一种优化超导带材BI2223相中氧含量的方法和因而制得的超导导线.pdf

上传人:b*** 文档编号:1568363 上传时间:2018-06-25 格式:PDF 页数:14 大小:458.76KB
返回 下载 相关 举报
摘要
申请专利号:

CN201310038446.9

申请日:

2013.02.01

公开号:

CN103173705A

公开日:

2013.06.26

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C22F 1/16申请日:20130201|||公开

IPC分类号:

C22F1/16; H01B12/00

主分类号:

C22F1/16

申请人:

北京英纳超导技术有限公司

发明人:

宋秀华; 孙海波

地址:

100176 北京市北京经济技术开发区荣昌东街7号隆盛工业园103单元

优先权:

专利代理机构:

代理人:

PDF下载: PDF下载
内容摘要

本发明涉及一种优化超导带材Bi-2223相中氧含量的方法及使用这种方法制备的超导导线。所述方法包括:将前驱粉压制成粉棒并装入纯银管中形成短坯;将短坯拉拔成为单芯导线并截成多段装入银合金管中,再次拉拔得到多芯导线;多芯导线轧制成生带;将生带进行发生超导转变的常规热处理,并伴随中间变形;完成常规热处理之后,再进行至少一次的热处理。所述热处理为一次热处理、二次热处理或三次热处理;氧分压范围均为0.5~20%。Tc提高到118K,Ic提高到160A。通过本发明的创新,使得Bi-2223相中的氧含量达到了最佳值,近而提高了Tc和Ic,同时最大程度的减少了第二相的存在,提高了Bi-2223相的含量,净化晶界,促进了Bi-2223晶粒的排列和连接,改善了磁场性能。

权利要求书

权利要求书
1.   一种优化超导带材Bi‑2223相中氧含量的方法,其按照先后顺序包括以下步骤:
1)把已经过预处理的前驱粉压制成为粉棒,将其装入纯银管中并密封好形成一个短坯;
2)将短坯经过拉拔后形成具有一定尺寸和横截面积的单芯超导导线,把单芯导线截成多段并束集在一起,再次装入银合金管中并进行拉拔,得到多芯超导导线;
3)多芯导线再通过轧机轧制成为生带;
4)将生带进行发生超导转变的常规热处理,并伴随中间变形;
5)在步骤4)的常规热处理完成之后,再进行至少一次的热处理;
所述热处理的工艺参数为温度、保温时间和氧分压,其特征在于:所述热处理为一次热处理、二次热处理或三次热处理;所述一次热处理的氧分压范围为0.5~20%;所述二次热处理的氧分压范围为0.5~20%;所述三次热处理的氧分压范围为0.5~20%。

2.   根据权利要求1所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述一次热处理工艺中,氧分压保持不变或改变。

3.   根据权利要求1或2所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述一次热处理工艺中,温度保持不变或改变。

4.   根据权利要求1所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述二次热处理工艺中,两次热处理的氧分压相同或不相同。

5.   根据权利要求1或4所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述二次热处理工艺中,每一次热处理的氧分压保持不变或改变。

6.   根据权利要求1所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述二次热处理工艺中,两次热处理的温度相同或不相同。

7.   根据权利要求1或6所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述二次热处理工艺中,每一次热处理的温度保持不变或改变。

8.   根据权利要求1所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述三次热处理工艺中,三次热处理的氧分压相同或至少有一次热处理的氧分压与另外两次热处理的氧分压不相同。

9.   根据权利要求1或8所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述三次热处理工艺中,每一次热处理的氧分压保持不变或至少有一次热处理的氧分压改变。

10.   根据权利要求1所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述三次热处理工艺中,三次热处理的温度相同或至少有一次热处理的温度与另外两次热处理的温度不相同。

11.   根据权利要求1或10所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:在所述三次热处理工艺中,每一次热处理的温度保持不变或至少有一次热处理的温度改变。

12.   根据权利要求1~3中任一项所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:所述一次热处理的温度为400℃~845℃、保温时间为10~1000h。

13.   根据权利要求4~7中任一项所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:所述二次热处理的温度为400℃~845℃、保温时间为10~1000h。

14.   根据权利要求8~11中任一项所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:所述三次热处理的温度为400℃~845℃、保温时间为10~1000h。

15.   根据权利要求12所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:经过所述一次热处理工艺后,Bi‑2223相的Tc为110K~116K。

16.   根据权利要求13所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:经过所述二次热处理工艺后,Bi‑2223相的Tc为110K~116K。

17.   根据权利要求14所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:经过所述三次热处理工艺后,Bi‑2223相的Tc为110K~118K。

