴向设有多个。
     另外, 在筒型气体发生器 1A 的配置了第 2 壳体部件 20 一侧的端部上安装有凹型 连接器 (未图示) 。更详细地说, 在设于第 2 壳体部件 20 上的凹部 22 中安装有凹型连接器, 传递来自与筒型气体发生器 1A 另外设置的碰撞检测传感器的信号的线束的凸型连接器连 接在其上。在凹型连接器上, 根据需要安装短路夹 (未图示) 。该短路夹是为了防止在筒型 气体发生器 1A 的运送时等因静电放电等而筒型气体发生器 1A 误动作而安装的, 在向安全 气囊装置上组装的阶段, 通过线束的凸型连接器插入凹型连接器中, 向其端子销 33 的接触 被接触。 以下, 参照图 2 对以上所说明的筒型气体发生器 1A 动作时的动作进行说明。在搭 载有组装了本实施方式中的筒型气体发生器 1A 的安全气囊装置的车辆发生了碰撞的情况 下, 通过车辆中另外设置的碰撞检测机构检测碰撞, 点火器 30 基于此而动作。当点火器 30 动作时, 点火药燃烧, 点火部 32 内的压力上升, 点火部 32 因此而破裂, 火焰向点火部 32 的 外部流出。
     在点火部 32 破裂后, 围着点火部 32 的空间的温度和压力上升, 第 2 密闭容器 90 熔融或者破裂。这样一来, 收容在第 2 密闭容器 90 内的引火药 61 被点火器 30 动作而产生 的火焰点燃而燃烧, 产生大量的热粒子。 所产生的大量热粒子使第 1 密闭容器 80 的盖部 82 熔融或者破裂, 将第 2 缓冲材料 64 开口或分断而向动作气体生成室流入。
     向动作气体生成室流入的热粒子从点火器 30 所在的一侧开始依次点燃粒状的气 体发生剂 62 使其燃烧, 生成大量的动作气体。这样生成的动作气体穿过设在区分部件 50 上的第 1 连通孔 54 向区分部件 50 的中空部 55 流入, 使位于之前的第 1 密闭容器 80 的杯 部 81 的轴向端部 81a 破裂, 经由设在分隔部件 40 上的第 2 连通孔 43 向过滤器室流入。
     流入过滤器室中的动作气体经由过滤器 70 的中空连通部 71 内进入过滤器 70, 通 过穿过该过滤器 70 中而冷却到规定的温度, 从气体喷出口 13 向筒型气体发生器 1A 的外部 喷出。从气体喷出口 13 喷出的动作气体被引导到安全气囊的内部而使安全气囊膨胀以及 展开。
     在本实施方式中的筒型气体发生器 1A 中, 在粒状的气体发生剂 62 的燃烧初期阶 段, 位于区分部件 50 与第 2 缓冲材料 64 之间的部分的气体发生剂 62 从第 2 缓冲材料 64 所在的一侧开始依次燃烧, 动作气体生成室中除了中空部 55 之外的部分的内压急剧上升,
     达到程度相当于适合气体发生剂 62 燃烧的高的压力, 因此促进了气体发生剂 62 的燃烧, 动 作气体的流动不会被未燃烧的气体发生剂 62 阻碍, 动作气体经由设在区分部件 50 的圆筒 状部 52 上的第 1 连通孔 54 向中空部 55 流入。
     并且在粒状的气体发生器 62 燃烧的初期阶段结束后, 位于围着区分部件 50 的圆 筒状部 52 的空间中的部分的气体发生剂 62 从第 2 缓冲材料 64 所在的一侧开始依次燃烧, 维持动作气体生成室中除了中空部 55 以外的部分的内压, 稳定地生成动作气体, 所生成的 动作气体的流动不会被未燃烧的气体发生剂 62 阻碍, 动作气体经由设在区分部件 50 的圆 筒状部 52 上的第 1 连通孔 54 向中空部 55 流入。
     另外, 在此, 在本实施方式中的筒型气体发生器 1A 中, 动作气体生成室与过滤器 室配置成沿着壳体的轴向排列。通过这样构成, 气体发生剂 62 燃烧所生成的动作气体经由 设在区分部件 50 上的第 1 连通孔 54 流入区分部件 50 的中空部 55 中而集中, 之后, 从区分 部件 50 上的过滤器室一侧的轴向端部经由分隔部件 40 的第 2 连通孔 43 流入过滤器室。 因 此, 如果是具备该筒型气体发生器 1A 的安全气囊装置, 则能够使安全气囊渐进地膨胀。
     这样, 在本实施方式中的筒型气体发生器 1A 中, 气体发生剂 62 收容在区分部件 50 中除了中空部 55 以外的部分的动作气体生成室中, 由点火器 30 点燃的气体发生剂 62 依次 从点火器 30 一侧开始燃烧而生成动作气体, 同时所生成的动作气体迅速地经由设在区分 部件 50 上的第 1 连通孔 54 流入区分部件 50 的中空部 55 中并向过滤器室移动。因此, 通 过采用该结构, 能够将未燃烧的气体发生剂成为动作气体的流动阻力的情况防患于未然, 成为输出特性优良的筒型气体发生器。 即, 通过采用本实施方式中的筒型气体发生剂 1A 的这种结构, 能够通过区分部件 50 的功能将未燃烧的气体发生剂成为动作气体的流动阻力的情况防患于未然, 得到稳定的 输出特性的筒型气体发生器。
     在此, 为了成为上述那样输出特性稳定的筒型气体发生器, 位于区分部件 50 与第 2 缓冲材料 64 之间的部分的气体发生剂 62 的填充量高精度地调整成规定的量非常重要。 这是由于在该部分的气体发生剂 62 的填充量不足的情况下, 在燃烧的初期阶段动作气体 生成室中除了中空部 55 以外的部分的内压上升不再充分, 其结果将对之后的气体发生剂 62 的燃烧状态产生很大影响, 作为结果而得不到所希望的输出特性的缘故。
     因此, 在本实施方式中的筒型气体发生器 1A 中, 如上所述, 由具有第 1 连通孔 54 的圆筒状部 52 和不具有第 1 连通孔 54 的底部 53 构成区分部件 50, 并且该底部 53 具有随 着朝向点火器 30 一侧而其外形逐渐变小的尖细形状, 所以能够将位于区分部件 50 与第 2 缓冲材料 64 之间的部分的气体发生剂 62 的填充量高精度地调整成规定的量。以下对这一 点详细地进行说明。
     图 3A 至图 3C 是表示制造本实施方式中的筒型气体发生器之际气体发生剂向第 1 密闭容器中填充以及封堵工序的示意剖视图。
     如图 2 以及图 3A 至图 3C 所示, 在本实施方式中的筒型气体发生器 1A 中, 区分部 件 50 的底部 53 构成为随着朝向点火器 30 一侧 (图 3C 所示的组件中盖部 82 一侧) 其外形 逐渐变小的尖细形状, 在此, 底部 53 的外表面构成为具有半球面形状。 另外, 该底部 53 的外 表面无需一定是半球面形状, 只要是底部 53 的外形为尖细的形状, 则可以是任意的形状。
     在将粒状的气体发生剂 62 填充在第 1 密闭容器 80 的收容空间 83 中并进行封堵
     的工序中, 首先如图 3A 所示, 准备成为第 1 密闭容器 80 的一部分的有底筒状的杯部 81, 将 区分部件 50 配置在该杯部 81 的内部。更详细地说, 将区分部件 50 经由杯部 81 的开口而 插入杯部 81 的内部, 使区分部件 50 的凸缘部 51 与作为杯部 81 的底壁的轴向端部 81a 抵 接。
     接着, 如图 3B 所示, 将粒状的气体发生剂 62 向杯部 81 内部的空间仅填充规定量。 此时, 导入到杯部 81 的内部的气体发生剂 62 碰到区分部件 50 的底部 53 而顺畅地下落到 杯部 81 的内部且围着区分部件 50 的空间并收容在该空间中。在该空间被粒状的气体发生 剂 62 填充后, 粒状的气体发生剂 62 进一步填充到覆盖该空间以及底部 53。 在此, 更优选地 是通过轻轻振动杯部 81, 使粒状的气体发生剂 62 更加无间隙地紧密填充。但是, 在对杯部 81 施加振动的情况下, 需要进行粒状的气体发生剂 62 不破碎的程度的十分轻微振动。
     接着, 如图 3C 所示, 将第 2 缓冲材料 64 放置成覆盖所填充的粒状的气体发生剂 62 的上表面, 进而在其上组装盖部 82 以封闭杯部 81 的开口, 将杯部 81 的内部空间与外部气 密地封堵。盖部 82 相对于该杯部 81 的组装如上所述, 适于使用钎焊或粘接、 卷边接缝 (铆 接) 等, 更优选地是使用采用密封剂的接合。
     此时, 为了在粒状的气体发生剂 62 的密度上不产生偏差地将粒状的气体发生剂 62 更为紧密地填充在收容空间 83 中, 使盖部 82 为以图中所示的负载 F1 按压在杯部 81 上 的状态进行组装。此时, 施加在粒状的气体发生剂 62 上的负载 F1 由于区分部件 50 的底部 53 具有平滑的曲面形状而沿着该曲面如图所示地分散, 成为在沿着该曲面的方向施加的负 载 F2, 因此, 位于该底部 53 上的气体发生剂 62 顺畅地沿着该端面移动。因此, 位于区分部 件 50 与第 2 缓冲材料 64 之间的部分的气体发生剂 62 的填充量能够高精度地调整成为规 定的量。而且, 这样一来也能够防止负载不合理地施加在粒状的气体发生剂 62 上, 抑制气 体发生剂 62 被盖部 82 和底部 53 夹在中间而破碎。
     这样, 如果是本实施方式中的筒型气体发生器 1A, 则位于区分部件 50 与第 2 缓冲 材料 64 之间的部分的气体发生剂 62 的填充量能够高精度地调整成为规定的量, 而且还能 够防止在填充之际气体发生剂 62 破碎, 其结果能够成为稳定地得到了所希望的输出特性 的小型轻量化的筒型气体发生器。
     而且, 在本实施方式中的筒型气体发生器 1A 中, 如上所述, 分别将气体发生剂 62 封入第 1 密闭容器 80 中, 将引火药 61 封入第 2 密闭容器 90 中, 因此, 不再需要对壳体实施 用于气密地封堵气体发生剂 62 及引火药 62 的密封处理, 能够相应地使壳体的外形小型化 (即小直径化及短尺寸化) , 或者能够相应地增加壳体的壁厚以提高耐压性, 作为结果, 能够 成为有利于小型化及高耐压化的构造的筒型气体发生器。
     而且, 通过成为本实施方式中的筒型气体发生器 1A, 由于在动作气体生成室中所 生成的动作气体不向壳体的轴向流动而是向壳体的径向流动, 经由第 1 连通孔 54 流入区分 部件 50 的中空部 55, 进而, 其后经由第 2 连通孔 43 流入过滤器室, 所以大幅度地抑制了燃 烧中的气体发生剂或未燃烧的气体发生剂因动作气体的流动而被破坏所产生的固形残渣 的产生量, 而且抑制了其固形残渣因动作气体的流动被进一步破坏而成为微小的残渣, 作 为结果, 大幅度减轻了相对于过滤器 70 的负载。因此, 由于区分部件 50 也具备将残渣的一 部分除去的过滤器的作用, 所以能够使过滤器 70 小型化, 成为小型且轻量的筒型气体发生 器。另外, 在上述本实施方式中的筒型气体发生器 1A 中, 参照图 2, 在设第 1 壳体部件 10 的外径为 R1 的情况下, 优选地是该 R1 充分满足 15mm ≤ R1 ≤ 22mm 的条件, 更优选地是 充分满足 15mm ≤ R1 ≤ 20mm 的条件。
     而且, 在上述本实施方式的筒型气体发生器 1A 中, 参照图 2, 在将从区分部件 50 的 底部 53 上的点火器 30 一侧的端部到动作气体生成室上的点火器 30 一侧的端部 (即与第 2 缓冲材料 64 相接的部分) 的距离 (该距离是相当于区分部件 50 所不在的部分的动作气体生 成室的轴向长度, 气体发生剂 62 沿着动作气体生成室的径向填充在整体上的部分的轴向 长度) 设为 L2, 将动作气体生成室的直径 (更详细地说是动作气体生成室中填充有气体发生 剂 62 的部分的直径, 即第 1 密闭容器 80 的内径) 设为 R2 的情况下, 优选地是 L2 以及 R2 充 分满足 0.026 ≤ L2/R2 ≤ 0.71 的条件。
     而且, 在上述本实施方式中的筒型气体发生器 1A 中, 参照图 2, 在将区分部件 50 的 中空部 55 的直径、 即区分部件 50 的圆筒状部 52 的内径设为 R3 的情况下, 优选地是上述 R2 以及 R3 充分满足 0.28 ≤ R3/R2 ≤ 0.54 的条件。
     除此之外, 在本实施方式的筒型气体发生器 1A 中, 参照图 2, 在将从区分部件 50 上 底部 53 与圆筒状部 52 的边界部分到底部 53 上的点火器 30 一侧的端部的距离设为 L1 的情 况下, 优选地是该 L1 充分满足 0mm     通过充分满足这些条件, 即使在使用对轧钢板的压力成形品或者电焊钢管进行了 闭合处理后的成形品构成第 1 壳体部件 10 的情况下, 也能够促进气体发生剂 62 的燃烧, 防 止壳体的破损。具体地说, 通过充分满足上述条件, 在上述气体发生剂 62 燃烧的初期阶段 或该初期阶段结束后, 能够将动作气体生成室的内压维持在适当, 同时能够抑制由对轧钢 板的压力成形品或者电焊钢管进行闭合处理后的成形品构成的第 1 壳体部件 10 的无意识 变形。因此, 即使在利用对轧钢板的压力成形品或者电焊钢管进行了闭合处理后的成形品 构成第 1 壳体部件 10 的情况下, 通过充分满足上述条件也能够成为得到了所希望的输出特 性、 谋求了小型轻量化的筒型气体发生器。
