一种碳纤维防雾霾纱窗技术领域
本实用新型涉及一种纱窗,尤其是涉及一种碳纤维防雾霾纱窗。
背景技术
随着城市工业化的飞速发展,大中城市环境面临着日趋严峻的考验,特别是我国雾霾天
气出现频率明显增多,已占到全年天数的30%-50%。雾霾是一种雾和霾的组合产物,其中,
雾是由大量悬浮近地面空气中的微小水滴或冰晶组成的气溶胶系统;霾是由空气中的灰尘、
硫酸、硝酸、有机碳氢化合物等粒子组成。雾和霾的混合物共同存在严重降低了空气透明
度,严重影响到人们正常生活和健康。
雾霾天气对人类健康造成了严重危害。第一,雾霾现象使得空气中存在大量微小颗粒或
液滴等有害物质,一旦吸入体内就会刺激并破坏呼吸道黏膜,对鼻腔、口腔、肺部等造成
严重损伤。第二,雾霾导致室外能见度降低,交通堵塞及事故频发。第三,影响城市人群
的心理健康。雾霾气候会造成人群的情绪悲观,影响心态及生活质量。
鉴于雾霾现象的危害,治理雾霾问题刻不容缓。尤其是城市人群活动的主要场所为室
内,而窗户是实现室内外空气交换的主要工具,也是隔绝室内外有害污染物的主要方法,
目前市场上现有的纱窗所采取的结构和所用的材质均可实现最大程度的透气率,但是却无
法有效阻挡空气中的尘埃及有害颗粒物质,因此开发一种能够防止有害液滴及粉尘颗粒进
入室内的纱窗,成为改善室内空气质量的重要课题。中国专利201510266159.2公开了一种
纳米防雾霾纱窗,但是其缺点是采用纳米纤维,由于纳米纤维具有杂乱无章的结构以及较
低的力学性能,所以作为防雾霾纱窗时的综合效果并不理想。
活性碳纤维是一种具有广泛微孔结构的高吸附性碳素纤维长丝,利用活性碳纤维制备
各种吸附产品成为保证空气环境的主流,但是目前并没有活性碳纤维与其他材料相配伍组
成一种防雾霾效果好同时力学性能较好的纱窗。
实用新型内容
本实用新型提供一种碳纤维防雾霾纱窗,该纱窗可最大程度实现对雾霾中液滴及粉尘
粒子的吸附过滤,有效保证室内空气质量,同时又可以保证良好透气性。
本实用新型利用有机纤维无纺布、金属纤维网格布和活性碳纤维毡组合,利用热压合方
式将有机纤维熔喷无纺布、金属纤维网格布以及活性碳纤维毡形成叠合整体结构,最终形
成一种对雾霾液滴及粉尘颗粒具有较高吸附效率的透气性纱窗,该纱窗通过磁吸式结构与
窗框架进行装配,在保证对雾霾空气最大吸附净化的基础上,同时具有灵活拆卸更换的优
点。
本实用新型具体采用以下技术方案:
一种碳纤维防雾霾纱窗,该纱窗包括纱窗本体,沿纱窗本体边缘设有磁吸条,磁吸条
外侧设有纱窗框架;其中,所述纱窗本体包括活性碳纤维毡过滤吸附层,在活性碳纤维毡
过滤吸附层两侧依次对称设有金属纤维网格布层和有机纤维无纺布层。
优选的,所述活性碳纤维毡过滤吸附层采用活性短切碳纤维毡制备,其中活性碳纤维
毡过滤吸附层的厚度在1-5mm之间(包括端点)灵活调整,面密度在60-400g/m2之间(包
括端点)灵活调整,优选60~250g/m2,吸附能力根据比表面积评价,其数值在1000-2000m2/g
之间(包括端点)可调。
优选的,所述金属纤维网格布层所用的金属纤维选用不锈钢纤维、铜纤维、铝纤维、
镍铬合金纤维、钼纤维等任意一种或多种,金属网格布的目数在100-1000目之间(包括端
点)灵活调节。该金属纤维网格布层是由若干层金属纤维网格布单层构成,优选金属纤维
网格布单层的层数为1~3层。
优选的,所述有机纤维无纺布为有机纤维熔喷无纺布。熔喷无纺布的物理性能优异,
特别适合作为防雾霾纱窗的原料之一。
