使用脉冲信号检测注射到血管的液体泄漏的泄漏检测器 【技术领域】
本发明涉及一种泄漏检测器,用于检测通过注射器注射到人体表面附近血管的液体泄漏或溢出,更具体地,涉及一种用于检测由液体注射器注射的液体泄漏的泄漏检测器。
背景技术
目前用于对患者的层析图象成像的医疗设施包括CT(计算机X线断层摄影)扫描器、MRI(磁共振成像)设备、PET(正电子发射断层摄影)设备、超声波诊断设备等,且目前用于对患者血管造影成像的医疗设施包括血管(angio)设备、MRA(MR血管)设备,等等。
当使用上面列出的医疗设备时,可能会将诸如造影剂、平衡盐溶液及类似的液体注入患者体内。在实际使用中还引入了用于自动地注射液体的液体注入器。
例如,液体注入器使用了可拆卸安装的液体注射器,这种液体注射器包括圆筒构件和可滑动地插入圆筒构件中的活塞构件。液体注入器具有将活塞构件压入圆筒构件地注射器驱动机构。通过伸缩管和注射针,将注满了液体的圆筒构件与人体表面附近的血管相连接,以便由该液体注入器将液体注射器中的液体强行推入人体的血管中。
但是,这种液体注入器在高压下自动地注入液体,因此即使注射针意外地脱离了血管,例如引起液体在皮肤下泄漏,对于操作员也难以立刻发现泄漏。
为了解决上述问题,如例如美国专利No.6,408,204、No.5,964,703、No.5,947,910、No.6,375,624、No.5,954,668、No.5,334,141、No.4,647,281以及No.4,877,034所述,提出了各种泄漏检测器,用于检测通过注射针注入人体血管的液体的泄漏或溢出。美国专利No.6,408,204、No.5,964,703及No.5,947,910公开了用于从人体表面的阻抗变化中检测泄漏液体的泄漏检测器;美国专利No.6,375,624、No.5,954,668、No.5,334,141及No.4,647,281公开了用于从人体器官的温度变化中检测泄漏液体的泄漏检测器;以及美国专利No.4,877,034公开了用于从血液的光特性变化中检测泄漏液体的泄漏检测器。
但是,所有这些泄漏检测器都具有需要特殊的传感器、结构复杂以及由干扰引起检测准确度明显降低等缺点。
【发明内容】
考虑到上述问题提出了本发明,且本发明的目的是提供一种结构简单且使由于干扰引起的检测准确度降低最小的泄漏检测器。
提供了根据本发明的用于检测通过注射针注入人体表面附近血管的液体泄漏的第一泄漏检测器,所述第一泄漏检测器包括脉冲产生装置、脉冲检测装置、间隔测量装置、差值计算装置、差值比较装置以及泄漏警告装置。所述脉冲产生装置通过预定波长的波传播,顺序地向人体插入注射针的位置发射脉冲信号。脉冲检测装置检测从人体内部反射的脉冲信号。间隔测量装置测量每一个脉冲发射和检测之间的时间间隔,且差值计算装置计算测量到的时间间隔和预定参考时间间隔之间的差值。差值比较装置将计算得到的差值与预定的可接受范围进行比较,并且当该差值超出可接受范围时,泄漏警告装置产生泄漏警告以进行通知。
利用本发明第一泄漏检测器的前述结构,当由于从脱离血管的注射针中泄漏的液体引起人体表面鼓起时,该鼓起引起人体内部反射的脉冲信号的发射和检测之间的距离和时间间隔改变,于是泄漏检测器使用这种间隔的改变来检测到液体的泄漏。利用此方法,检测的准确度几乎不会由于干扰而降低,并且只需要简单的结构来进行检测。
根据本发明的第二泄漏检测器包括代替了间隔测量装置的波长测量装置,其中波长测量装置测量所检测脉冲信号的波长,且差值计算装置计算测量到的波长和预定参考波长之间的差值。因此,在本发明的第二泄漏检测器中,当由于从脱离血管的注射针中泄漏的液体引起人体表面鼓起时,该鼓起引起人体内部反射的波传播的波长改变,于是,泄漏检测器使用这种波长的改变来检测到液体的泄漏。利用此方法,检测的准确度几乎不会由于干扰而降低,并且只需要简单的结构用于检测。