18.   根据权利要求1~17中任一项所述的优化超导带材Bi‑2223相中氧含量的方法,其特征在于:所述氧分压为一定值的氩氧混合气。

19.   一种超导导线,其特征在于:超导导线为采用权利要求1~18中任何一种方法制备。

说明书

说明书一种优化超导带材Bi‑2223相中氧含量的方法和因而制得的超导导线
技术领域
本发明涉及一种Bi系高温超导导线,特别是涉及一种优化超导带材Bi‑2223相中氧含量的方法,以及采用此方法制备的超导导线。
背景技术
随着高温超导技术应用的日趋广泛,市场对高温超导导线的需求也越来越大。目前Bi系高温超导导线是唯一能够进行大规模生产的高温超导导线,其制备方法是将经过预处理的前驱体粉末填充到银或银合金管中,然后经过拉拔、轧制等机加工工艺成型,最后进行热处理,简称粉末套管法。
1、前驱粉预处理:前驱粉的预处理包括前驱粉的合成与焙烧,将金属氧化物(或无机酸盐、有机酸盐)原料按一定的名义成分比配料,经过一系列的化学工艺合成和焙烧过程后成为超导前驱粉。
2、机加工工艺成型:把前驱粉压制成为具有一定尺寸的粉棒,将其装入银管中并密封好形成一个短坯;然后短坯在拉拔机上经过多道次拉拔后形成较细的单芯线,将长单芯线截成多根短线并束集在一起,再次装入银合金管中;再经过一系列连续的拉拔工艺后,得到具有要求直径的多芯线;多芯线通过轧机进行轧制而成形为扁带,即生带。
3、热处理:将制成的单芯或多芯生带放入热处理炉中,在一定的条件下进行热处理。热处理过程一般要进行多次,期间有中间变形过程,目的是将银套管内的超导前驱粉充分转化为高温超导相Bi‑2223相,并最终形成具有较强C轴织构的超导带材。
在Bi系高温超导导线的制备过程中,热处理过程起着至关重要的作用,该过程使材料具有超导性能。在带材中生成单相的Bi‑2223超导相是非常困难的,这是因为Bi‑2223/Ag超导带材的超导芯是一个多元、多相的体系,相平衡关系非常复杂,Bi‑2223相的单相区仅在很窄的温度和氧分压范围内存在,因此热处理工艺的精确性对超导带材最终性能有较大的影响,热处理工艺的温度、保温时间和氧分压三个参数的控制在这里非常重要。
现有技术中,通常采用优化相组成的方法来改善晶界,增加晶粒连接,提高临界转变温度(Tc),近而提高临界电流(Ic)。申请号为JP2007087813‑A的发明专利公开了一种Bi系超导体和超导材料,及其制备方法。申请号为200780008715.X的发明专利公开了一种氧化物超导材料,其制造方法,以及使用该超导材料的超导线。上述现有技术过于强调提高Tc,忽视了因提高Tc而失去太多的氧,从而造成Bi‑2223相中氧含量的减少,而Bi‑2223相中氧含量的适中是提高带材超导性能的基础。通过上述现有技术,尽管Bi‑2223相的含量有所增加,含铅相有所减少,带材的性能也有了很大的提高,但是仍然存在较多的第二相,这对提高超导带材的性能有很大的影响,因此本发明通过进一步调整热处理工艺的温度、保温时间和氧分压的方法使Bi‑2223相中的氧含量达到最佳值,同时最大程度的减少第二相的存在,提高Bi‑2223相的含量,净化晶界,增加晶粒的连接,从而提高带材的超导性能。
发明内容
本发明克服了现有技术中的不足,在此提供一种提高Bi‑2223相的含量,净化晶界,促进Bi‑2223晶粒的排列和连接,从而提高带材的超导性能的方法。
为解决上述存在的技术问题,本发明采用的技术方案是:优化超导带材Bi‑2223相中的氧含量,其按照先后顺序包括以下步骤:1)把已经过预处理的前驱粉压制成为粉棒,将其装入纯银管中并密封好形成一个短坯;2)将短坯经过拉拔后形成具有一定尺寸和横截面积的单芯超导导线,把单芯导线截成多段并束集在一起,再次装入银合金管中并进行拉拔,得到多芯超导导线;3)多芯导线再通过轧机轧制成为生带;4)将生带进行发生超导转变的常规热处理,并伴随中间变形;5)在步骤4)的常规热处理完成之后,再进行至少一次的热处理。热处理的工艺参数为温度、保温时间和氧分压。所述热处理为一次热处理、二次热处理或三次热处理,一次热处理的氧分压范围为0.5~20%,二次热处理的氧分压范围为0.5~20%,三次热处理的氧分压范围为0.5~20%。
本发明的优点是通过改变热处理工艺的温度、保温时间和氧分压三个参数,使得Bi‑2223相中的氧含量达到了最佳值,近而提高了超导临界转变温度(Tc),同时最大程度的减少了第二相的存在,提高了Bi‑2223相的含量,改善了晶界,促进了Bi‑2223晶粒的排列和连接,提高了超导带材的临界电流(Ic),并改善了磁场性能。
Bi系高温超导带材是复杂的复合材料体系,带材中所包含的物相主要分为两大类:超导相和第二相(非超导相)。超导相又包含三种类型:Bi‑2201相,具有1个Cu‑O层,其Tc约为20K;Bi‑2212相,具有2个Cu‑O层,其Tc约为80K;Bi‑2223相,具有3个Cu‑O层,其Tc约为110K。它们的Tc都受到其氧含量的影响,可以在较大的范围内变化。Bi‑2223相是最终带材中所需要的超导相,它直接影响着带材的最终性能,因此在热处理过程中一定要获得更高含量的Bi‑2223相。
经过轧制且未进行热处理的带材一般称之为生带。生带中主要包含Bi‑2212相以及其他非超导相。为了生成Bi‑2223相,一般需要经过多次反复的形变热处理过程,热处理工艺的参数有温度、保温时间、氧分压和升降温速率等。为使Bi‑2223相中的氧含量达到最佳值,最主要的是改变热处理过程中的氧分压,同时还要精确控制其他几个工艺参数,使热处理过程中的几个参数相互配合达到最佳的范围。
在带材的热处理过程中,氧分压越高,Bi‑2223相的稳定存在区域的温度也越高,还会有大量的第二相包括液相的生成;氧分压越低,Bi‑2223相的生成也越缓慢。本发明的实验结果显示,在0.5~20%的氧分压下,Bi‑2223相的稳定区间最宽,且最适合Bi‑2223相的生成。
对于Bi系高温超导带材,所有第二相都不是希望得到的,但第二相又是超导带材制备过程中不可避免存在的杂相,它的含量、类型和形态分布对带材的超导性能有很大的影响,特别是大颗粒的第二相会降低带材的性能。因此,在最终热处理后的带材中,应尽可能地减小第二相的尺寸及含量。在第二相中,CuO相的存在对带材超导性能的影响非常大。在目前观察到的几种第二相中,CuO粒子的强度最高,在轧制或压制过程中不容易碎化,因而CuO粒子的存在会使随后的机加工变形过程中的Bi‑2223晶粒的排列变差,甚至使完好的Bi‑2223晶团发生断裂,因此必须通过调整热处理工艺来控制带材中CuO相的出现。
优选的是,在所述一次热处理工艺中,氧分压保持不变或改变。氧分压范围为0.5~20%。因为Bi系导线的热处理需要一定的氧分压,而氧分压最低为0.5%才能适合Bi‑2223晶粒的生长,但是最高不能超导20%。在该氧分压范围内可以使得超导芯内部有液相生成,并且适合于BSCCO‑2212或BSCCO‑2223晶粒的进一步生长,从而有利于部分孔隙和裂纹的愈合,同时能够防止其它第二相的异常生长。
优选的是,在所述一次热处理工艺中,温度保持不变或改变。一次热处理工艺的温度范围为400℃~845℃。在该温度范围内进行热处理更有利于液相的生成,以及适合BSCCO‑2212或BSCCO‑2223晶粒的生长,并且防止其它第二相的异常生长。
优选的是,在所述二次热处理工艺中,两次热处理的氧分压相同或不相同。
优选的是,在所述二次热处理工艺中,每一次热处理的氧分压保持不变或改变。
二次热处理工艺的氧分压范围为0.5~20%。二次热处理工艺中所选氧分压范围的优势与一次热处理的相同。
优选的是,在所述二次热处理工艺中,两二次热处理的温度相同或不相同。
优选的是,在所述二次热处理工艺中,每一次热处理的温度保持不变或改变。
二次热处理工艺的温度范围为400℃~845℃。二次热处理工艺中所选温度范围的优势与一次热处理的相同。
优选的是,在所述三次热处理工艺中,三次热处理的氧分压相同或至少有一次热处理的氧分压与另外两次热处理的氧分压不相同。