     在此, 在上述 L2 以及 R2 为 L2/R2<0.026 的情况下, 实验上确认了动作气体生成室 的最大内压小于 35MPa, 在这种情况下, 有可能未得到所希望的气体输出, 安全气囊的膨胀 以及展开不充分。 另一方面, 在上述 L2 以及 R2 为 0.71     而且, 在上述 R3 以及 R2 为 R3/R2<0.28 的情况下, 实验上确认了动作气体生成室 的最大内压超过了 90MPa, 在这种情况下, 有可能在由对轧钢板的压力成形品或者电焊钢管 进行了闭合处理后的成形品构成的第 1 壳体部件 10 上产生无意识的变形。另一方面, 在 上述 R3 以及 R2 为 0.54     而且, 通过成为以上所说明的那样的筒型气体发生器 1A, 如上所述, 动作气体生成 室的内压在动作时能够适当地维持在促进气体发生剂 62 的燃烧的高压环境下, 同时能够 适当降低气体发生剂 62 燃烧之际所产生的残渣的量。这样一来, 在本实施方式中的筒型气 体发生器 1A 中, 能够使分隔部件 40 的形状和组装构造以及过滤器 70 的形状以及组装构造 为以下所说明的构造。
     即, 在本实施方式中的筒型气体发生器 1A 中, 随着分隔出动作气生成室和过滤器 室的分隔部件 40 的筒状突出部 42 构成为随着远离环状板部 41 (随着远离动作气体生成室 而朝向筒状突出部 42 的前端) , 由该筒状突出部 42 限定的第 2 连通孔 43 的开口面积减小 地逐渐缩径的圆锥板状的形状, 同时相对于壳体嵌合或者松嵌。 因此, 不对第 1 壳体部件 10 施加用于固定该分隔部件 40 的铆接加工。因此, 在本实施方式中的筒型气体发生器 1A 中, 其组装与以往相比容易进行。以下, 对在即使采用了这种组装构造的情况下分隔部件 40 也 充分发挥作用的理由进行说明。
     图 4A 以及图 4B 是将本实施方式中的筒型气体发生器的设置了分隔部件的位置附 近放大后的主要部分放大剖视图, 图 4A 是表示筒型气体发生器的动作刚开始后的状态的 附图, 图 4B 是表示动作开始并经过了规定时间后的状态。另外, 在图 4A 以及图 4B 中, 以箭 头 G 表示动作气体的流动方向, 同时省略了动作气体生成室的具体的图示。
     如图 4A 所示, 在筒型气体发生器 1A 的动作刚开始后, 承受在动作气体生成室中所 生成的高温高压的动作气体的推力 (即随着动作气体生成室的内压的上升而产生的压力) , 分隔部件 40 的环状板部 41 承受沿着壳体的轴向朝向过滤器 70 一侧的力 (图中箭头 A 所示 的力) 。这样一来, 分隔部件 40 的环状板部 41 开始朝向过滤器 70 一侧移动, 被分隔部件 40 和壳体包围的过滤器 70 的部分 (即过滤器 70 上的动作气体生成室一侧的端部附近部分, 图 中所示区域 B1 所包含的部分) 通过该环状板部 41 移动而沿着壳体的轴向被压缩。
     在此, 在过滤器 70 的内部, 由于过滤器 70 是对金属线材或者编入了金属线材的钢 材进行卷绕或是进行压力加工而压紧地形成的, 所以存在空隙, 但如图 4B 所示, 该空隙的 容积随着上述环状板部 41 的移动而减少, 成为金属线材在该区域 B1 中进一步紧密填充的 状态, 同时产生沿着壳体的径向扩张而将分隔部件 40 的筒状突出部 42 沿着壳体的径向朝 向内侧推入的力。但是, 由于在分隔部件 40 的筒状突出部 42 上施加有上述随着内压的上 升而沿着壳体的大致径向朝向外侧的力 (图中箭头 C 所示的力) , 所以将分隔部件 40 的筒状 突出部 42 沿着壳体的径向朝向内侧推入的力抵消不了该力, 其合力 (图中箭头 D 所示的力) 施加在壳体与过滤器 70 的接触部分 (图中所示的区域 E) 上。这样一来, 在该壳体与过滤器 70 的接触部分上产生摩擦力, 该摩擦力成为了抑制分隔部件 40 进一步朝向过滤器 70 一侧 移动的制动力。
     在此, 由于上述反作用力 (图中箭头 D 所示的力) 成为朝向与壳体的径向以及轴向 相交叉的方向作用的力, 所以作为防止分隔部件 40 在壳体的大范围中移动的高制动力起 作用, 基于该制动力, 分隔部件 40 的移动量很小。因此, 通过分隔部件 40 可靠地保护了过 滤器 70, 能够防止过滤器 70 破损。而且, 由于分隔部件 40 的外缘与壳体的内周面压接触, 所以还能够可靠地防止动作气体经由该部分而不通过过滤器 70 地从气体喷出口 13 向壳体 的外部放出的所谓旁路现象。而且, 在本实施方式中的筒型气体发生器 1A 中, 分隔部件 40 的筒状突出部 42 构 成为仅覆盖过滤器 70 上的动作气体生成室一侧的端部附近。因此, 在位于图 4B 中所示的 区域 B2 的部分的过滤器 70 的内部维持了形成有充分的空隙的状态, 动作气体能够不受上 述分隔部件 40 的移动以及变形的影响地在该部分顺畅地流动。因此, 也不会有损于过滤器 70 具有的动作气体的冷却功能以及渣料收集功能。
     进而, 在本实施方式的筒型气体发生器 1A 中, 在将分隔部件 40 和过滤器 70 沿着 壳体的轴向投影到与该轴正交的面上的情况下, 过滤器 70 的投影区域的内缘不位于分隔 部件 40 的投影区域的内缘的内侧。即, 分隔部件 40 以及过滤器 70 的相对位置关系调节成 在从动作气体生成室一侧俯视分隔部件 40 以及过滤器 70 的情况下, 过滤器 70 完全被分隔 部件 40 盖住。由于通过这样构成, 穿过分隔部件 40 的第 2 连通孔 43 的高温高压的动作气 体沿着过滤器 70 的内周面流动, 所以能够大幅度降低动作气体直接吹到过滤器 70 上的比 例。
     另外, 在本实施方式中的筒型气体发生器 1A 中, 由于动作时分隔部件 40 由位于上 述区域 B1 中的部分的过滤器 70 保持, 所以无需将分隔部件 40 设计成仅通过该分隔部件 40 而能够耐受动作气体的推力, 与以往相比能够减小其厚度。 具体地说, 在考虑了一般的筒型 气体发生器的规格的情况下, 在利用钢铁材料作为分隔部件 40 的情况下使其厚度大致为 0.7mm 以上足以。
     如以上所说明的那样, 通过采用本实施方式中的筒型气体发生器 1A 那样的结构, 获得了不再需要为了分隔部件 40 的安装而对壳体实施铆接加工的效果, 和能够使分隔部 件 40 薄型化的效果。 因此, 在作为整体来看筒型气体发生器 1A 的情况下, 不会使性能降低, 能够小型轻量化。而且, 通过采用上述结构, 也不需要将分隔部件 40 铆接加工在壳体上的 作业, 能够降低制造成本。因此, 能够成为不会使性能降低而能够小型轻量化, 并且制造容 易的筒型气体发生器 1A。
     (实施例) 以下, 对为了验证本发明的效果而进行的验证试验的内容以及结果进行详细说明。 图5 是表示验证试验中使用的实施例所涉及的筒型气体发生器的结构的示意剖视图, 图 6 是表 示验证试验中使用的比较例所涉及的筒型气体发生器的结构的示意剖视图。首先, 参照图 5 以及图 6, 对验证试验中使用的样品的结构进行说明。
     如图 5 所示, 实施例所涉及的筒型气体发生器 1A 具有上述本发明的实施方式 1 所 示的构造。但是, 为了能够测定动作时动作气体生成室的内压, 在第 1 壳体部件 10 的规定 位置上安装有压力传感器 SE。在此, 作为压力传感器 SE, 使用应变计式的传感器, 该压力传 感器 SE 向第 1 壳体部件 10 上的安装是通过在第 1 壳体部件 10 的周壁部 11 的规定位置设 置开口部以及传感器安装端口 MP, 将压力传感器 SE 分别以封闭开口部的方式安装在传感 器安装端口 MP 上而进行的。这样一来, 成为了压力传感器 SE 的感压面面对动作气体生成 室的状态。
     在此, 在实施例所涉及的筒型气体发生器 1A 中, 作为第 1 壳体部件 10, 使用了对以 STKM 为代表的电焊钢管的轴向端部的一侧进行闭合处理而成的成形品。筒型气体发生器 1A 的轴向长度为 83mm。第 1 壳体部件 10 的轴向长度为 78mm, 第 1 壳体部件 10 的外径 R1 为 φ20mm, 动作气体生成室的直径 R2 为 φ16mm, 动作气体生成室的轴向长度为 40mm。而且, 从区分部件 50 的底部 53 和圆筒状部 52 的边界部分到底部 53 上的点火器 30 一侧的端 部的距离 L1 为 4.7mm, 从底部 53 上的点火器 30 一侧的端部到动作气体生成室上的点火器 30 一侧的端部的距离 L2 为 7mm。而且, 第 2 缓冲材料 64 的厚度为 1.5mm。区分部件 50 的 轴向长度为 31.5mm, 中空部 55 的直径 R3 为 φ6mm。在区分部件 50 的圆筒状部 52 上设有 合计 24 个第 1 连通孔 54, 作为其配置位置, 在圆筒状部 52 的圆周方向每一列设有 4 个第 1 连通孔, 该列在圆筒状部 52 的轴向上以 4.4mm 的间距排列 6 列。另外, 每一个第 1 连通孔 54 均为 φ2mm 的圆孔。
     作为向动作气体生成室中填充的气体发生剂 62, 使用了通过将硝酸胍 56.2 重量 份, 碱式硝酸铜 33.8 重量份, 过氯酸钾 10.0 重量份, 高分散二氧化硅 0.4 重量份干式混合, 之后, 喷雾添加 0.6 重量份的聚乙烯醇水溶液 11.0 重量份进行湿式造粒, 得到粒径为 1mm 以下的颗粒, 对其进行 90℃ 15 小时的热处理后, 添加硬脂酸镁 0.4 重量份, 用旋转式制片机 将其成形为直径为 3.2mm、 厚度为 1.5mm 的原片, 进而对其进行 110℃ 10 小时的热处理而制 作的气体发生剂。填充到该动作气体生成室中的粒状的气体发生剂 62 的总量是所生成的 动作气体的总量为 0.2mol 且其重量为 6.75g 的量。
     另一方面, 如图 6 所示, 比较例所涉及的筒型气体发生器 1X 除了区分部件 50 的底 部 53 以外具有上述本发明的实施方式 1 所示的构造。在比较例所涉及的筒型气体发生器 1X 中, 将底部 53 构成为平板状, 区分部件 50 的底部的外表面为平面形状。另外, 在比较例 所涉及的筒型气体发生器 1X 中, 为了能够测定动作时动作气体生成室的内压, 在第 1 壳体 部件 10 的规定位置上也安装有压力传感器 SE。 压力传感器 SE 的种类及其安装构造与上述 实施例所涉及的筒型气体发生器 1A 同样。
     在此, 在比较例所涉及的筒型气体发生器 1X 中, 作为第 1 壳体部件 10 使用了对以 STKM 为代表的电焊钢管的轴向端部的一侧进行了闭合处理而成的成形品。 筒型气体发生器 1X 的轴向长度为 83mm。第 1 壳体部件 10 的轴向长度为 78mm, 第 1 壳体部件 10 的外径 R1 为 φ20mm。动作气体生成室的直径 R2 为 φ16mm, 动作气体生成室的轴向长度为 40mm。区 分部件 50 的底部 53 具有平板状的形状, 不具有上述的实施例所涉及的筒型气体发生器 1A 那样的尖细形状。而且, 从区分部件 50 的底部 53 上的点火器 30 一侧的端部到动作气体生 成室上的点火器 30 一侧的端部的距离 L2 为 7mm。而且, 第 2 缓冲材料 64 的厚度为 1.4mm。 区分部件 50 的轴向长度为 31.6mm, 中空部 55 的直径 R3 为 φ6mm。在区分部件 50 的圆筒 状部 52 上设有合计 24 个第连通孔 54, 作为其配置位置, 在圆筒状部 52 的圆周方向上每一 列设有 4 个第 1 连通孔, 该列在圆筒状部 52 的轴向上以 4.4mm 的间距排列。另外, 每一个 第 1 连通孔 54 均为 φ2mm 的圆孔。
     作为向动作气体生成室中填充的气体发生剂 62, 使用与上述的实施例所涉及的筒 型气体发生器 1A 中使用的气体发生剂相同, 其总量也与上述的实施例所涉及的筒型气体 发生器 1A 的情况相同, 所生成的动作气体的总量为 0.2mol 且其重量为 6.57g。
     在验证试验中, 分别准备多个上述结构的样品, 将每一个样品分别设置在规定容 量的气密封地封堵的罐内, 通过使该样品动作并按照时间测定此时的罐压以及动作气体生 成室的内压而评价每一个样品的性能, 基于该评价结果确认样品之间的差异为何种程度。 另外, 使用的罐的容量为 1 立方英尺 (约 28.3 升) 。罐内的氛围温度分别设定成低温环境下 (约 -40℃) , 室温环境下 (约 23℃) , 以及高温环境下 (约 85℃) , 在确认了样品的温度与该氛围温度相一致后使样品动作。
     图 7 是用于说明在验证试验中所验证的各种参数的曲线图。接着, 参照该图 7 对 所测定的各种参数进行说明。另外, 在图 7 所示的曲线图中, 横轴取为时间, 纵轴取为罐压 以及动作气体生成室的内压 (以下也简称为 “内压” ) 。