应当注意,只需要形成在本发明中所涉及的多种装置来实现与其相关的功能,并且能够通过用于执行预定功能的专用硬件、通过计算机程序配备有预定功能的数据处理器、由数据处理器通过计算机程序实现的预定功能、这些方法的结合等来实现在本发明中所涉及的多种装置。
此外,涉及本发明的多种装置不必是分别独立的组件,而可以包括形成为单个构件的多个装置,作为一部分包括在另一装置中的特定装置、与另一装置的一部分重叠的特定装置的一部分等。
【附图说明】
图1是示出了根据本发明一个实施例的液体注入器逻辑结构的示意图;
图2是示出了液体注入器物理结构的框图;
图3是示出了液体注入器外观的透视图;
图4a和4b是示出了液体注射器如何安装于注射头上的透视图;
图5是示出了MRI设备外观的透视图;
图6是示出了泄漏检测单元的前视纵向截面图;
图7是示出了如何将泄漏检测单元安放于人手臂上的透视图;
图8是示出了泄漏检测单元的处理操作的流程图;
图9是示出了注入器主体的处理操作的主程序的流程图;
图10是示出了注入过程的子程序的流程图;
图11a和11b是带有安放于其表面上的泄漏检测单元的手臂如何鼓起的示意图;
图12a和12b是分别示出了泄漏检测单元的典型修改的透视图;
图13是示出了如何使用修改的粘贴垫(adhesive pad)将泄漏检测单元安放于手臂上的透视图;
图14是示出了如何使用另一种修改的粘贴垫将泄漏检测单元安放于手臂上的透视图;
图15是示出了对泄漏检测单元的另一典型修改的透视图;
图16是示出了显示器屏幕的示意前视图,该显示器屏幕显示代表了针对各个脉冲信号测量的时间间隔的趋势图;以及
图17是示出了显示器屏幕的示意前视图,该显示器屏幕显示代表了针对各个脉冲信号测量的时间间隔的趋势图。
【具体实施方式】
[实施例的结构]
下面将参考附图,对本发明的一个实施例进行说明。首先应注意,在下面的实施例中,作为对描述的说明,定义了前、后、左、右、上和下方向,不过进行这样的方向定义是为了便于简化描述,而不是希望在制造、使用等期间,将本发明的设备局限于这样的方向中。
参考图3,本实施例的液体注入器100包括注入器主体101;在注入器主体101的顶面设置的操作板102和液晶显示器103;以及在注入器主体101一侧上由可移动臂104支撑的注射头110。如图4所示,由凹槽112形成注射头110,该凹槽112具有半圆柱槽的形状,以便能够可拆卸地将液体注射器200安装在凹槽112中。
液体注射器200包括圆筒构件201和活塞构件202,其中将活塞构件202可滑动地插入圆筒构件201中。圆筒构件201包括围绕其末端外围的圆柱体凸缘203,而活塞构件202由围绕其末端外围的活塞凸缘204形成。
在本实施例的液体注入器100中,被固定于注射头110中的液体注射器200通过伸缩管211和注射针212与人体的手臂500中的血管501相连接,通过由对于红外射线高度透明的透明片制成的粘贴垫213来固定注射针212,例如,如图7所示。
注射头110具有设置于注射器固定构件111的凹槽112之后的活塞驱动机构113,用于固定及来回移动活塞凸缘204。具体地,如图2所示,活塞驱动机构113包括驱动电动机115和排空传感器116,并且利用用作功率源的驱动电动机115来驱动活塞驱动机构113。排空传感器116依次检测在特定位置处的活塞凸缘204,以便感知液体注射器200已经完全注射了液体。