优选的是,在所述三次热处理工艺中,每一次热处理的氧分压保持不变或至少有一次热处理的氧分压改变。
三次热处理工艺的氧分压范围为0.5~20%。三次热处理工艺中所选氧分压范围的优势与一次热处理和二次热处理的相同。
优选的是,在所述三次热处理工艺中,三次热处理的温度相同或至少有一次热处理的温度与另外两次热处理的温度不相同。
优选的是,在所述三次热处理工艺中,每一次热处理的温度保持不变或至少有一次热处理的温度改变。
三次热处理工艺的温度范围为400℃~845℃。三次热处理工艺中所选温度范围的优势与一次热处理和二次热处理的相同。
优选的是,所述一次热处理、二次热处理和三次热处理工艺的保温时间均为10~1000h。因为保温时间太短,不利于超导芯内部孔隙和裂纹的愈合,而保温时间太长,生成的第二相尺寸较大,不利于进一步提高导线的导电性能,并且也会降低生产效率。
优选的是,经过所述一次热处理工艺后,Bi‑2223相的Tc为110K~116K;经过所述二次热处理工艺后,Bi‑2223相的Tc为110K~116K;经过所述三次热处理工艺后,Bi‑2223相的Tc为110K~118K。
本发明通过进一步优化热处理工艺的氧分压、温度和保温时间三个参数,使得Bi‑2223相的氧含量达到最佳值,近而提高了Tc和Ic。本发明的实验结果显示,采用一次热处理工艺后,Bi‑2223相的Tc明显提高,Tc为110K~116K,Ic为120A~150A;采用二次热处理工艺后,Bi‑2223相的Tc也有明显的提高,Tc为110K~116K,Ic为125A~155A;采用三次热处理工艺后,Bi‑2223相的Tc有了进一步提高,Tc为110K~118K,Ic为130A~160A。
优选的是,所述氧分压为一定值的氩氧混合气。因为氩气是惰性气体,十分稳定,不参与任何反应。
本发明的另一目的在于提供一种利用上述方法制备的超导导线。将适当配比的前驱粉填充到纯银管内,经拉拔后形成具有一定尺寸和横截面积的单芯超导导线,然后将上述单芯超导导线截成多段装入银合金管内形成多芯结构,再经拉拔、轧制成为具有一定宽厚比的生带材,再将生带进行发生超导转变的常规热处理,并伴随中间变形,最后在常规热处理完成之后进行至少一次的热处理,即本发明的一次热处理、二次热处理或三次热处理,所述热处理的工艺为利用本发明的热处理参数进行。
采用本发明制备的超导导线具有以下优点:(1)具有较高的Tc;(2)具有较高的Ic;(3)改善了磁场性能。
附图说明
下面将结合附图对本发明的具体实施例进行详细描述,其中:
图1为按照本发明的方法制备的Bi系高温超导导线的工艺流程图;
图2为按照本发明的完成常规热处理后的一次热处理的一优选实施例的热处理曲线图;
图3为按照本发明的完成常规热处理后的二次热处理的一优选实施例的热处理曲线图;
图4为按照本发明的完成常规热处理后的三次热处理的一优选实施例的热处理曲线图。
具体实施方式
将一定配比的前驱粉经过预处理后压制成为粉棒,将粉棒装入纯银管内并密封好形成一个短坯;然后将短坯经过多道次拉拔,形成直径为2.0mm的单芯超导导线,期间经过多次退火以消除拉拔过程中产生的加工硬化;将上述单芯导线截成多段并束集在一起装入银合金管内;再经过一系列连续的拉拔工艺后,得到直径为1.9mm的多芯超导导线,整个拉拔过程中需经过多次退火以消除加工硬化;再将多芯导线进行轧制形成扁带材,即生带,生带的宽度为4.5mm,厚度为0.35mm;再将生带进行发生超导转变的常规热处理,并伴随中间变形;最后在完成常规热处理后,再进行至少一次的热处理。按照本发明的方法制备的Bi系高温超导导线的工艺流程图如图1所示。
按照本发明的完成常规热处理后的热处理工艺的具体实施方式如下:
实施例一:
热处理工艺:一次热处理(HT1),氧分压为0.5%,温度为400℃,保温时间为500h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为110K,临界电流(Ic)为127A。
实施例二:
热处理工艺:一次热处理(HT1),氧分压为10%,温度为455℃,保温时间为10h;升高温度到620℃,继续保温120h,氧分压保持不变。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为113K,临界电流(Ic)为120A。
实施例三:
热处理工艺:一次热处理(HT1),温度为845℃,氧分压为20%,保温时间为250h;将氧分压降低到17.5%,继续保温20h,温度保持不变。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为111.5K,临界电流(Ic)为135A。
实施例四:
热处理工艺:一次热处理(HT1),温度为730℃,氧分压为15.2%,保温时间为745h;将温度降低到560℃,氧分压降低到12.3%,继续保温322h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为114.6K,临界电流(Ic)为142A。
实施例五:
热处理工艺:一次热处理(HT1),温度为788℃,氧分压为3.2%,保温时间为25h;将氧分压升高到19.2%,继续保温1000h,温度保持不变。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为116K,临界电流(Ic)为150A。
实施例六:
热处理工艺:一次热处理(HT1),温度为670℃,氧分压为7.2%,保温时间为882h;将温度升高到810℃,氧分压升高到11.4%,继续保温615h。按照本实施例的完成常规热处理后的一次热处理的曲线如图2所示。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为115K,临界电流(Ic)为149A。
实施例七:
热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为0.5%,温度为400℃,保温时间为1000h;第二次热处理(HT2)的氧分压为7.5%,温度为565℃,保温时间为500h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为110K,临界电流(Ic)为140A。
实施例八:
热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为20%,温度为845℃,保温时间为10h;第二次热处理(HT2)的氧分压为15%,温度为730℃,保温时间为250h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为116K,临界电流(Ic)为147A。
实施例九:
热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为2.5%,温度为455℃,保温时间为750h;第二次热处理(HT2)的氧分压为12.5%,温度为675℃,保温时间为120h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为113K,临界电流(Ic)为125A。
实施例十:
热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为17.5%,温度为785℃,保温时间为325h;第二次热处理(HT2)的氧分压为17.5%,温度为785℃,保温时间为625h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为115K,临界电流(Ic)为155A。
实施例十一:
热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为5.0%,温度为510℃,保温时间为875h;第二次热处理(HT2)的氧分压为10%,温度为620℃,保温时间为100h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为114K,临界电流(Ic)为150A。
实施例十二:
热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为2.0%,温度为420℃,保温时间为200h,然后氧分压升高到7.0%,温度升高到550℃,继续保温550小时;第二次热处理(HT2)的氧分压为8.0%,温度为580℃,保温时间为180h,然后氧分压升高到11%,温度升高到650℃,继续保温105小时。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为115K,临界电流(Ic)为145A。
实施例十三:
热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为18%,温度为800℃,保温时间为305h,然后氧分压降低到15.5%,温度降低到740℃,继续保温450小时;第二次热处理(HT2)的氧分压为8.5%,温度为590℃,保温时间为600h,然后氧分压升高到9.5%,温度升高到610℃,继续保温110小时。按照本实施例的完成常规热处理后的二次热处理的曲线如图3所示。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为112K,临界电流(Ic)为137A。
实施例十四:
热处理工艺:二次热处理,第一次热处理(HT1)的温度为500℃,氧分压为2.5%,保温200h,然后氧分压升高到5.5%,继续保温130小时;第二次热处理(HT2)的温度为600℃,氧分压为8.5%,保温170h,然后氧分压升高到10.5%,继续保温210小时。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为112K,临界电流(Ic)为135A。
实施例十五:
热处理工艺:二次热处理,第一次热处理(HT1)的温度为750℃,氧分压为17.5%,保温700h,然后氧分压降低到15%,继续保温330小时;第二次热处理(HT2)的温度为700℃,氧分压为15.5%,保温160h,然后氧分压降低到12%,继续保温420小时。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为114K,临界电流(Ic)为155A。
实施例十六:
热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为0.5%,温度为400℃,保温时间为500h;第二次热处理(HT2)的氧分压为0.5%,温度为400℃,保温时间为400h;第三次热处理(HT3)的氧分压为0.5%,温度为400℃,保温时间为600h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为110K,临界电流(Ic)为137A。
实施例十七:
热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为2.5%,温度为455℃,保温时间为1000h;第二次热处理(HT2)的氧分压为5%,温度为510℃,保温时间为875h;第三次热处理(HT3)的氧分压为5%,温度为510℃,保温时间为750h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为114K,临界电流(Ic)为145A。
实施例十八:
热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为7.5%,温度为565℃,保温时间为325h;第二次热处理(HT2)的氧分压为10%,温度为620℃,保温时间为625h;第三次热处理(HT3)的氧分压为12.5%,温度为675℃,保温时间为250h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为118K,临界电流(Ic)为132A。
实施例十九:
热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为17.5%,温度为785℃,保温时间为10h;第二次热处理(HT2)的氧分压为15%,温度为730℃,保温时间为50h;第三次热处理(HT3)的氧分压为20%,温度为845℃,保温时间为20h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为116K,临界电流(Ic)为150A。
实施例二十:
热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为9.5%,温度为605℃,保温时间为400h;第二次热处理(HT2)的氧分压为8.5%,温度为590℃,保温时间为100h;第三次热处理(HT3)的氧分压为7%,温度为545℃,保温时间为900h。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为112K,临界电流(Ic)为130A。
实施例二十一:
热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为0.5%,温度为400℃,保温时间为20h,然后氧分压升高到2.0%,温度升高到430℃,继续保温50小时;第二次热处理(HT2)的氧分压为5.5%,温度为550℃,保温时间为80h,然后氧分压降低到3.0%,温度降低到480℃,继续保温10小时;第三次热处理(HT3)的氧分压为9.5%,温度为605℃,保温时间为100h,然后氧分压升高到11%,温度升高到650℃,继续保温200小时。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为115K,临界电流(Ic)为152A。
实施例二十二:
热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为19.5%,温度为840℃,保温时间为200h,然后氧分压降低到17%,温度降低到770℃,继续保温500小时;第二次热处理(HT2)的氧分压为12%,温度为680℃,保温时间为800h,然后氧分压升高到14%,温度升高到720℃,继续保温100小时;第三次热处理(HT3)的氧分压为9.5%,温度为605℃,保温时间为50h,然后氧分压升高到11%,温度升高到650℃,继续保温200小时。按照本实施例的完成常规热处理后的三次热处理的曲线如图4所示。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为117K,临界电流(Ic)为160A。
实施例二十三:
热处理工艺:三次热处理,第一次热处理(HT1)的温度为420℃,氧分压为0.5%,保温100h,然后氧分压升高到3.0%,继续保温150小时;第二次热处理(HT2)的温度为600℃,氧分压为9.5%,保温180h,然后氧分压升高到11.5%,继续保温220小时;第三次热处理(HT3)的温度为500℃,氧分压为5.5%,保温30h,然后氧分压降低到3.5%,继续保温170小时。
经过上述热处理过程后,超导带材的临界转变温度(Tc)为118K,临界电流(Ic)为158A。
本领域技术人员不难理解,本发明的提高高温超导带材Bi‑2223相中氧含量的方法及使用这种方法制备的超导导线包括上述本发明的说明书的发明内容和具体实施方式部分以及附图所示出的各部分的任意组合,虽然限于篇幅并为使说明书简明而没有将这些组合构成的各方案一一描述。