     所测定的参数为从动作开始到经过了 10ms 后的时刻的罐压 Pt10, 罐压的最大值 Pmax, 罐压达到最大值所要的时间 TPmax (样品数均为 n=8) , 以及动作气体生成室的内压的最 大值 pmax(样品数均为 n=7) 四种。在此, 上述 Pt10 以及上述 TPmax 为用于评价将该筒型气 体发生器组装在了安全气囊装置中的情况下的该安全气囊装置中的安全气囊膨胀速度的 指标, 上述 Pmax 为用于评价安全气囊膨胀后的缓冲性能的指标。而且, 上述 pmax 为用于评 价该筒型气体发生器中的气体发生剂的燃烧特性的指标。另外, 这四种参数均是评价筒型 气体发生器的性能的重要的参数。这些参数均采用所希望的值当然可以, 理想的是产品之 间没有差异。
     图 8 是表示验证试验的试验结果的表, 图 9 至图 12 是表示该验证试验的结果的曲 线图。在此, 图 9 表示比较例以及实施例所涉及的筒型气体发生器的样品之间的上述 Pt10 的差异, 图 10 表示比较例以及实施例所涉及的筒型气体发生器的样品之间的上述 Pmax 的 差异。而且, 图 11 表示比较例以及实施例所涉及的筒型气体发生器的样品之间的上述 TPmax 的差异, 图 12 表示比较例以及实施例所涉及的筒型气体发生器的样品之间的上述 pmax 的 差异。
     根据这些图 8 至图 12 可以理解, 与比较例所涉及的筒型气体发生器 1X 相比, 在实 施例所涉及的筒型气体发生器 1A 中, 即使在低温环境下、 室温环境下以及高温环境下的任 意环境下, 均抑制了上述 Pt10、 上述 Pmax、 上述 TPmax 以及上述 pmax 的样品之间的差异。特 别是, 在低温环境下以及室温环境下, 与比较例所涉及的筒型气体发生器 1X 相比, 在实施 例所涉及的筒型气体发生器 1A, 上述 Pt10、 上述 Pmax 以及上述 TPmax 的样品之间的差异的幅 度被抑制在大概 1/2 ~ 1/3 左右, 其结果标准偏差 σ 也均表示较小的值。因此, 根据该验 证试验的试验结果, 确认了通过采用本发明而能够成为稳定地得到了所希望的输出特性的 小型轻量化的筒型气体发生器。
     (实施方式 2) 图 13 是本发明的实施方式 2 中的筒型气体发生器的示意剖视图。以下, 参照图 13 对 本实施方式中的筒型气体发生器进行说明。另外, 对于与上述的本发明的实施方式 1 中的 筒型气体发生器同样的部分赋予图中相同的附图标记, 其说明不在此重复。
     在筒型气体发生器中, 从气体喷出口喷出的动作气体的流量、 维持用于使气体发 生剂的燃烧持续的必要的动作气体生成室的内压由在动作气体生成室中所生成的动作气 体的量和动作气体流动的流路中的该流路的截面积大致决定。即, 在动作气体的流路中截 面积最小的部分, 动作气体的流路及动作气体生成室的内压受到约束, 因此使动作气体的 流路的截面积为何种程度大小在决定筒型气体发生器的性能上是重要的因素。在此, 通常 在筒型气体发生器中, 使设在分隔出动作气体生成室和过滤器室的分隔部件上的第 2 连通 孔为动作气体的流路上截面积最小的部分, 同时通过调整该第 2 连通孔的开口面积的大小 来调整从气体喷出口喷出的动作气体的流量。另外, 第 2 连通孔的直径优选地是与分隔部 件的内径为相同程度。在上述的本发明的实施方式 1 中的筒型气体发生器 1A 中, 区分部件 50 的筒状部 仅由以在壳体的轴向上内径以及外径为一定的直管状延伸的圆筒形状的圆筒状部 52 构成 的, 其分隔部件 40 一侧的端部的开口形状 (即中空部 55 的端部的形状) 构成为与设在分隔 部件 40 上的第 2 连通孔 43 的开口形状大致一致。在此, 在维持气体发生剂 62 的填充量且 变更从气体喷出口 13 喷出的动作气体的流量的情况下、 维持气体发生剂 62 的填充量且变 更动作时的动作气体生成室的内压的情况下等, 需要维持区分部件 50 的筒状部的形状且 调整设在分隔部件 40 上的第 2 连通孔 43 开口面积的大小。
     但是, 在维持区分部件 50 的筒状部的形状且增大了设在分隔部件 40 上的第 2 连 通孔 43 的开口面积的情况下等, 动作气体的流路上的截面积最小部分将不是该第 2 连通孔 43 而是区分部件 50 上的分隔部件 40 一侧的端部, 产生不能够进行所预期的变更的问题。
     因此, 在本实施方式中的筒型气体发生器 1B 中, 通过稍稍变更区分部件 50 的形 状, 同时加大设在分隔部件 40 上的第 2 连通孔 43 的开口面积, 从而谋求了上述问题的解 决。即, 如图 13 所示, 在本实施方式中的筒型气体发生器 1B 中, 区分部件 50 的筒状部具有 以沿着壳体的轴向内径以及外径为一定的直管状延伸的圆筒形状的圆筒状部 52, 和从该圆 筒状部 52 上的分隔部件 40 一侧的端部连续地伸出、 随着朝向分隔部件 40 一侧逐渐扩径的 扩径部 52a, 该扩径部 52a 上的分隔部件 40 一侧的端部的开口形状 (即中空部 55 的端部的 形状) 构成为与设在分隔部件 40 上的第 2 连通孔 43 的开口形状大致一致。另外, 即使在本 实施方式那样在区分部件 50 上设置扩径部 52a 的情况下, 扩径部 52a 的轴向长度也优选地 是区分部件 50 的轴向长度的 5% 以上且 20% 以下。
     通过这样构成, 在维持气体发生剂 62 的填充量且变更从气体喷出口 13 喷出的动 作气体的流量的情况、 维持气体发生剂 62 的填充量且变更动作时动作气体生成室的内压 的情况下等所必须的设计变更很小即可, 与以往相比, 能够成为对于何种规格均容易对应 的筒型气体发生器。
     另外, 在本实施方式中, 例示了设在区分部件 50 上的扩径部 52a 上的分隔部件 40 一侧的端部的开口形状构成为与设在分隔部件 40 上的第 2 连通孔 43 的开口形状大致一致 的情况, 但也可以将该第 2 连通孔 43 的开口直径构成为小于该扩径部 52a 上的分隔部件 40 一侧的端部的开口直径。在这种情况下, 设置了该第 2 连通孔 43 的位置为动作气体的流路 上截面积最小部分, 其结果, 分隔部件 40 能够作为压力隔壁发挥作用。
     (实施方式 3) 图 14 是本发明的实施方式 3 中的筒型气体发生器的示意剖视图。以下, 参照图 14 对 本实施方式中的筒型气体发生器进行说明。另外, 对于与上述的本发明的实施方式 1 中的 筒型气体发生器同样的部分赋予图中相同的附图标记, 其说明不在此重复。
     在上述的本发明的实施方式 1 中的筒型气体发生器 1A 中, 区分部件 50 的底部 53 构成为该底部 53 的外表面具有半球面形状。相对于此, 在本实施方式中的筒型气体发生器 1C 中, 构成为底部 53 的外表面具有大致圆锥形状, 区分部件 50 的底部 53 为随着朝向点火 器 30 一侧其外形逐渐减小的尖细形状。
     即使在这样构成的情况下, 也获得了与上述的实施方式 1 中的筒型气体发生器 1A 的情况同样的效果, 能够成为稳定地得到所希望的输出特性的小型轻量化的筒型气体发生 器。另外, 在采用本实施方式那样的结构的情况下, 在气体发生剂 62 填充之际, 为了防止该气体发生剂 62 与区分部件 50 的底部 53 的前端部分相接触而破碎, 优选地是使底部 53 的 前端部分的形状不是尖锐形状 (例如极小的曲面形状或平面形状) 。
     (实施方式 4) 图 15 是本发明的实施方式中的筒型气体发生器的示意剖视图。而且, 图 16A 以及图 16B 是将本实施方式中筒型气体发生器的设置了分隔部件的位置附近放大后的主要部分放 大剖视图, 图 16A 是表示筒型气体发生器的动作刚开始后的状态的附图, 图 16B 是表示动作 开始且经过了规定时间后的状态的附图。另外, 在图 16A 以及图 16B 中, 箭头 G 表示了动作 气体的流动方向。 以下, 参照图 15、 图 16A 以及图 16B 对本实施方式中的筒型气体发生器进 行说明。另外, 对于与上述的本发明的实施方式 1 中的筒型气体发生器同样的部分赋予图 中相同的附图标记, 其说明不在此重复。
     如图 15 所示, 在本实施方式中的筒型气体发生器 1D 中, 分隔出动作气体生成室和 过滤器室的分隔部件 40 的筒状突出部 42 构成为随着远离环状板部 41 (随着远离动作气体 生成室而朝向筒状突出部 42 的前端) , 由该筒状突出部 42 限定的第 2 连通孔 43 的开口面 积增加地逐渐扩径的圆锥板状的形状, 同时相对于壳体嵌合或者松嵌。因此, 不在第 1 壳体 部件 10 上施加用于固定该分隔部件 40 的铆接加工。因此, 即使是本实施方式中的筒型气 体发生器 1D, 也与上述的本发明的实施方式 1 中的筒型气体发生器 1A 的情况同样, 其组装 比以往容易地进行。以下, 对即使在采用了这种组装构造的情况下分隔部件 40 也充分发挥 作用的理由进行说明。
     如图 16A 所示, 在筒型气体发生器 1D 的动作刚开始后, 承受在动作气体生成室中 所生成的高温高压的动作气体的推力 (即随着动作气体生成室的内压的上升而产生的压 力) , 分隔部件 40 的环状板部 41 承受沿着壳体的轴向朝向过滤器 70 一侧的力 (图中箭头 A 所示的力) 。这样一来, 分隔部件 40 的环状板部 41 开始朝向过滤器 70 一侧移动, 被分隔部 件 40 和壳体包围的过滤器 70 的部分 (即过滤器 70 上的动作气体生成室一侧的端部附近部 分, 图中所示区域 B1 所包含的部分) 通过该环状板部 41 移动而沿着壳体的轴向被压缩。
     在此, 在过滤器 70 的内部, 由于滤器 70 是对金属线材或者编入了金属线材的钢材 进行卷绕或是进行压力加工而压紧地形成的, 所以存在空隙, 但如图 16B 所示, 该空隙的容 积随着上述环状板部 41 的移动而减少, 成为金属线材在该区域 B1 中进一步紧密填充的状 态, 同时产生沿着壳体的径向扩张而将分隔部件 40 的筒状突出部 42 沿着壳体的径向朝向 内侧推入的力。但是, 由于在分隔部件 40 的筒状突出部 42 上施加有上述随着内压的上升 而沿着壳体的大致径向朝向外侧的力 (图中箭头 C 所示的力) , 所以将分隔部件 40 的筒状突 出部 42 沿着壳体的径向朝向内侧推入的力抵消不了该力, 其合力 (图中箭头 D 所示的力) 施 加在壳体与过滤器 70 的接触部分 (图中所示的区域 E) 上。这样一来, 在该壳体与过滤器 70 的接触部分上产生摩擦力, 该摩擦力成为了抑制分隔部件 40 进一步朝向过滤器 70 一侧移 动的制动力。
     在此, 由于上述反作用力 (图中箭头 D 所示的力) 成为朝向与壳体的径向以及轴向 相交叉的方向作用的力, 所以作为防止分隔部件 40 在壳体的大范围中移动的高制动力起 作用, 基于该制动力, 分隔部件 40 的移动量很小。因此, 通过分隔部件 40 可靠地保护了过 滤器 70, 能够防止过滤器 70 破损。而且, 由于分隔部件 40 的外缘与壳体的内周面压接触, 所以还能够可靠地防止动作气体经由该部分而不通过过滤器 70 地从气体喷出口 13 向壳体的外部放出的所谓旁路现象。
     而且, 在本实施方式中的筒型气体发生器 1B 中, 分隔部件 40 的筒状突出部 42 构 成为仅覆盖过滤器 70 上的动作气体生成室一侧的端部附近。因此, 在位于图 16B 中所示的 区域 B2 的部分的过滤器 70 的内部维持了形成有充分的空隙的状态, 动作气体能够不受上 述分隔部件 40 的移动以及变形的影响地在该部分顺畅地流动。因此, 也不会有损于过滤器 70 具有的动作气体的冷却功能以及渣料收集功能。
     进而, 在本实施方式的筒型气体发生器 1B 中, 在将分隔部件 40 和过滤器 70 沿着 壳体的轴向投影到与该轴正交的面上的情况下, 过滤器 70 的投影区域的内缘不位于分隔 部件 40 的投影区域的内缘的内侧。即, 分隔部件 40 以及过滤器 70 的相对位置关系调节成 在从动作气体生成室一侧俯视分隔部件 40 以及过滤器 70 的情况下, 过滤器 70 完全被分隔 部件 40 盖住。由于通过这样构成, 穿过分隔部件 40 的第 2 连通孔 43 的高温高压的动作气 体沿着过滤器 70 的内周面流动, 所以能够大幅度降低动作气体直接吹到过滤器 70 上的比 例。
     另外, 在本实施方式中的筒型气体发生器 1B 中, 由于动作时分隔部件 40 由位于上 述区域 B1 中的部分的过滤器 70 保持, 所以无需将分隔部件 40 设计成仅通过该分隔部件 40 而能够耐受动作气体的推力, 与以往相比能够减小其厚度。 具体地说, 在考虑了一般的筒型 气体发生器的规格的情况下, 在利用钢铁材料作为分隔部件 40 的情况下使其厚度大致为 0.7mm 以上足以。
     通过成为以上所说明的本实施方式的筒型气体发生器 1D, 能够得到与上述的本发 明的实施方式 1 中的筒型气体发生器 1A 的情况同样的效果。