在此实施例中,液体注入器100与泄漏检测器集成地形成,其中注入器主体101还用作检测器主体。因此,泄漏检测单元401与注入器主体101分离地形成,并与注入器主体101进行无线电通信。
更具体地,如图7所示,泄漏检测单元401具有扁平盒型单元外壳402,且包括表示脉冲产生装置的光电二极管403以及表示单元外壳402内的脉冲检测装置的光电晶体管404。如图6可以看到,在单元外壳402中,光电二极管403和光电晶体管404的方向向下。
光电二极管403向下发射预定波长的红外射线作为波传输,而光电晶体管404从下面接收此波长的红外射线。将只通过预定波长的红外射线的滤光器406设置于这些光电二极管/光电晶体管403、404的下方且与其相对的位置。将红外射线设置为其透过人体的特定器官且由特定器官反射的波长。例如,在所设置波长处的红外射线能够高度穿透皮肤和脂肪,而对于肌肉是高度反射的。
将电路板407设置于泄漏检测单元401内的上部区域,并且将光电二极管/光电晶体管403、404、中央处理电路408以及无线电发送单元409分别安装于其上。
中央处理电路408与光电二极管/光电晶体管403、404以及无线电发送单元409进行有线连接,用于促使光电二极管403顺序地发射脉冲信号并检测来自光电晶体管404的脉冲信号。
此外,包括预定结构的逻辑电路的中央处理电路408具有多种硬件组件,这些硬件组件用作间隔测量电路411、间隔存储电路412、差值计算电路413以及差值比较电路414。
包括例如计数器电路或类似的间隔测量电路411测量每一个脉冲信号的发射和检测之间的时间间隔。
包括例如FIFO(先进先出)存储器或类似的间隔存储电路412存储测量到的时间间隔,直到测量到下一个时间间隔。
包括例如减法电路或类似的差值计算电路413计算作为参考时间间隔的上一次测量的时间间隔与当前测量的时间间隔的差值。
包括例如比较器电路或类似的差值比较电路414对计算得到的差值与预定的可接受范围进行比较。
然后,当该差值没有超出可接收范围时,中央处理电路408指示无线电发送单元409通过无线电波一直发送预定的待机信号。当该差值超出可接受范围时,中央处理电路408指示无线电发送单元409无线地发送预定的警告信号。
再次参考注入器主体101,如图2所示,注入器主体101包括微处理器130,微处理器130与操作板102、液晶显示器103、驱动电动机115、排空传感器116、无线电接收单元131、扬声器单元132等进行有线连接。
包括所谓单片微处理器的微处理器130具有以固件等形式安装的适当计算机程序。如图1所示,微处理器130根据计算机程序,完全控制前述各个组件,由此允许本实施例的液体注入器100在逻辑上具有多种功能,包括泄漏警告功能141、接收检测功能142、状态通知功能143、接收警告功能144以及注射暂停功能146。
泄漏警告功能141表示用于根据计算机程序控制扬声器单元132和液晶显示器103的微处理器130的功能。具体地,当无线电接收单元131经过无线接收的待机信号被切换为警告信号时,泄漏警告功能141产生从扬声器单元132中可听的泄漏警告以及从液晶显示器103中产生可视的泄漏警告,以便通知操作员。
接收检测功能142表示用于检测无线电接收单元131的操作状态的微处理器130的功能。具体地,微处理器130检测无线电信号的接收状态。状态通知功能143表示用于控制液晶显示器103操作的微处理器130的功能。具体地,微处理器130以显示于液晶显示器103上的图像形式通知由接收检测功能142检测的接收状态。
接收警告功能144还表示用于控制扬声器单元132和液晶显示器103操作的微处理器130的功能。具体地,当由接收检测功能142检测到的接收状态降到预定状态之下时,微处理器130从扬声器单元132中产生可听的接收警告、以及从液晶显示器103中产生可视的接收警告,以便通知操作员。