一种优化超导带材BI2223相中氧含量的方法和因而制得的超导导线.pdf_第1页
第1页 / 共14页
一种优化超导带材BI2223相中氧含量的方法和因而制得的超导导线.pdf_第2页
第2页 / 共14页
一种优化超导带材BI2223相中氧含量的方法和因而制得的超导导线.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《一种优化超导带材BI2223相中氧含量的方法和因而制得的超导导线.pdf》由会员分享,可在线阅读,更多相关《一种优化超导带材BI2223相中氧含量的方法和因而制得的超导导线.pdf(14页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 103173705 A(43)申请公布日 2013.06.26CN103173705A*CN103173705A*(21)申请号 201310038446.9(22)申请日 2013.02.01C22F 1/16(2006.01)H01B 12/00(2006.01)(71)申请人北京英纳超导技术有限公司地址 100176 北京市北京经济技术开发区荣昌东街7号隆盛工业园103单元(72)发明人宋秀华 孙海波(54) 发明名称一种优化超导带材Bi-2223相中氧含量的方法和因而制得的超导导线(57) 摘要本发明涉及一种优化超导带材Bi-2223相中氧含量的方法及使用这种。

2、方法制备的超导导线。所述方法包括:将前驱粉压制成粉棒并装入纯银管中形成短坯;将短坯拉拔成为单芯导线并截成多段装入银合金管中,再次拉拔得到多芯导线;多芯导线轧制成生带;将生带进行发生超导转变的常规热处理,并伴随中间变形;完成常规热处理之后,再进行至少一次的热处理。所述热处理为一次热处理、二次热处理或三次热处理;氧分压范围均为0.520。Tc提高到118K,Ic提高到160A。通过本发明的创新,使得Bi-2223相中的氧含量达到了最佳值,近而提高了Tc和Ic,同时最大程度的减少了第二相的存在,提高了Bi-2223相的含量,净化晶界,促进了Bi-2223晶粒的排列和连接,改善了磁场性能。(51)In。

3、t.Cl.权利要求书2页 说明书8页 附图3页(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书2页 说明书8页 附图3页(10)申请公布号 CN 103173705 ACN 103173705 A1/2页21.一种优化超导带材Bi-2223相中氧含量的方法,其按照先后顺序包括以下步骤:1)把已经过预处理的前驱粉压制成为粉棒,将其装入纯银管中并密封好形成一个短坯;2)将短坯经过拉拔后形成具有一定尺寸和横截面积的单芯超导导线,把单芯导线截成多段并束集在一起,再次装入银合金管中并进行拉拔,得到多芯超导导线;3)多芯导线再通过轧机轧制成为生带;4)将生带进行发生超导转变的常规热处理,。

4、并伴随中间变形;5)在步骤4)的常规热处理完成之后,再进行至少一次的热处理;所述热处理的工艺参数为温度、保温时间和氧分压,其特征在于:所述热处理为一次热处理、二次热处理或三次热处理;所述一次热处理的氧分压范围为0.520;所述二次热处理的氧分压范围为0.520;所述三次热处理的氧分压范围为0.520。2.根据权利要求1所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述一次热处理工艺中,氧分压保持不变或改变。3.根据权利要求1或2所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述一次热处理工艺中,温度保持不变或改变。4.根据权利要求1所述的优化超导带材Bi-2。

5、223相中氧含量的方法,其特征在于:在所述二次热处理工艺中,两次热处理的氧分压相同或不相同。5.根据权利要求1或4所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述二次热处理工艺中,每一次热处理的氧分压保持不变或改变。6.根据权利要求1所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述二次热处理工艺中,两次热处理的温度相同或不相同。7.根据权利要求1或6所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述二次热处理工艺中,每一次热处理的温度保持不变或改变。8.根据权利要求1所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述三。

6、次热处理工艺中,三次热处理的氧分压相同或至少有一次热处理的氧分压与另外两次热处理的氧分压不相同。9.根据权利要求1或8所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述三次热处理工艺中,每一次热处理的氧分压保持不变或至少有一次热处理的氧分压改变。10.根据权利要求1所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述三次热处理工艺中,三次热处理的温度相同或至少有一次热处理的温度与另外两次热处理的温度不相同。11.根据权利要求1或10所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:在所述三次热处理工艺中,每一次热处理的温度保持不变或至少有一次热处理。

7、的温度改变。12.根据权利要求13中任一项所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:所述一次热处理的温度为400845、保温时间为101000h。13.根据权利要求47中任一项所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:所述二次热处理的温度为400845、保温时间为101000h。权 利 要 求 书CN 103173705 A2/2页314.根据权利要求811中任一项所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:所述三次热处理的温度为400845、保温时间为101000h。15.根据权利要求12所述的优化超导带材Bi-2223相中氧含量的方。

8、法,其特征在于:经过所述一次热处理工艺后,Bi-2223相的Tc为110K116K。16.根据权利要求13所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:经过所述二次热处理工艺后,Bi-2223相的Tc为110K116K。17.根据权利要求14所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:经过所述三次热处理工艺后,Bi-2223相的Tc为110K118K。18.根据权利要求117中任一项所述的优化超导带材Bi-2223相中氧含量的方法,其特征在于:所述氧分压为一定值的氩氧混合气。19.一种超导导线,其特征在于:超导导线为采用权利要求118中任何一种方法制备。权 利。

9、 要 求 书CN 103173705 A1/8页4一种优化超导带材 Bi-2223 相中氧含量的方法和因而制得的超导导线技术领域0001 本发明涉及一种Bi系高温超导导线,特别是涉及一种优化超导带材Bi-2223相中氧含量的方法,以及采用此方法制备的超导导线。背景技术0002 随着高温超导技术应用的日趋广泛,市场对高温超导导线的需求也越来越大。目前Bi系高温超导导线是唯一能够进行大规模生产的高温超导导线,其制备方法是将经过预处理的前驱体粉末填充到银或银合金管中,然后经过拉拔、轧制等机加工工艺成型,最后进行热处理,简称粉末套管法。0003 1、前驱粉预处理:前驱粉的预处理包括前驱粉的合成与焙烧,。

10、将金属氧化物(或无机酸盐、有机酸盐)原料按一定的名义成分比配料,经过一系列的化学工艺合成和焙烧过程后成为超导前驱粉。0004 2、机加工工艺成型:把前驱粉压制成为具有一定尺寸的粉棒,将其装入银管中并密封好形成一个短坯;然后短坯在拉拔机上经过多道次拉拔后形成较细的单芯线,将长单芯线截成多根短线并束集在一起,再次装入银合金管中;再经过一系列连续的拉拔工艺后,得到具有要求直径的多芯线;多芯线通过轧机进行轧制而成形为扁带,即生带。0005 3、热处理:将制成的单芯或多芯生带放入热处理炉中,在一定的条件下进行热处理。热处理过程一般要进行多次,期间有中间变形过程,目的是将银套管内的超导前驱粉充分转化为高温。