     另外, 在本实施方式中的筒型气体发生器 1D 中, 在将分隔部件 40 和过滤器 70 沿 着壳体的轴向投影到与该轴正交的面上的情况下, 过滤器 70 的投影区域的内缘与分隔部 件 40 的投影区域的内缘相一致。如果这样构成, 则能够最大限度地得到过滤器 70 的功能。
     而且, 在本实施方式中的筒型气体发生器 1D 中, 由于分隔部件 40 的筒状突出部 42 构成为随着远离环状板部 41 而逐渐扩径的圆锥板状的形状, 所以在组装该筒型气体发生 器 10 之际, 能够预先使过滤器 70 与分隔部件 40 一体化。如果这样, 则在组装时能够削减 应组装的零件的数量, 还能够随着组装工时减少而降低制造成本。
     (实施方式 5) 图 17A 是将本发明的实施方式 5 中的筒型气体发生器的设置了气体喷出口的位置附近 放大后的主要部分放大主视图。而且, 图 17B 是将本实施方式中的筒型气体发生器的设置 了气体喷出口的位置附近放大后的主要部分放大剖视图。首先, 参照图 17A 以及图 17B 对 本实施方式中的筒型气体发生器的结构进行说明。另外, 对于与上述的本发明的实施方式 4 中的筒型气体发生器同样的部分赋予图中相同的附图标记, 其说明不在此重复。
     如图 17A 以及图 17B 所示, 在本实施方式中的筒型气体发生器 1E 中, 在位于面对 收容在过滤器室中的过滤器 7 的外周面的第 1 壳体部件 10 的周壁部 11(即限定过滤器室 的部分的第 1 壳体部件 10 的周壁部 11) 上设有多个气体喷出口 13。在该限定过滤器室的 第 1 壳体部件 10 的周壁部 11 上含有未设置气体喷出口 13 的气体喷出口非形成区域 S1, 和 设有气体喷出口 13 的气体喷出口形成区域 S2。 气体喷出口形成区域 S2 在轴向上错开的位 置上等间隔地具有两列含有沿着第 1 壳体部件 10 的圆周方向每隔 90°设置的多个气体喷出口 13 的气体喷出口列。
     在此, 气体喷出口形成区域 S2 是指在第 1 壳体部件 10 的轴向上位于最底壁部 12 一侧的气体喷出口上的该底壁部 12 一侧的端部、 和在第 1 壳体部件 10 的轴向上位于最动 作气体生成室一侧的气体喷出口上的该动作气体生成室一侧的端部之间的部分的第 1 壳 体部件 10 的周壁部 11 的区域, 气体喷出口非形成区域 S1 是指不相当于上述气体喷出口形 成区域 S2 的区域中位于底壁部 12 一侧的部分的第 1 壳体部件 10 的周壁部 11 的区域。因 此, 气体喷出口非形成区域 S1 位于与含有与底壁部 12 抵接的轴向端面的过滤器 70 的靠近 该轴向端面的部分相对应的位置的第 1 壳体部件 10 的周壁部 11 上, 气体喷出口形成区域 S2 位于比气体喷出口非形成区域 S1 靠动作气体生成室一侧的部分的第 1 壳体部件 10 的周 壁部 11 上。
     在本实施方式中的筒型气体发生器 1E 中, 第 1 壳体部件 10 轴向上的气体喷出口 形成区域 S2 轴向上的中心位置以从过滤器 70 轴向上的中心位置仅偏离规定的距离的偏置 状态位于动作气体生成室一侧。 即, 不使第 1 壳体部件 10 轴向上的气体喷出口形成区域 S2 的中心位置与过滤器 70 轴向上的中心位置相一致, 而是将其向动作气体生成室一侧错开 地配置。这样一来, 设在第 1 壳体部件 10 上的多个气体喷出口 13 在与过滤器 70 的相对位 置关系上偏在于动作气体生成室一侧。
     通过这样构成, 与使第 1 壳体部件 10 轴向上的气体喷出口形成区域 S2 的中心位 置与过滤器 70 轴向上的中心位置相一致的情况相比, 能够在筒型气体发生器 1E 动作时以 高冷却效率有效地对在壳体内部生成的气体进行冷却, 同时能够降低从气体喷出口 13 放 出的渣料的量。以下, 对其构造进行详细说明。
     图 18A 是示意表示了本实施方式中的筒型气体发生器动作时的初期中气体的流 动状态的附图, 图 18B 是示意表示了本实施方式中的筒型气体发生器动作开始并经过了规 定时间后的气体的流动状态的附图。
     如图 18A 所示, 在筒型气体发生器 1E 动作时的初期中, 如图中箭头所示, 由动作气 体生成室产生的高压高温的气体经由分隔部件 40 的第 2 连通孔 43 流入过滤器 70 的中空 连通部 71, 其大部分从过滤器 70 的中空连通部 71 上的动作气体生成室一侧的端部朝向底 壁部 12 一侧的端部直线行进。并且到达过滤器 70 的中空连通部 71 上的底壁部 12 一侧的 端部的气体朝向底壁部 12 的主面吹拂, 改变其行进方向而流入过滤器 70 上的底壁部 12 一 侧的端部区域 H。
     在此, 在筒型气体发生器 1E 动作时的初期所产生的气体具有含有特别多的渣料 的倾向。因此, 在该动作时的初期产生的渣料的大部分随着上述动作时的初期中气体的流 动吹拂在底壁部 12 的主面上, 在该底壁部 12 的主面上反弹且被收集在过滤器 70 上的底壁 部 12 一侧的端部区域 H 中。因此, 在筒型气体发生器 1E 动作时的初期特别多的渣料蓄积 在过滤器 70 上的底壁部 12 一侧的端部区域 H 上。
     之后, 在筒型气体发生器 1E 的动作开始并经过了规定时间后, 过滤器室内的压力 平衡稳定时, 如图 18B 所示, 从动作气体生成室流入到过滤器室中的气体其大部分在达到 过滤器 70 的中空连通部 71 上的底壁部 12 一侧的端部之前流入过滤器 70。在该筒型气体 发生器 1E 的动作开始并经过了规定时间后所产生的气体中含有的渣料的量与在上述动作 时的初期所产生的气体中含有的渣料的量相比大幅度减少。因此, 在动作开始并经过了规定时间后过滤器室内的压力平衡稳定的状态下, 渣料在过滤器 70 的整个区域被有效地收 集。
     在此, 在使第 1 壳体部件轴向上的气体喷出口形成区域的中心位置与过滤器轴向 上的中心位置相一致的情况下, 由于气体喷出口以过滤器轴向的中心位置为基准在第 1 壳 体部件的轴向上均匀地配置, 所以即使在筒型气体发生器的动作开始并经过了规定时间后 的状态下, 通过上述过滤器上的底壁部一侧的端部区域的气体的量增多。 因此, 在筒型气体 发生器动作时的初期已在过滤器的上述端部区域被收集的渣料因该气体的流动向过滤器 的外部推出的可能性大, 容易经过气体喷出口而放出到壳体的外部。
     相对于此, 在本实施方式中的筒型气体发生器 1E 中, 由于如上所述设置在第 1 壳 体部件 10 上的多个气体喷出口 13 在与过滤器 70 的相对位置关系上偏在于动作气体生成 室一侧, 所以在筒型气体发生器 1E 的动作开始并经过了规定时间后的状态下, 通过上述过 滤器 70 上的底壁部 12 一侧的端部区域 H 的气体的量减少, 能够抑制这种渣料向过滤器 70 的外部流出。因此, 通过这样构成, 能够在筒型气体发生器 1E 动作时降低从气体喷出口 13 放出的渣料的量。
     而且, 在筒型气体发生器 1E 的动作开始并经过了规定时间后, 如上所述, 从动作 气体生成室流入到过滤器室中的气体其大部分在达到过滤器 70 的中空连通部 71 上的底壁 部 12 一侧的端部之前流入过滤器 70。因此, 气体在过滤器 70 的轴向上更为均匀地穿过过 滤器 70 中, 与使第 1 壳体部件轴向上的气体喷出口形成区域的中心位置与过滤器轴向上的 中心位置相一致的情况相比, 过滤器 70 的实效体积增加。因此, 能够实现过滤器 70 对气体 的高效冷却。 因此, 通过成为本实施方式那样的筒型气体发生器 1E, 能够以高的冷却效率有效 地对在气体发生器 1E 的内部所生成的动作气体进行冷却, 同时能够降低从气体喷出口 13 放出的渣料的量。
     另外, 在本实施方式中的筒型气体发生器 1E 中, 由于多个气体喷出口 13 设在第 1 壳体部件 10 的轴向上错开的位置上, 所以气体喷出口 13 的开口面积不会不足。因此, 能够 将在壳体的内部所产生的气体有效地向壳体的外部喷出。
     另外, 作为气体喷出口 13 的具体的装配位置, 是基于各种规格等而最佳化的, 以 下表示其一例。参照图 17B, 例如在过滤器 70 的轴向长度 L3 为 15.0mm 的情况下, 在从底壁 部 12 沿着轴向的距离 L4 为 6.5mm 的位置上, 沿着圆周方向每隔 90°列状地在四个部位设 置直径为 3.5mm 的气体喷出口 13, 从该位置起进而沿着轴向的距离 L5 为 3.5mm 的位置上, 在圆周方向上每隔 90°列状地在四个部位设置直径为 3.5mm 的气体喷出口 13。在此, 设在 各列的气体喷出口 13 由于配置在圆周方向上错开 45°的位置上而为锯齿状。
     在这样设置气体喷出口 13 的情况下, 图 17A 所示的气体喷出口非形成区域 S1 的 轴向长度为 4.75mm, 气体喷出口形成区域 S2 的轴向长度为 7.0mm。另外, 过滤器 70 轴向的 中心位置为自底壁部 12 的轴向距离为 7.5mm 处的位置, 气体喷出口形成区域 S2 轴向的中 心位置为自底壁部 12 的轴向距离为 8.25mm 处的位置。因此, 如果这样构成, 则设在第 1 壳 体部件 10 中的多个气体喷出口 13 在与过滤器 70 的相对位置关系上配置在偏在于动作气 体生成室一侧的位置上。
     在以上所说明的本发明的实施方式 1 至 5 中, 例示了作为第 1 壳体部件 10 主要由
     对轧钢板进行压力成形而成的压力成形品或者对电焊钢管的轴向端部的一侧进行闭合处 理而成的成形品构成的情况进行了说明, 但也可以代之为由对第 1 壳体部件 10 进行拉拔成 形而成的无缝钢管构成。即使在由这种无缝管形成第 1 壳体部件 10 的情况下, 也能够得到 上述的效果。
     而且, 在以上所说明的本发明的实施方式 1 至 5 中, 例示了作为点火器 30 是将作 为电阻器的镍铬合金线作为热源利用的情况进行了说明, 但也可以使用所谓将半导体桥 (Semiconductor Bridge) 作为热源利用的点火器。 在利用了该将半导体桥作为热源利用的 点火器的情况下, 能够成为在动作时迅速地得到气体输出的筒型气体发生器。
     而且, 在以上所说明的本发明的实施方式 1 至 5 中, 例示了气体发生剂 62 以及引 火药 61 分别收容在第 1 密闭容器 80 和第 2 密闭容器 90 中而成的筒型气体发生器进行了 说明, 但无需一定这样构成, 可以使气体发生剂 62 以及引火药 61 为直接填充在由第 1 壳体 部件 10 以及第 2 壳体部件 20 构成的壳体中的结构。但是, 在这种情况下, 需要在壳体的规 定部位另外实施用于防止气体发生剂 62 以及引火药 61 吸湿的气密处理。
     而且, 在以上所说明的本发明的实施方式 1 至 5 中, 例示了为了促进气体发生剂 62 的燃烧而填充了引火药 61 而成的筒型气体发生器进行了说明, 但该引火药 61 并非是必须 的结构, 也可以通过提高用于燃烧开始的气体发生剂 62 的灵敏度等而无需引火药 61 的装 填。而且, 即使在采用将引火药 61 装填在筒型气体发生器中的结构的情况下, 也能够使该 引火药 61 与点火器 30 一体化地组装。
     而且, 在以上所说明的本发明的实施方式 1 至 5 中, 例示了通过对第 1 壳体部件 10 和第 2 壳体部件 20 进行铆接固定而连结而成的筒型气体发生器进行了说明, 但在第 1 壳体 部件 10 和第 2 壳体部件 20 的固定上当然也可以利用焊接。
     而且, 在以上所说明的本发明的实施方式 1 至 5 中, 例示了使分隔部件 40 的筒状 突出部 42 的形状为圆锥板状的情况进行了说明, 但该筒状突出部 42 的形状并不仅限于此, 例如也可以是截面形状为弯曲状。无论何种情况, 只要是作为筒状突出部 42 的形状为随着 内压的上升而施加在筒状突出部 42 上的力沿着与壳体的径向以及轴向均交叉的方向作用 的形状即可, 该筒状突出部 42 的内周面未与壳体的轴向平行地配置即可。
     除此之外, 在以上所说明的本发明的实施方式 1 至 5 中, 例示了将本发明适用于组 装在侧安全气囊装置中的筒型气体发生器的情况进行了说明, 但本发明的适用对象并不仅 限于此, 在组装在副驾驶席用安全气囊装置或气帘安全气囊装置、 膝部安全气囊装置等中 的筒型气体发生器、 与筒型气体发生器同样地具有长条状的气体输出部的所谓 T 字型的气 体发生器中也能够适用。
     另外, 在以上所说明的本发明的实施方式 1 至 5 中的筒型气体发生器的特征结构 当然也能够在装置结构上、 容许的范围内相互组合。
     这样, 此次所公开的上述各实施方式在所有点上均是例示而并不是限制。本发明 的技术范围由权利要求书确定, 而且也包含等同于权利要求书的记载以及在该范围内的所 有变更。