注射暂停功能146表示用于控制活塞驱动机构113的驱动电动机115的操作的微处理器130的功能。具体地,响应泄漏警告和接收警告中的至少一个,微处理器130停止驱动电动机115以暂停液体的注射。
根据需要使用诸如扬声器单元132等硬件来实现如上所述的液体注入器100的多种前述功能141-146,但是本质上由根据安装于其中的计算机程序运行的微处理器130来实现所述功能。
描述了这种计算机程序,以使微处理器130执行处理操作,例如响应通过无线电接收单元131无线接收的警告信号,指示扬声器单元132和液晶显示器103产生用于通知的泄漏警告;指示与泄漏警告的产生相关的驱动电动机115;检测无线电接收单元131的接收状态;在液晶显示器103上显示接收状态,以便进行通知;响应降到预定状态之下的接收状态,指示扬声器单元132和液晶显示器103产生接收警告,以便进行通知;停止与接收警告的产生相关的驱动电动机115,等等。
如图5所示,例如,在MRI设备300的成像器单元301的附近使用本实施例的液体注入器100,并且根据需要,可以将其与MRI设备300的控制单元302相连。其中包括具有检测器主体303、液晶显示器304以及键盘305的计算机系统的控制单元302控制成像器单元301的操作,并将层析图像显示在液晶显示器304上。
为了简化图5的说明,液体注入器100和控制单元302均位于成像单元301附近,而在实际的医学领域,典型地,将液体注入器放置于成像器单元301附近,而将控制单元302安装于不同的房间中。
[实施例的操作]
在如上所述的结构中,如图7所示,当使用本实施例的液体注入器100时,例如,操作员通过伸缩管211将注射针212与充满了诸如造影剂之类液体的液体注射器200相连接,并使用用于将注射针212固定于手臂500上的粘贴垫213,将注射针212插入位于MRI设备300的成像器单元301中的患者的手臂500的血管501中。
接下来,利用捆绑带(未示出)将泄漏检测单元401安装于粘贴垫213上,并将液体注射器200装入液体注入器100的注射头10中。在这种状态下,分别给泄漏检测单元401和注入器主体101加电,随后进行预定操作,以便将注入器主体101设置为用于使用泄漏检测单元401的操作模式。
作为响应,如图8所示,泄漏检测单元401顺序地从光电二极管403向连接了注射针212的手臂500的位置发射红外脉冲(步骤S1)。但是,如图11所示,该红外脉冲信号高度地穿透人的特定器官并且对其它特定器官具有高度的反射,因此允许光电晶体管404检测这种反射的脉冲信号(步骤S3)。
在这种情况下,测量每一个脉冲的发射和检测之间的时间间隔(步骤S1-S4),并保存测量到的间隔(步骤S5)。同时,参考上一次测量到的间隔,以便计算当前测量到的间隔和上一次测量到的间隔之间的差值(步骤S6),随后进行确定,以确定该差值是否超出了可接受的范围(步骤S7)。
然后,如果该差值没有超出可接受的范围,则泄漏检测单元401将表示“正常”的待机信号无线地发送到注入器主体101(步骤S8),而如果该差值超出了可接受的范围,则发射表示“异常”的警告信号。
例如,如图7所示,如果注射针212脱离了手臂500中已插入该注射针212的血管501,则液体不会注入血管501中,而是会注入其周围,从而使手臂500鼓起,如图11b的皮肤表面所示。结果,如从图11a和11b中所理解到的,从光电二极管403发射的脉冲信号在鼓起的手臂500中反射,导致路径延长,直到光电晶体管404检测到该脉冲信号。