11、超导相Bi-2223相,并最终形成具有较强C轴织构的超导带材。0006 在Bi系高温超导导线的制备过程中,热处理过程起着至关重要的作用,该过程使材料具有超导性能。在带材中生成单相的Bi-2223超导相是非常困难的,这是因为Bi-2223/Ag超导带材的超导芯是一个多元、多相的体系,相平衡关系非常复杂,Bi-2223相的单相区仅在很窄的温度和氧分压范围内存在,因此热处理工艺的精确性对超导带材最终性能有较大的影响,热处理工艺的温度、保温时间和氧分压三个参数的控制在这里非常重要。0007 现有技术中,通常采用优化相组成的方法来改善晶界,增加晶粒连接,提高临界转变温度(Tc),近而提高临界电流(Ic)。

12、。申请号为JP2007087813-A的发明专利公开了一种Bi系超导体和超导材料,及其制备方法。申请号为200780008715.X的发明专利公开了一种氧化物超导材料,其制造方法,以及使用该超导材料的超导线。上述现有技术过于强调提高Tc,忽视了因提高Tc而失去太多的氧,从而造成Bi-2223相中氧含量的减少,而Bi-2223相中氧含量的适中是提高带材超导性能的基础。通过上述现有技术,尽管Bi-2223相的含量有所增加,含铅相有所减少,带材的性能也有了很大的提高,但是仍然存在较多的第二相,这对提高超导带材的性能有很大的影响,因此本发明通过进一步调整热处理工艺的温度、保温时间和氧分压的方法使Bi-。

13、2223相中的氧含量达到最佳值,同时最大程度的减少第二相的存在,提高Bi-2223相的含量,净化晶界,增加晶粒的连接,从而提高带材的超导性能。说 明 书CN 103173705 A2/8页5发明内容0008 本发明克服了现有技术中的不足,在此提供一种提高Bi-2223相的含量,净化晶界,促进Bi-2223晶粒的排列和连接,从而提高带材的超导性能的方法。0009 为解决上述存在的技术问题,本发明采用的技术方案是:优化超导带材Bi-2223相中的氧含量,其按照先后顺序包括以下步骤:1)把已经过预处理的前驱粉压制成为粉棒,将其装入纯银管中并密封好形成一个短坯;2)将短坯经过拉拔后形成具有一定尺寸和横。

14、截面积的单芯超导导线,把单芯导线截成多段并束集在一起,再次装入银合金管中并进行拉拔,得到多芯超导导线;3)多芯导线再通过轧机轧制成为生带;4)将生带进行发生超导转变的常规热处理,并伴随中间变形;5)在步骤4)的常规热处理完成之后,再进行至少一次的热处理。热处理的工艺参数为温度、保温时间和氧分压。所述热处理为一次热处理、二次热处理或三次热处理,一次热处理的氧分压范围为0.520,二次热处理的氧分压范围为0.520,三次热处理的氧分压范围为0.520。0010 本发明的优点是通过改变热处理工艺的温度、保温时间和氧分压三个参数,使得Bi-2223相中的氧含量达到了最佳值,近而提高了超导临界转变温度(。

15、Tc),同时最大程度的减少了第二相的存在,提高了Bi-2223相的含量,改善了晶界,促进了Bi-2223晶粒的排列和连接,提高了超导带材的临界电流(Ic),并改善了磁场性能。0011 Bi系高温超导带材是复杂的复合材料体系,带材中所包含的物相主要分为两大类:超导相和第二相(非超导相)。超导相又包含三种类型:Bi-2201相,具有1个Cu-O层,其Tc约为20K;Bi-2212相,具有2个Cu-O层,其Tc约为80K;Bi-2223相,具有3个Cu-O层,其Tc约为110K。它们的Tc都受到其氧含量的影响,可以在较大的范围内变化。Bi-2223相是最终带材中所需要的超导相,它直接影响着带材的最终。

16、性能,因此在热处理过程中一定要获得更高含量的Bi-2223相。0012 经过轧制且未进行热处理的带材一般称之为生带。生带中主要包含Bi-2212相以及其他非超导相。为了生成Bi-2223相,一般需要经过多次反复的形变热处理过程,热处理工艺的参数有温度、保温时间、氧分压和升降温速率等。为使Bi-2223相中的氧含量达到最佳值,最主要的是改变热处理过程中的氧分压,同时还要精确控制其他几个工艺参数,使热处理过程中的几个参数相互配合达到最佳的范围。0013 在带材的热处理过程中,氧分压越高,Bi-2223相的稳定存在区域的温度也越高,还会有大量的第二相包括液相的生成;氧分压越低,Bi-2223相的生成。

17、也越缓慢。本发明的实验结果显示,在0.520的氧分压下,Bi-2223相的稳定区间最宽,且最适合Bi-2223相的生成。0014 对于Bi系高温超导带材,所有第二相都不是希望得到的,但第二相又是超导带材制备过程中不可避免存在的杂相,它的含量、类型和形态分布对带材的超导性能有很大的影响,特别是大颗粒的第二相会降低带材的性能。因此,在最终热处理后的带材中,应尽可能地减小第二相的尺寸及含量。在第二相中,CuO相的存在对带材超导性能的影响非常大。在目前观察到的几种第二相中,CuO粒子的强度最高,在轧制或压制过程中不容易碎化,因而CuO粒子的存在会使随后的机加工变形过程中的Bi-2223晶粒的排列变差,。

18、甚至使完好的Bi-2223晶团发生断裂,因此必须通过调整热处理工艺来控制带材中CuO相的出现。说 明 书CN 103173705 A3/8页60015 优选的是,在所述一次热处理工艺中,氧分压保持不变或改变。氧分压范围为0.520。因为Bi系导线的热处理需要一定的氧分压,而氧分压最低为0.5才能适合Bi-2223晶粒的生长,但是最高不能超导20。在该氧分压范围内可以使得超导芯内部有液相生成,并且适合于BSCCO-2212或BSCCO-2223晶粒的进一步生长,从而有利于部分孔隙和裂纹的愈合,同时能够防止其它第二相的异常生长。0016 优选的是,在所述一次热处理工艺中,温度保持不变或改变。一次热。