气体发生器.pdf_第1页
第1页 / 共50页
气体发生器.pdf_第2页
第2页 / 共50页
气体发生器.pdf_第3页
第3页 / 共50页
点击查看更多>>
资源描述

《气体发生器.pdf》由会员分享,可在线阅读,更多相关《气体发生器.pdf(50页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102414058 A(43)申请公布日 2012.04.11CN102414058A*CN102414058A*(21)申请号 201080018926.3(22)申请日 2010.04.272009-110733 2009.04.30 JP2009-110734 2009.04.30 JP2010-004783 2010.01.13 JPB60R 21/264(2011.01)B01J 7/00(2006.01)C06B 45/36(2006.01)C06D 5/00(2006.01)(71)申请人日本化药株式会社地址日本东京都千代田区富士见丁目11番2号(72)。

2、发明人萩原大介 榎并宏一 中村公一笹本幸一(74)专利代理机构中国专利代理(香港)有限公司 72001代理人崔幼平 杨楷(54) 发明名称气体发生器(57) 摘要本发明的筒型气体发生器(1A)具备:长条圆筒状的壳体,设在壳体的内部的动作气体生成室以及过滤器室,和点火器(30)。在动作气体生成室中主要收容有区分部件(50)以及粒状的气体发生剂(62)。区分部件(50)具有圆筒状部(52)、底部(53)、和中空部(55),粒状的气体发生剂(62)收容在动作气体生成室中除了上述中空部(55)以外的部分中。区分部件(50)的底部(53)具有随着朝向点火器(30)一侧而其外形逐渐减小的尖细形状。(30)。