在这种情况下,由于增加了测量到的针对脉冲信号的反射和检测之间的间隔,因此,将这样的增加作为上一次和当前测量到间隔的差值进行计算。由于该差值超出预定可接受范围将使无线电发送单元409无线地发送警告信号,因此鼓起的皮肤表面引起对警告信号的无线电发送。
如图9所示,当使用泄漏检测单元401操作注入器主体101时,注入器主体101一直检测无线电波的接收状态(步骤T1),并将接收状态实时地以条线图的形式显示于液晶显示器103上(步骤T2)。
利用前述操作,在操作注入器主体101的同时,操作员能够实时地确认来自泄漏检测单元401的无线电波的接收状态,并且如果该接收状态不适当,则将调整注入器主体101和泄漏检测单元401的位置。
此外,当如上所述检测到的接收状态下降到预定状态之下时(步骤T3),则注入器主体101将诸如“无法接收无线电波。请确认通信状态”之类的接收警告显示于液晶显示器103上,并可听见地产生来自扬声器单元132的接收警告(步骤T4)。
在这种情况下,由于注入器主体101不接受任何用于恢复注射的输入操作,直到来自泄漏检测单元401的接收状态改善(步骤T3-T5),因此注入器主体101不会开始液体注射操作,除非恢复了正确的接收状态(步骤T6)。
此外,当注入器主体101接受用于开始液体注射的输入操作时(步骤T5,T6),注入器主体101仍然一直检测无线电波的接收状态,以便实时地显示于液晶显示器103上(步骤E1,E2)。
然后,当检测到的接收状态下降到预定状态之下时,注入器主体101从液晶显示器103中产生可视的接收警告并且从扬声器单元132中产生可听的接收警告,以便通知操作员(步骤E3,E4),并且不执行液体注射操作,除非确定接收状态是适当的。
当注射操作以适当的接收状态进行时(步骤E6),注入器主体101响应从无线接收的待机信号到警告信号的改变(步骤E7),从而将诸如“检测到注射针脱离,请确认注射针”之类的泄漏警告显示于液晶显示器103上,并可听见地产生来自扬声器132的泄漏警告(步骤E8)。
在这种情况下,由于暂停了液体注射操作(步骤E9),当注射针212保持与血管501脱离时,将不再继续注射液体。此外,由于继续产生用于通知的泄漏警告,直到对注入器主体101执行预定的复位操作(步骤E10,E11),操作员会确认泄漏警告而不会忽略该警告。
在本实施例的液体注入器100中,当确认了泄漏警告的操作员将注射针212合适地插入血管501中,然后在操作板102上进行操作以便开始注射液体时,液体注入器100能够响应该操作,恢复注射液体(步骤T5,T6)。
此外,当操作员在操作板102上进行操作以便暂停注射时(步骤E12),注入器主体101同样暂停液体的注射(步骤E9)。此外,当排空传感器116检测到液体的注射完成时(步骤E13),注入器主体101完成了液体的注射(步骤E14)。
[实施例的效果]
如上所述,前述实施例的液体注入器100顺序地向手臂500中插入了注射针212的位置发射红外脉冲,并检测在手臂500内反射的那些脉冲信号。然后,液体注入器100计算测量到的每一个脉冲信号的发射和检测之间的时间间隔和参考时间间隔之间的差值,并且如果该差值超过预定可接受范围,则产生泄漏警告,以进行通知。
利用前述的方法,当注射器212脱离血管501,从而泄漏或溢出液体,引起人体手臂500的表面鼓起时,液体注入器100产生泄漏警告,从而允许操作员立即意识到注射针脱离了患者的血管501,以便采取适当的措施。
此外,当检测到注射针212脱离了血管501时,本实施例的液体注入器100自动暂停液体的注射,从而能够自动防止注射针212仍保持脱离血管501时还继续注射液体。