19、处理工艺的温度范围为400845。在该温度范围内进行热处理更有利于液相的生成,以及适合BSCCO-2212或BSCCO-2223晶粒的生长,并且防止其它第二相的异常生长。0017 优选的是,在所述二次热处理工艺中,两次热处理的氧分压相同或不相同。0018 优选的是,在所述二次热处理工艺中,每一次热处理的氧分压保持不变或改变。0019 二次热处理工艺的氧分压范围为0.520。二次热处理工艺中所选氧分压范围的优势与一次热处理的相同。0020 优选的是,在所述二次热处理工艺中,两二次热处理的温度相同或不相同。0021 优选的是,在所述二次热处理工艺中,每一次热处理的温度保持不变或改变。0022 二次。

20、热处理工艺的温度范围为400845。二次热处理工艺中所选温度范围的优势与一次热处理的相同。0023 优选的是,在所述三次热处理工艺中,三次热处理的氧分压相同或至少有一次热处理的氧分压与另外两次热处理的氧分压不相同。0024 优选的是,在所述三次热处理工艺中,每一次热处理的氧分压保持不变或至少有一次热处理的氧分压改变。0025 三次热处理工艺的氧分压范围为0.520。三次热处理工艺中所选氧分压范围的优势与一次热处理和二次热处理的相同。0026 优选的是,在所述三次热处理工艺中,三次热处理的温度相同或至少有一次热处理的温度与另外两次热处理的温度不相同。0027 优选的是,在所述三次热处理工艺中,每。

21、一次热处理的温度保持不变或至少有一次热处理的温度改变。0028 三次热处理工艺的温度范围为400845。三次热处理工艺中所选温度范围的优势与一次热处理和二次热处理的相同。0029 优选的是,所述一次热处理、二次热处理和三次热处理工艺的保温时间均为101000h。因为保温时间太短,不利于超导芯内部孔隙和裂纹的愈合,而保温时间太长,生成的第二相尺寸较大,不利于进一步提高导线的导电性能,并且也会降低生产效率。0030 优选的是,经过所述一次热处理工艺后,Bi-2223相的Tc为110K116K;经过所述二次热处理工艺后,Bi-2223相的Tc为110K116K;经过所述三次热处理工艺后,Bi-222。

22、3相的Tc为110K118K。0031 本发明通过进一步优化热处理工艺的氧分压、温度和保温时间三个参数,使得Bi-2223相的氧含量达到最佳值,近而提高了Tc和Ic。本发明的实验结果显示,采用一次热处理工艺后,Bi-2223相的Tc明显提高,Tc为110K116K,Ic为120A150A;采用二次热处理工艺后,Bi-2223相的Tc也有明显的提高,Tc为110K116K,Ic为125A155A;采用三次热处理工艺后,Bi-2223相的Tc有了进一步提高,Tc为110K118K,Ic为130A说 明 书CN 103173705 A4/8页7160A。0032 优选的是,所述氧分压为一定值的氩氧混。

23、合气。因为氩气是惰性气体,十分稳定,不参与任何反应。0033 本发明的另一目的在于提供一种利用上述方法制备的超导导线。将适当配比的前驱粉填充到纯银管内,经拉拔后形成具有一定尺寸和横截面积的单芯超导导线,然后将上述单芯超导导线截成多段装入银合金管内形成多芯结构,再经拉拔、轧制成为具有一定宽厚比的生带材,再将生带进行发生超导转变的常规热处理,并伴随中间变形,最后在常规热处理完成之后进行至少一次的热处理,即本发明的一次热处理、二次热处理或三次热处理,所述热处理的工艺为利用本发明的热处理参数进行。0034 采用本发明制备的超导导线具有以下优点:(1)具有较高的Tc;(2)具有较高的Ic;(3)改善了磁。

24、场性能。附图说明0035 下面将结合附图对本发明的具体实施例进行详细描述,其中:0036 图1为按照本发明的方法制备的Bi系高温超导导线的工艺流程图;0037 图2为按照本发明的完成常规热处理后的一次热处理的一优选实施例的热处理曲线图;0038 图3为按照本发明的完成常规热处理后的二次热处理的一优选实施例的热处理曲线图;0039 图4为按照本发明的完成常规热处理后的三次热处理的一优选实施例的热处理曲线图。具体实施方式0040 将一定配比的前驱粉经过预处理后压制成为粉棒,将粉棒装入纯银管内并密封好形成一个短坯;然后将短坯经过多道次拉拔,形成直径为2.0mm的单芯超导导线,期间经过多次退火以消除拉。

25、拔过程中产生的加工硬化;将上述单芯导线截成多段并束集在一起装入银合金管内;再经过一系列连续的拉拔工艺后,得到直径为1.9mm的多芯超导导线,整个拉拔过程中需经过多次退火以消除加工硬化;再将多芯导线进行轧制形成扁带材,即生带,生带的宽度为4.5mm,厚度为0.35mm;再将生带进行发生超导转变的常规热处理,并伴随中间变形;最后在完成常规热处理后,再进行至少一次的热处理。按照本发明的方法制备的Bi系高温超导导线的工艺流程图如图1所示。0041 按照本发明的完成常规热处理后的热处理工艺的具体实施方式如下:0042 实施例一:0043 热处理工艺:一次热处理(HT1),氧分压为0.5,温度为400,保。

26、温时间为500h。0044 经过上述热处理过程后,超导带材的临界转变温度(Tc)为110K,临界电流(Ic)为127A。0045 实施例二:0046 热处理工艺:一次热处理(HT1),氧分压为10,温度为455,保温时间为10h;升高温度到620,继续保温120h,氧分压保持不变。说 明 书CN 103173705 A5/8页80047 经过上述热处理过程后,超导带材的临界转变温度(Tc)为113K,临界电流(Ic)为120A。0048 实施例三:0049 热处理工艺:一次热处理(HT1),温度为845,氧分压为20,保温时间为250h;将氧分压降低到17.5,继续保温20h,温度保持不变。0。

27、050 经过上述热处理过程后,超导带材的临界转变温度(Tc)为111.5K,临界电流(Ic)为135A。0051 实施例四:0052 热处理工艺:一次热处理(HT1),温度为730,氧分压为15.2,保温时间为745h;将温度降低到560,氧分压降低到12.3,继续保温322h。0053 经过上述热处理过程后,超导带材的临界转变温度(Tc)为114.6K,临界电流(Ic)为142A。0054 实施例五:0055 热处理工艺:一次热处理(HT1),温度为788,氧分压为3.2,保温时间为25h;将氧分压升高到19.2,继续保温1000h,温度保持不变。0056 经过上述热处理过程后,超导带材的临。