3、优先权数据(85)PCT申请进入国家阶段日2011.10.28(86)PCT申请的申请数据PCT/JP2010/057492 2010.04.27(87)PCT申请的公布数据WO2010/126057 JA 2010.11.04(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书 3 页 说明书 24 页 附图 22 页CN 102414072 A 1/3页21. 一种气体发生器,其特征在于,具备:长条圆筒状的壳体,轴向的两端被封闭,在内部含有通过气体发生剂(62)燃烧而生成动作气体的动作气体生成室、和收容由上述动作气体生成室所生成的动作气体穿过其中的过滤器。

4、(70)的过滤器室;点火机构,配置在上述壳体轴向的一端部,产生用于使上述气体发生剂(62)燃烧的火焰;分隔部件(40),位于上述壳体的内部,将上述壳体的内部空间在轴向上分隔成上述动作气体生成室和上述过滤器室;区分部件(50),位于上述动作气体生成室的内部,区分出上述动作气体生成室;上述过滤器室位于比上述动作气体生成室靠近上述壳体轴向的另一端部一侧;在上述壳体的限定上述过滤器室的部分的周壁部上,设有用于将穿过上述过滤器(70)的动作气体向外部喷出的多个气体喷出口(13);上述区分部件(50)由配置在与上述壳体同轴上且内部具有中空部(55)的有底筒状的部件构成,含有从上述分隔部件(40)上的上述动。

5、作气体生成室一侧的端部沿着上述壳体的轴向延伸的筒状部,和封闭上述筒状部上的上述点火机构一侧的端部的底部(53);上述区分部件(50)的上述底部(53)位于比上述动作气体生成室上的上述点火机构一侧的端部靠近上述分隔部件(40)一侧;上述气体发生剂(62)收容在除了上述区分部件(50)的上述中空部(55)以外的部分的上述动作气体生成室中;在上述区分部件(50)的上述筒状部上,设有连通上述动作气体生成室中的收容了上述气体发生剂(62)的空间、和上述区分部件(50)的上述中空部(55)的多个第1连通孔(54);在上述分隔部件(40)的中央部上,设有用于连通上述区分部件(50)的上述中空部(55)和上述。

6、过滤器室的第2连通孔(43);上述区分部件(50)的上述底部(53)具有随着朝向上述点火机构一侧而其外形逐渐减小的尖细形状。2. 如权利要求1所述的气体发生器,其特征在于,上述区分部件(50)的上述底部(53)的外表面具有大致半球面形状。3. 如权利要求1所述的气体发生器,其特征在于,上述区分部件(50)的上述底部(53)的外表面具有大致圆锥面形状。4. 如权利要求1所述的气体发生器,其特征在于,上述区分部件(50)的上述筒状部具有沿着上述壳体的轴向内径以及外径为一定的圆筒状部(52);上述多个第1连通孔(53)设在上述区分部件(50)的上述圆筒状部(52)上。5. 如权利要求4所述的气体发生。

7、器,其特征在于,上述区分部件(50)的上述筒状部还具有从上述圆筒状部(52)上的上述分隔部件(40)一侧的端部连续地伸出,且随着朝向上述分隔部件(40)一侧而逐渐扩径的扩径部(52a)。6. 如权利要求1所述的气体发生器,其特征在于,上述壳体含有构成上述壳体的上述另一端部以及上述周壁部的长条有底圆筒状的第1壳体部件(10)、和通过封闭上述第1壳体部件(10)的开口端而构成上述壳体的上述一端部的第2壳体部件(20);上述第1壳体部件(10)由对电焊钢管的轴向端部的一侧进行闭合处理而成的成形品构成;上述第1壳体部件(10)的外径R1充分满足15mmR122mm的条件;权 利 要 求 书CN 102。

8、414058 ACN 102414072 A 2/3页3上述区分部件(50)上从上述底部(53)和上述筒状部的边界部分到上述区分部件(50)的上述底部(53)上的上述点火机构一侧的端部的距离L1充分满足1mmL17mm的条件;从上述区分部件(50)的上述底部(53)上的上述点火机构一侧的端部到上述动作气体生成室上的上述点火机构一侧的端部的距离L2和上述动作气体生成室的直径R2充分满足0.026L2/R20.71的条件;上述区分部件(50)的上述中空部(55)的直径R3和上述动作气体生成室的直径R2充分满足0.28R3/R20.54的条件。7. 如权利要求1所述的气体发生器,其特征在于,上述气体。

9、发生剂(62)作为燃料而含有胍系化合物,作为氧化剂而含有碱式硝酸铜。8. 如权利要求1所述的气体发生器,其特征在于,还具备用于防止上述气体发生剂(62)因振动而破碎的破碎防止部件(64),和位于上述壳体的内部且具有密闭的收容空间(83)的第1密闭容器(80);上述气体发生剂(62)、上述区分部件(50)以及上述破碎防止部件(64)收容在上述第1密闭容器(80)的上述收容空间(83)中。9. 如权利要求8所述的气体发生器,其特征在于,还具备位于上述壳体的内部且具有密闭的收容空间(93)的第2密闭容器(90);上述点火机构含有包含通过燃烧而产生火焰的引火药的点火器(30)、和将由上述点火器(30)。

10、所产生的火焰向上述气体发生剂(62)传递的引火药(61);上述引火药(61)收容在上述第2密闭容器(90)的上述收容空间(93)中。10. 如权利要求1所述的气体发生器,其特征在于,上述过滤器(70)具有沿着上述壳体的轴向延伸的中空连通部(71);上述中空连通部(71)至少到达上述过滤器(70)上的上述动作气体生成室一侧的端面;上述分隔部件(40)含有覆盖上述过滤器(70)的上述端面的环状板部(41)、和通过从上述环状板部(41)的内周缘朝向上述过滤器(70)的上述中空连通部(71)内连续地延伸而覆盖上述过滤器(70)的靠近上述端面的内周面的筒状突出部(42);上述第2连通孔(43)由上述分隔。

11、部件(40)的上述筒状突出部(42)的内周面限定;上述分隔部件(40)的上述筒状突出部(42)以随着远离上述分隔部件(40)的上述环状板部(41)而上述第2连通孔(43)的开口面积减小的方式逐渐缩径。11. 如权利要求1所述的气体发生器,其特征在于,上述过滤器(70)具有沿着上述壳体的轴向延伸的中空连通部(71);上述中空连通部(71)至少到达上述过滤器(70)上的上述动作气体生成室一侧的端面;上述分隔部件(40)含有覆盖上述过滤器(70)的上述端面的环状板部(41)、和通过从上述环状板部(41)的内周缘朝向上述过滤器(70)的上述中空连通部(71)内连续地延伸而覆盖上述过滤器(70)的靠近上。