此外,如上所述,由于本实施例的液体注入器100依赖于在皮肤表面识别的鼓起来检测注射针212已脱离了血管501,且依赖于红外射线从人体器官反射的路径长度变化来检测皮肤表面的鼓起,因此液体注入器100能够以简单的结构来检测泄漏液体,而在实质上不会遭受由于干扰导致的精度的下降。
此外,本实施例的液体注入器100存储了测量到的每一个脉冲的发射和检测之间的时间间隔,至少直到下一次测量,并计算当前测量的间隔和用作参考时间间隔的上一次测量到的间隔之间的差值。这种计算差值的方式消除了需要预先设置适当的参考时间间隔的需要,使液体注入器能够成功地检测皮肤表面位置上的变化,而与要监视人体的无论哪一个位置、皮褶厚度的个体差异等等。
此外,由于光电二极管403发射其透过人体手臂500中的特定器官并且由其它特定器官反射的波长的红外脉冲信号,因此可以使该脉冲信号透过人体的表面而从特定器官反射。此外,由于滤光器406只使穿过其到达光电晶体管404的波长的红外射线通过,因此可以防止光电晶体管404错误地检测周围的光噪声。
此外,本实施例的液体注入器100包括与注入器主体101分离的泄漏检测单元401,该泄漏检测单元401包括光电二极管403、光电晶体管404、无线电发送单元409等,所述注入器主体101包括无线电接收单元131、液晶显示器103、扬声器单元132等。
然后,当泄漏检测单元401检测到皮肤上的鼓起时,注入器主体101通过无线电通信产生泄漏警告以进行通知,能够减小直接安放于人体上的泄漏检测单元401的尺寸和重量,以便于其操作。尽管具有这种更小和更轻的结构,泄漏检测单元401也能够确保远离泄漏检测单元401的、手动操作注入器主体101的操作员能够识别泄漏警告。
此外,注入器主体101一直检测来自泄漏检测单元401的无线电信号的接收状态,以便实时地通知该接收状态。这允许操作员能够一直识别泄漏检测单元401和注入器主体101之间的通信状态,并在注射开始之前,对可能存在的不适当的通信状态采取适当的行动。
此外,由于如果检测到的接收状态下降到预定状态之下,则注入器主体101产生接收警告以进行通知,因此液体注入器100能够防止由于通信故障而造成的接收警告信号的失败以及在产生泄漏宣告时所造成的失败。另外,由于如果即使产生了泄漏警告和接收警告之一来进行通知,液体注入器100也会暂停液体注射,因此液体注入器100不但能够在注射针212保持与血管501脱离时自动地防止继续注射液体,而且在其保持不能无线地接收警告信号时,防止继续注射液体。
[实施例的典型修改]
应当理解,本发明并不局限于前述实施例,而是可以在不脱离本发明精神和范围的前提下按照多种方式进行修改。例如,尽管前述实施例已经示出了与泄漏检测单元401集成在一起的液体注入器100,然而,也可以与液体注入器100分离地形成泄漏检测单元401。
但是,由于如上所述,当检测到液体泄漏或溢出时,必须立即暂停液体的注射,因此将液体注入器100与泄漏检测单元401集成在一起是有优势的。因此,当与液体注入器100分离地形成泄漏检测单元401时,最好构造液体注入器100,以使其响应由泄漏检测单元401产生的警告来暂停注射。
此外,尽管前述实施例已经示出了液体注入器100产生泄漏警告和接收警告以进行通知,但是,可以将这种警告发送到MRI设备300的控制单元302,以便将警告显示于液晶显示器304上,进行可视通知。如前所述,由于在远离成像器单元301的位置安装了控制单元302,因此有利地,将所述警告通信到成像器单元301。