28、界转变温度(Tc)为116K,临界电流(Ic)为150A。0057 实施例六:0058 热处理工艺:一次热处理(HT1),温度为670,氧分压为7.2,保温时间为882h;将温度升高到810,氧分压升高到11.4,继续保温615h。按照本实施例的完成常规热处理后的一次热处理的曲线如图2所示。0059 经过上述热处理过程后,超导带材的临界转变温度(Tc)为115K,临界电流(Ic)为149A。0060 实施例七:0061 热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为0.5,温度为400,保温时间为1000h;第二次热处理(HT2)的氧分压为7.5,温度为565,保温时间为500h。0。

29、062 经过上述热处理过程后,超导带材的临界转变温度(Tc)为110K,临界电流(Ic)为140A。0063 实施例八:0064 热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为20,温度为845,保温时间为10h;第二次热处理(HT2)的氧分压为15,温度为730,保温时间为250h。0065 经过上述热处理过程后,超导带材的临界转变温度(Tc)为116K,临界电流(Ic)为147A。0066 实施例九:0067 热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为2.5,温度为455,保温时间为750h;第二次热处理(HT2)的氧分压为12.5,温度为675,保温时间为120h。

30、。0068 经过上述热处理过程后,超导带材的临界转变温度(Tc)为113K,临界电流(Ic)为说 明 书CN 103173705 A6/8页9125A。0069 实施例十:0070 热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为17.5,温度为785,保温时间为325h;第二次热处理(HT2)的氧分压为17.5,温度为785,保温时间为625h。0071 经过上述热处理过程后,超导带材的临界转变温度(Tc)为115K,临界电流(Ic)为155A。0072 实施例十一:0073 热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为5.0,温度为510,保温时间为875h;第二次热处。

31、理(HT2)的氧分压为10,温度为620,保温时间为100h。0074 经过上述热处理过程后,超导带材的临界转变温度(Tc)为114K,临界电流(Ic)为150A。0075 实施例十二:0076 热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为2.0,温度为420,保温时间为200h,然后氧分压升高到7.0,温度升高到550,继续保温550小时;第二次热处理(HT2)的氧分压为8.0,温度为580,保温时间为180h,然后氧分压升高到11,温度升高到650,继续保温105小时。0077 经过上述热处理过程后,超导带材的临界转变温度(Tc)为115K,临界电流(Ic)为145A。0078。

32、 实施例十三:0079 热处理工艺:二次热处理,第一次热处理(HT1)的氧分压为18,温度为800,保温时间为305h,然后氧分压降低到15.5,温度降低到740,继续保温450小时;第二次热处理(HT2)的氧分压为8.5,温度为590,保温时间为600h,然后氧分压升高到9.5,温度升高到610,继续保温110小时。按照本实施例的完成常规热处理后的二次热处理的曲线如图3所示。0080 经过上述热处理过程后,超导带材的临界转变温度(Tc)为112K,临界电流(Ic)为137A。0081 实施例十四:0082 热处理工艺:二次热处理,第一次热处理(HT1)的温度为500,氧分压为2.5,保温20。

33、0h,然后氧分压升高到5.5,继续保温130小时;第二次热处理(HT2)的温度为600,氧分压为8.5,保温170h,然后氧分压升高到10.5,继续保温210小时。0083 经过上述热处理过程后,超导带材的临界转变温度(Tc)为112K,临界电流(Ic)为135A。0084 实施例十五:0085 热处理工艺:二次热处理,第一次热处理(HT1)的温度为750,氧分压为17.5,保温700h,然后氧分压降低到15,继续保温330小时;第二次热处理(HT2)的温度为700,氧分压为15.5,保温160h,然后氧分压降低到12,继续保温420小时。0086 经过上述热处理过程后,超导带材的临界转变温度。

34、(Tc)为114K,临界电流(Ic)为155A。说 明 书CN 103173705 A7/8页100087 实施例十六:0088 热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为0.5,温度为400,保温时间为500h;第二次热处理(HT2)的氧分压为0.5,温度为400,保温时间为400h;第三次热处理(HT3)的氧分压为0.5,温度为400,保温时间为600h。0089 经过上述热处理过程后,超导带材的临界转变温度(Tc)为110K,临界电流(Ic)为137A。0090 实施例十七:0091 热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为2.5,温度为455,保温时间为1。

35、000h;第二次热处理(HT2)的氧分压为5,温度为510,保温时间为875h;第三次热处理(HT3)的氧分压为5,温度为510,保温时间为750h。0092 经过上述热处理过程后,超导带材的临界转变温度(Tc)为114K,临界电流(Ic)为145A。0093 实施例十八:0094 热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为7.5,温度为565,保温时间为325h;第二次热处理(HT2)的氧分压为10,温度为620,保温时间为625h;第三次热处理(HT3)的氧分压为12.5,温度为675,保温时间为250h。0095 经过上述热处理过程后,超导带材的临界转变温度(Tc)为118。

36、K,临界电流(Ic)为132A。0096 实施例十九:0097 热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为17.5,温度为785,保温时间为10h;第二次热处理(HT2)的氧分压为15,温度为730,保温时间为50h;第三次热处理(HT3)的氧分压为20,温度为845,保温时间为20h。0098 经过上述热处理过程后,超导带材的临界转变温度(Tc)为116K,临界电流(Ic)为150A。0099 实施例二十:0100 热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为9.5,温度为605,保温时间为400h;第二次热处理(HT2)的氧分压为8.5,温度为590,保温时间为1。

37、00h;第三次热处理(HT3)的氧分压为7,温度为545,保温时间为900h。0101 经过上述热处理过程后,超导带材的临界转变温度(Tc)为112K,临界电流(Ic)为130A。0102 实施例二十一:0103 热处理工艺:三次热处理,第一次热处理(HT1)的氧分压为0.5,温度为400,保温时间为20h,然后氧分压升高到2.0,温度升高到430,继续保温50小时;第二次热处理(HT2)的氧分压为5.5,温度为550,保温时间为80h,然后氧分压降低到3.0,温度降低到480,继续保温10小时;第三次热处理(HT3)的氧分压为9.5,温度为605,保温时间为100h,然后氧分压升高到11,温度升高到650,继续保温200小时。0104 经过上述热处理过程后,超导带材的临界转变温度(Tc)为115K,临界电流(Ic)为152A。0105 实施例二十二:说 明 书CN 103173705 A10。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 冶金;黑色或有色金属合金;合金或有色金属的处理


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1