12、述端面的内周面的筒状突出部(42);上述第2连通孔(43)由上述分隔部件(40)的上述筒状突出部(42)的内周面限定;上述分隔部件(40)的上述筒状突出部(42)以随着远离上述分隔部件(40)的上述环状权 利 要 求 书CN 102414058 ACN 102414072 A 3/3页4板部(41)而上述第2连通孔(43)的开口面积增加的方式逐渐扩径。12. 如权利要求1所述的气体发生器,其特征在于,上述第1壳体部件(10)的外径与上述第2壳体部件(20)的外径相同。权 利 要 求 书CN 102414058 ACN 102414072 A 1/24页5气体发生器技术领域0001 本发明涉及一。

13、种组装在搭载于汽车等上作为乘员保护装置的安全气囊装置中的气体发生器,更为特定的是涉及具有长条圆柱状的外形的所谓筒型气体发生器。背景技术0002 以往,从保护汽车等中的乘员的观点考虑,作为乘员保护装置的安全气囊装置已经普及。安全气囊装置以在保护乘员免受车辆等碰撞时所产生的冲击为目的而装备在车辆等上,通过在车辆等碰撞时使安全气囊瞬间膨胀以及展开,由展开的安全气囊承接乘员的身体。气体发生器是组装在该安全气囊装置中,在车辆等碰撞时瞬间产生气体而使安全气囊膨胀以及展开的设备。0003 在气体发生器中,基于相对于车辆等的设置位置或输出等规格,存在各种结构,其中之一存在被成为筒型构造的气体发生器。筒型气体发。

14、生器其外形为长条圆柱状,适于组装在侧安全气囊装置或副驾驶席用的安全气囊装置、气帘安全气囊装置、膝部安全气囊装置等中。另外,作为具有长条圆柱状的外形的气体发生器,除了该筒型气体发生器之外还存在所谓T字型气体发生器等。0004 作为公开了上述的筒型气体发生器的具体构造的文献,例如有特开2005-313812号公报(专利文献1)及特开平11-78766号公报(专利文献2)、特开2002-166818号公报(专利文献3)等。在这些文献中所公开的筒型气体发生器中,是在长条圆筒状的壳体轴向一端部配置点火器以及引火药,在轴向的大致中央部设有收容气体发生剂、通过该气体发生剂燃烧而生成动作气体的动作气体生成室,。

15、在轴向的另一端部设有收容过滤器的过滤器室以及气体喷出口。0005 在该结构的筒型气体发生器中,通过点火器动作而产生的火焰经由引火药的燃烧而向气体发生剂传递,这样一来,气体发生剂燃烧,在动作气体生成室中生成高温高压的动作气体,生成的动作气体沿着壳体的轴向从动作气体生成室流入过滤器室,通过了过滤器后从气体喷出口向壳体的外部喷出。从气体喷出口喷出的动作气体其后用于安全气囊的膨胀以及展开。0006 其中,在上述特开2002-166818号公报中,公开了在动作气体生成室中配置有底圆筒状的区分部件而成的筒型气体发生器(特别是特开2002-166818号公报)。由于在该动作气体生成室中配置区分部件而成的筒型。

16、气体发生器中,能够将壳体的内部空间区分成动作气体生成室和过滤器室,进而能够在动作气体生成室的内部形成轴心与壳体相同的中空空间,所以来自气体发生剂的气体随时在该中空空间的内部流入、放出,能够使装置小型化,同时能够使安全气囊渐进地膨胀展开。0007 专利文献1:特开2005-313812号公报,专利文献2:特开平11-78766号公报,专利文献3:特开2002-166818号公报。0008 在筒型气体发生器中,改进向车辆等上的搭载性的要求非常强,其小型轻量化成说 明 书CN 102414058 ACN 102414072 A 2/24页6为重要的问题。因此,近年来一直尝试将作为筒型气体发生器的主要。

17、构成零件的壳体及过滤器这种重量较重的零件变更成小型且轻量的零件。其中之一,研究了将作为强度零件的壳体从以往所利用的由不锈钢或钢铁等构成的部件变更成以SPCC或SPCD、SPCE为代表的轧钢板等小直径的压力成形品或者以STKM为代表的电焊钢管的成形品等的尝试。 0009 在此,近年来作为气体发生器中使用的气体发生剂,非叠氮基系气体发生剂已经普及。在使用该非叠氮基系气体发生剂的情况下,生成的动作气体温度较低,得到了能够适用于安全气囊装置中的优点,但与使用其它组成的气体发生剂的情况相比,将产生点燃性差的问题,或为了稳定地燃烧而要预先置于高压环境下的问题。因此,为了使筒型气体发生器的壳体小型轻量化必须。

18、要考虑这些点。0010 而且,在将筒型气体发生器的壳体小直径化了的情况下,有由于所生成的动作气体在动作气体生成室内停滞,至从气体喷出口喷出动作气体的时间加长的倾向。这是由于未燃烧的气体发生剂及燃烧中的气体发生剂自身成为了所生成的动作气体的流动阻力的缘故。因此,在简单地将筒型气体发生器的壳体小直径化了的情况下,在动作初期时动作气体生成室的内压急剧上升,难以满足所要求的输出特性,产生特别是难以适用在要求动作初期的动作速度快的侧安全气囊装置或气帘安全气囊装置等上的问题。0011 而且,在筒型气体发生器中,需要使壳体带有耐压性,以能够充分耐受气体发生剂燃烧、动作气体生成所产生的动作气体生成室的内压上升。

19、。在为了使壳体带有这样的耐压性而对高张力钢板那样的高强度的部件进行压力成形而构成小直径的壳体的情况下,能够使其充分耐受动作气体生成室的内压上升,但由于在压力加工之际在壳体上明显地产生残留应力,特别是在低温环境下,难以使壳体带有充分的强度。为了解决这一问题,要进行退火等处理,但在这种实施了退火处理的情况下,将不再能够维持能够耐受上述的动作气体生成室的内压上升的耐压性。因此,为了谋求既确保低压环境下的强度又确保动作时的耐压性,其结果要使壳体的厚度厚到相当程度,将产生成形性差的问题或重量增加的问题,有损于原本进行小直径化的意义。0012 另一方面,在欲由上述的轧钢板构成的小直径的压力成形品或电焊钢管。

20、的成形品等构成壳体的情况下,能够在低温环境下具有充分的强度,但难以使壳体带有能够耐受上述的动作气体生成室的内压上升的耐压性。0013 这样,为了谋求筒型气体发生器的小型轻量化(特别是小直径化以及轻量化),需要充分满足在动作时将动作气体生成室维持在适于气体发生剂的燃烧的高压环境下,防止所生成的动作气体在动作气体生成室中停滞以加速初期的动作速度,以及使壳体带有充分的耐压性和低温环境下的充分强度等所有条件,其实现起来非常困难。0014 而且,在谋求筒型气体发生器的小型轻量化的情况下,除了上述这各点之外,为了稳定地得到所希望的输出特性还需要研究装置结构。一般来说,气体发生剂是作为粒状的小型圆片而成形的。

21、,但事实上一边分别地调整这些粒状的气体发生剂的每一个的配置位置及朝向一边将其填充到动作气体生成室中是不可能的。因此,粒状的气体发生剂大多是不调整其配置位置及朝向地随机填充到动作气体生成室中。0015 但是,在随机地将粒状的气体发生剂填充到了动作气体生成室中的情况下,有在动作气体生成室中的气体发生剂的密度上产生偏差的情况。在产生了这种气体发生剂的密度偏差的情况下,将对筒型气体发生器的输出特性带来很大影响,其结果,产品之间将在输说 明 书CN 102414058 ACN 102414072 A 3/24页7出特性上产生很大的差异。在此,在未充分谋求小型化的筒型气体发生器中,由于可以是使收容气体发生。

22、剂的动作气体生成室的容积较大结构,所以不易产生上述的气体发生剂的密度偏差的问题,但在谋求了小型化的筒型气体发生器中,由于动作气体生成室的容积必然减小,所以该气体发生剂的密度偏差的问题将成为非常重大的问题。0016 该气体发生剂的密度偏差的问题即使在如上述的特开2002-166818号公报中公开的那样结构的筒型气体发生器中也不例外,可以成为非常重大的问题。即,若是结构为该特开2002-166818号公报中公开的筒型气体发生器,则通过在动作气体生成室中配置区分部件而输出特性优良,但因气体发生剂的填充状态的不同将在其输出特性上产生大的差异。发明内容0017 因此,本发明是为了解决上述问题点而提出的,。

23、其目的在于提供一种稳定地得到所希望的输出特性的小型轻量化的气体发生器。0018 基于本发明的气体发生器具备壳体,点火机构,分隔部件,和区分部件。上述壳体由轴向的两端被封闭的长条圆筒状的部件构成,在内部含有通过气体发生剂燃烧而生成动作气体的动作气体生成室、和收容由上述动作气体生成室所生成的动作气体穿过其中的过滤器的过滤器室。上述点火机构产生用于使上述气体发生剂燃烧的火焰,配置在上述壳体轴向的一端部。上述分隔部件位于上述壳体的内部,将上述壳体的内部空间在轴向上分隔成上述动作气体生成室和上述过滤器室。上述区分部件位于上述动作气体生成室的内部,区分出上述动作气体生成室。上述过滤器室位于比上述动作气体生。

24、成室靠近上述壳体轴向的另一端部一侧。在上述壳体的限定上述过滤器室的部分的周壁部上,设有用于将穿过上述过滤器的动作气体向外部喷出的多个气体喷出口。上述区分部件由配置在与上述壳体同轴上且内部具有中空部的有底筒状的部件构成,含有从上述分隔部件上的上述动作气体生成室一侧的端部沿着上述壳体的轴向延伸的筒状部,和封闭上述筒状部上的上述点火机构一侧的端部的底部。上述区分部件的上述底部位于比上述动作气体生成室上的上述点火机构一侧的端部靠近上述分隔部件一侧。上述气体发生剂收容在除了上述区分部件的上述中空部以外的部分的上述动作气体生成室中。在上述区分部件的上述筒状部上,设有连通上述动作气体生成室中的收容了上述气体。