此外,尽管前述实施例已经示出了液体注入器100响应泄漏警告来暂停注射,MRI设备300也可以停止与这样的液体注入器100的暂停操作相关的成像。在这种情况下,液体注入器100能够将警告信号直接从泄漏检测单元401发送到MRI设备300,或可选地,从注入器主体101间接地发送警告信号。
尽管基于在MRI设备300的附近使用液体注入器100的假设,已经示出了前述实施例,但是,还可以在CT扫描器、PET设备、血管设备、MRA设备、超声波诊断设备等附近使用液体注入器100。
此外,尽管前述实施例已经示出了泄漏检测单元401通过无线电波信号与注入器主体101进行无线电通信,但液体注入器100可以使用任何通信方案,包括基于无线通信的超声波信号、基于无线通信的光信号、基于有线通信的电信号、基于有线通信的光信号等。
此外,尽管前述实施例已经示出了泄漏检测单元401向人体发射脉冲信号、检测从人体反射的这些红外脉冲信号,并计算测量到的每一个脉冲信号的发射和检测之间的时间间隔与作为上一次测量的间隔的参考时间间隔之间的差值,但是,可以将第一次测量到的间隔定义为参考间隔。
此外,前述实施例已经示出了红外脉冲信号透过人体的特定器官并由其它特定器官反射,由此,泄漏检测单元401检测到注射针212脱离了血管501,利用了由于泄漏液体导致的鼓起的皮肤表面引起了红外脉冲信号发射和检测之间的时间间隔的改变的情况。
但是,当红外脉冲信号透过人体的特定器官而由其它特定器官反射时,泄漏到反射器官之一的液体引起了所反射红外射线波长的变化。考虑到这一点,泄漏检测单元401可以通过测量检测到的红外射线的波长来检测注射针212已脱离了血管501,并将测量到的波长与预定参考波长进行比较。在这种情况下,同样可以将上一次测量到的波长用作参考波长,或将第一次测量到的波长用作参考波长。
此外,尽管前述实施例已经示出了将光电二极管403用作用于产生红外脉冲信号的脉冲产生装置,并且将光电晶体管404用作用于检测红外脉冲信号的脉冲检测装置,但是,例如,可以由用于发射超声波脉冲信号的超声波振动板(未示出)来代替光电二极管403,用作脉冲产生装置,并且可以由用于检测超声波脉冲信号的超声波检测器装置(未示出)代替光电晶体管404,用作脉冲检测装置。由于这样得到的泄漏检测器(未示出)能够按照超声波的方式检测液体的泄漏或溢出,因此在检测中不会受到周围光线的影响。
此外,尽管前述实施例已经示出了泄漏检测单元401安装有每一种各一个的光电二极管403和光电晶体管404,但是,可以由具有排列为如图12a所示矩阵的多个光电二极管403和多个光电晶体管404的泄漏检测单元421来代替泄漏检测单元401,或利用具有排列为如图12b所示的围绕一个光电二极管403的多个光电晶体管404的泄漏检测单元422来代替泄漏检测单元401。由于这样得到的泄漏检测单元能够检测在多个位置处的泄漏液体,因此,其能够检测在精确位置处的泄漏液体。
此外,尽管前述实施例已经示出了用于固定注射针212和用于将泄漏检测单元401粘贴到手臂500上的、由简单透明片制成的粘贴垫213,但是,还可以向由透明片制成的粘贴垫221提供印刷标记222、223,用于表示注射针212和泄漏检测单元401的位置。
在这种情况下,通过将注射针212和泄漏检测单元401与粘贴垫221上的印刷标记222、223对齐,可以按照合适的位置关系来放置注射针212和泄漏检测单元401,从而使得泄漏检测单元401易于检测泄漏的液体,而不会失败。
可选地,如图14所示,可以形成袋状的粘贴垫226以用作保护构件,从而能够将泄漏检测单元401装入粘贴垫226中。在这种情况下,由于可以由作为可替换消耗品的粘贴垫226防止泄漏检测单元401受到破坏和污染,因此可以易于对泄漏检测单元401进行消毒。