25、发生剂的空间、和上述区分部件的上述中空部的多个第1连通孔。在上述分隔部件的中央部上,设有用于连通上述区分部件的上述中空部和上述过滤器室的第2连通孔。在此,上述区分部件的上述底部具有随着朝向上述点火机构一侧而其外形逐渐减小的尖细形状。0019 在上述基于本发明的气体发生器中,优选地是,上述区分部件的上述底部的外表面具有大致半球面形状。0020 在上述基于本发明的气体发生器中,上述区分部件的上述底部的外表面也可以具有大致圆锥面形状。0021 在上述基于本发明的气体发生器中,优选地是,上述区分部件的上述筒状部具有沿着上述壳体的轴向内径以及外径为一定的圆筒状部,在这种情况下,优选地是,上述多个第1连通。

26、孔设在上述区分部件的上述圆筒状部上。0022 在上述基于本发明的气体发生器中,上述区分部件的上述筒状部也可以还具有从说 明 书CN 102414058 ACN 102414072 A 4/24页8上述圆筒状部上的上述分隔部件一侧的端部连续地伸出,且随着朝向上述分隔部件一侧而逐渐扩径的扩径部。0023 在上述基于本发明的气体发生器中,上述壳体也可以含有构成上述壳体的上述另一端部以及上述周壁部的长条有底圆筒状的第1壳体部件、和通过封闭上述第1壳体部件的开口端而构成上述壳体的上述一端部的第2壳体部件(电爆管保持器),在这种情况下,优选地是,上述第1壳体部件由对电焊钢管的轴向端部的一侧进行闭合处理而成。

27、的成形品构成。在这样构成的情况下,优选地是,上述第1壳体部件的外径R1充分满足15mmR122mm的条件,上述区分部件上从上述底部和上述筒状部的边界部分到上述区分部件的上述底部上的上述点火机构一侧的端部的距离L1充分满足1mmL17mm的条件,从上述区分部件的上述底部上的上述点火机构一侧的端部到上述动作气体生成室上的上述点火机构一侧的端部的距离L2和上述动作气体生成室的直径R2充分满足0.026L2/R20.71的条件,并且上述区分部件的上述中空部的直径R3和上述动作气体生成室的直径R2充分满足0.28R3/R20.54的条件。0024 在上述基于本发明的气体发生器中,优选地是,上述气体发生剂。

28、作为燃料而含有胍系化合物,作为氧化剂而含有碱式硝酸铜。0025 在上述基于本发明的气体发生器中,优选地是,还具备用于防止上述气体发生剂因振动而破碎的破碎防止部件,和位于上述壳体的内部且具有密闭的收容空间的第1密闭容器,在这种情况下,优选地是,上述气体发生剂、上述区分部件以及上述破碎防止部件收容在上述第1密闭容器的上述收容空间中。0026 在上述基于本发明的气体发生器中,也可以还具备位于上述壳体的内部且具有密闭的收容空间的第2密闭容器。在这种情况下,优选地是,上述点火机构含有包含通过燃烧而产生火焰的引火药的点火器、和将由上述点火器所产生的火焰向上述气体发生剂传递的引火药,且优选地是其中的上述引火。

29、药收容在上述第2密闭容器的上述收容空间中。0027 在上述基于本发明的气体发生器中,优选地是,上述过滤器具有沿着上述壳体的轴向延伸的中空连通部,该中空连通部优选至少到达上述过滤器上的上述动作气体生成室一侧的端面。在这种情况下,优选地是,上述分隔部件含有覆盖上述过滤器的上述端面的环状板部、和通过从该环状板部的内周缘朝向上述过滤器的上述中空连通部内连续地延伸而覆盖上述过滤器的靠近上述端面的内周面的筒状突出部,上述第2连通孔优选由上述分隔部件的上述筒状突出部的内周面限定。并且在这种情况下,优选地是,上述分隔部件的上述筒状突出部以随着远离上述分隔部件的上述环状板部而上述第2连通孔的开口面积减小的方式逐。

30、渐缩径。0028 在上述基于本发明的气体发生器中,上述过滤器优选具有沿着上述壳体的轴向延伸的中空连通部,该中空连通部优选至少到达上述过滤器上的上述动作气体生成室一侧的端面。在这种情况下,优选地是,上述分隔部件含有覆盖上述过滤器的上述端面的环状板部、和通过从该环状板部的内周缘朝向上述过滤器的上述中空连通部内连续地延伸而覆盖上述过滤器靠近上述端面的内周面的筒状突出部,上述第2连通孔优选由上述分隔部件的上述筒状突出部的内周面限定。并且在这种情况下,优选地是,上述分隔部件的上述筒状突出部以随着远离上述分隔部件的上述环状板部而上述第2连通孔的开口面积增加的方式逐渐扩径。说 明 书CN 102414058。

31、 ACN 102414072 A 5/24页90029 在上述基于本发明的气体发生器中,优选地是,上述第1壳体部件的外径与上述第2壳体部件的外径相同。0030 根据本发明,能够成为稳定地得到所希望的输出特性的小型轻量化的气体发生器。附图说明0031 图1A是本发明的实施方式1中的筒型气体发生器的主视图;图1B是本发明的实施方式1中的筒型气体发生器图的右侧视图;图2是本发明的实施方式1中的筒型气体发生器的示意剖视图;图3A是表示制造本发明的实施方式1中的筒型气体发生器之际的气体发生剂的填充以及封堵工序的示意剖视图;图3B是表示制造本发明的实施方式1中的筒型气体发生器之际的气体发生剂的填充以及封堵。

32、工序的示意剖视图;图3C是表示制造本发明的实施方式1中的筒型气体发生器之际的气体发生剂的填充以及封堵工序的示意剖视图;图4A是将本发明的实施方式1中的筒型气体发生器的设置了分隔部件的位置附近放大后的主要部分放大剖视图,是表示筒型气体发生器的动作刚开始后的状态的附图;图4B是将本发明的实施方式1中的筒型气体发生器的设置了分隔部件的位置附近放大后的主要部分放大剖视图,是表示筒型气体发生器的动作开始并经过了规定时间后的状态的附图;图5是表示在验证试验中使用的实施例所涉及的筒型气体发生器的结构的示意剖视图;图6是表示在验证试验中使用的比较例所涉及的筒型气体发生器的结构的示意剖视图;图7是用于说明由验证。

33、试验测定的各种参数的曲线图;图8是表示验证试验的试验结果的表;图9是表示验证试验的试验结果的曲线图,是表示10ms时的罐压的差异的曲线图;图10是表示验证试验的试验结果的曲线图,是表示罐压最大值的差异的曲线图;图11是表示验证试验的试验结果的曲线图,是表示罐压达到最大值的时间的差异的曲线图;图12是表示验证试验的试验结果的曲线图,是表示在动作气体生成室观测的内压最大值的差异的曲线图;图13是本发明的实施方式2中的筒型气体发生器的示意剖视图;图14是本发明的实施方式3中的筒型气体发生器的示意剖视图;图15是本发明的实施方式4中的筒型气体发生器的示意剖视图;图16A是将本发明的实施方式4中的筒型气。

34、体发生器的设置了分隔部件的位置附近放大后的主要部分放大剖视图,是表示筒型气体发生器的动作刚开始后的状态的附图;图16B是将本发明的实施方式4中的筒型气体发生器的设置了分隔部件的位置附近放大后的主要部分放大剖视图,是表示筒型气体发生器的动作开始并经过了规定时间后的状说 明 书CN 102414058 ACN 102414072 A 6/24页10态的附图;图17A是将本发明的实施方式5中的筒型气体发生器的设置了气体喷出口的位置附近放大后的主要部分放大主视图;图17B是将本发明的实施方式5中的筒型气体发生器的设置了气体喷出口的位置附近放大后的主要部分放大剖视图;图18A是示意表示本发明的实施方式5。

35、中的筒型气体发生器动作时的初期气体的流动状态的附图;图18B是示意表示本发明的实施方式5中的筒型气体发生器的动作开始并经过了规定时间后的气体流动状态的附图。0032 附图标记说明:1A1E、1X:筒型气体发生器,10:第1壳体部件,11:周壁部,12:底壁部,13:气体喷出口,14:铆接部,20:第2壳体部件,21:槽,22:凹部,23:贯通部,24:铆接部,30:点火器,31:基部,32:点火部,33:端子销,40:分隔部件,41:环状板部,42:筒状突出部,43:第2连通孔,50:区分部件,51:凸缘部,52:圆筒状部,52a:扩径部,53:底部,54:第1连通孔,55:中空部,61:引火。

36、药,62:气体发生剂,63:第1缓冲材料,64:第2缓冲材料,70:过滤器,71:中空连通部,80:第1密闭容器,81:杯部,81a:轴向端部,82:盖部,83:收容空间,90:第2密闭容器,91:杯部,92:盖部,93:收容空间,MP:传感器安装端口,SE:压力传感器。具体实施方式0033 以下,参照附图详细地对本发明的实施方式进行说明。另外,以下所示的实施方式例示了将本发明适用在适于组装在侧安全气囊装置等中的所谓筒型气体发生器中的情况。0034 (实施方式1)图1A以及图1B是表示本发明的实施方式1中的筒型气体发生器的外观构造的附图,图1A是主视图,图1B是右侧视图。图2是表示本实施方式中。

37、的筒型气体发生器的内部构造的附图,是沿着图1A以及图1B中所示的-线的示意剖视图。以下,参照这些图1A、图1B以及图2对本实施方式中的筒型气体发生器的外观构造以及内部构造进行说明。0035 如图1A、图1B以及图2所示,本实施方式中的筒型气体发生器1A包括具有长条圆柱状的外形、轴向的两端封闭而成的作为外壳部件的壳体。作为外壳部件的壳体含有具有周壁部11和底壁部12的轴向的一侧被封闭的有底圆筒状的第1壳体部件10,以及沿着与第1壳体部件10的轴向同方向延伸的贯通部23的筒状的第2壳体部件(电爆管保持器)20。第2壳体部件20具有用于后述的铆接固定在其外周面的规定位置上的槽21,该槽21在第2壳体。

38、部件20的外周面上沿着圆周方向延伸地形成为环状。另外,在本实施方式中的筒型气体发生器1A中,构成为第1壳体部件10的外径与第2壳体部件20的外径相同。0036 第2壳体部件20固定在第1壳体部件10上,且封闭第1壳体部件10的开口端。具体地说,在第2壳体部件20的一部分内插在了第1壳体部件10的开口端中的状态下,通过使与设在该第2壳体部件20的外周面上的槽21相对应的部分的第1壳体部件10的周壁部11朝向径向内侧缩径而卡合在该槽21中,第2壳体部件20相对于第1壳体部件10铆接固定。这样一来,壳体轴向的一端部由第2壳体部件20构成,壳体轴向的另一端部由第1壳体部件10的底壁部12构成。说 明 书CN 102414058 A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般车辆


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1