此外,如图15所示,可以形成足够小地泄漏检测单元431,其具有在泄漏检测单元431上方由手臂433支撑的CCD(电荷耦合器件)摄像机432,用作成像装置。在这种结构中,由于CCD摄像机432捕获泄漏检测单元431周围的图像,因此可以将所捕获的图像无线地发送到液体注入器100,以便显示于液晶显示器103上。
利用前述方法,当泄漏警告显示于液晶显示器103上时,操作液体注入器100的操作员还可以确认液晶显示器103上的泄漏检测单元431周围的图像。可选地,不会一直显示这种图像,而是只在检测到泄漏液体时显示该图像。
此外,尽管前述实施例已经示出了液体注入器100驱动泄漏警告功能141,以便仅仅通过显示于液晶显示器103上的图像通知泄漏警告,可选地,液体注入器100可以通过液晶显示器103上的图像显示,在由图形显示装置(未示出)表示的趋势图中显示测量到的每一个脉冲信号的时间间隔。
由于当上一次测量到的间隔和当前测量到的间隔之间的差值超过可接受的范围时,前述实施例的液体注入器100确定了泄漏液体,因此,如图16所示,如果液体以极其低的速率泄漏以使在上一次和当前测量到的间隔之间存在极细微的差别,则液体注入器100可能不能够确定泄漏液体。
但是,当如图所示,通过显示于液晶显示器103上的趋势图来表示测量到的间隔时,该趋势图使操作员甚至能够确定缓慢的液体泄漏。
此外,如图17所示,即使上一次测量到的间隔和当前测量到的间隔之间的差值超出了可接受的范围,前述实施例的液体注入器100也可能会遇到暂时错误的检测。但是,可以如图所示来显示所示的趋势图,这使得操作员甚至可以确认泄漏液体的暂时错误检测。
当液体注入器100检测到脉冲信号波长之间的差值,而不是如上所述测量到的间隔之间的差值时,液体注入器100同样能够将测量到的波长显示为趋势图,还可以如由趋势图所表示的,显示从测量到的间隔或测量到的波长中计算得到的差值(均未示出)。
此外,尽管前述实施例已经示出了当检测到泄漏液体时,液体注入器100停止活塞驱动机构113,以便暂停液体的注射,但泄漏检测单元401还包括独立的管阻塞机构(未示出),用于当检测到泄漏液体时阻塞伸缩管211。
可以在安装于伸缩管221上的独立模块结构中形成这样的管阻塞机构,该独立模块结构用于进行与泄漏检测单元401和/或检测器主体101的无线或有线通信。这种管阻塞机构还可以具有下述特点:当检测到液体泄漏时,利用诸如用于阻塞伸缩管211的螺线管之类的驱动源,开启/关闭伸缩管211。
由于当检测到泄漏液体时,这种泄漏检测器独立地阻塞伸缩管211,因此液体注入器100能够自动暂停液体的注射,即使这与泄漏检测器不相关。
此外,尽管前述实施例已经示出了微处理器130根据安装于其中从而在逻辑上实现注入器主体101的多种功能141-146的计算机程序进行操作,但至少可以在诸如专用逻辑电路之类的硬件中形成多个功能141-144中的某些功能。
相反地,尽管前述实施例已经示出了在给定硬件中形成泄漏检测单元401的多个电路411-414,但可以例如通过根据安装于其中的计算机程序运行的微处理器来在逻辑上实现电路411-414的功能。
此外,尽管前述实施例已经示出了将一个液体注射器200安装于液体注入器100的一个凹槽112中,但可以将多个液体注射器200安装于注射头的多个凹槽中(未示出)。
此外,前述实施例示出了直接将液体注射器200安装于液体注入器100中。但是,由于目前液体注射器200在商业上有多种尺寸,因此,可能只能将例如最大尺寸液体注射器200直接安装于液体注入器100中,但通过各个专用的圆筒适配器(未示出),可以将除最大尺寸之外的多个尺寸的液体注射器200安装于液体注入器100中。