优选的,所述有机纤维无纺布层所用的有机纤维长丝选用聚乙烯、聚丙烯、聚氨酯等
热塑性纤维中的任意一种或多种,该无纺布面密度在30-60g/m2之间(包括端点)可调,优
选30~50g/m2。该无纺布层是由若干层无纺布单层构成,优选无纺布单层的层数为1~3层,
所述无纺布单层的厚度为0.2~0.5mm。
一种碳纤维防雾霾纱窗的制备方法,包括以下步骤:
(1)分别制备有机纤维无纺布单层、金属纤维网格布单层和活性碳纤维毡过滤吸附层;
(2)对称叠合结构布置:将步骤(1)中的结构层按照有机纤维无纺布层、金属纤维
网格布层、活性碳纤维毡过滤吸附层、金属纤维网格布层和有机纤维无纺布层放置;
(3)有机纤维无纺布熔融热压合:通过有机纤维无纺布层的熔融热压合工艺,使得步
骤(2)中的对称叠合结构形成纱窗本体整体;
(4)纱窗框架磁吸装配:在步骤(3)中的纱窗本体整体的边缘设置磁吸条,磁吸条
通过磁性吸引与纱窗框架装配成为纱窗整体。
步骤(1)中,所述有机纤维无纺布层所用的有机纤维长丝选用聚乙烯、聚丙烯、聚氨
酯等热塑性纤维中的任意一种或多种,该无纺布面密度在30-60g/m2之间(包括端点)可调,
所述有机纤维无纺布为有机纤维熔喷无纺布。
所述金属纤维网格布层所用的金属纤维选用不锈钢纤维、铜纤维、铝纤维、镍铬合金
纤维、钼纤维等任意一种或多种,金属网格布的目数在100-1000目之间(包括端点)灵活
调节。
所述活性碳纤维毡过滤吸附层采用活性短切碳纤维毡制备,其中活性碳纤维毡过滤吸
附层的面密度在60-400g/m2之间(包括端点)调整,吸附能力根据比表面积评价,其比表
面积数值在1000-2000m2/g之间(包括端点)可调。
步骤(2)中,各个层结构的层数根据使用要求灵活调整,优选的,所述有机纤维无纺
布层、金属纤维网格布层各选用1~3层单层,所述活性碳纤维毡过滤吸附层的厚度在1-5mm
之间(包括端点)灵活调整。
步骤(3)中,熔融热压合的温度在80~260℃之间(包括端点)灵活调节,热压合压力
在0.1~1MPa之间(包括端点)灵活调整。适宜的温度和压力能够使有机纤维无纺布的熔融
粘合,将有机纤维无纺布层、金属网格布层以及活性碳纤维毡吸附层形成整体。
本实用新型的防雾霾纱窗中间采用活性碳纤维毡过滤吸附层、两侧依次设有金属纤维
网格布层和有机纤维无纺布层的设计,使得该纱窗具有很好的防雾霾效果和力学性能,同
时具有良好的透气性能。本实用新型的活性碳纤维毡过滤吸附层和有机纤维无纺布层的面
密度是根据纱窗需具备的性能而特定选择的,是申请人经过大量实验研究和分析所得,申
请人通过对各个层面密度的恰当选择,能够使得本实用新型的纱窗的过滤效果更加优异,
并使得该纱窗具有良好的透气性和力学性能(抗拉强度较高)。经过大量实验验证和分析,
当无纺布层的面密度小于30g/m2时,活性碳纤维毡过滤吸附层的面密度小于60g/m2时,
该纱窗的透气性较好,但是防雾霾效果和力学性能较差;当无纺布层的面密度达到60g/m2
时,活性碳纤维毡过滤吸附层的面密度达到400g/m2时,随着两者的面密度增加,防雾霾
效果基本一致,力学性能也达到一定要求,但是成本会增加。
本实用新型一种碳纤维防雾霾纱窗具有如下有益效果:
第一,碳纤维防雾霾纱窗采用表面有机纤维无纺布层、金属纤维网格布层和中间活性
碳纤维毡过滤吸附层的多层吸附叠合结构,通过无纺布层与活性碳纤维吸附层的组合应用
实现对雾霾空气中的有害液滴及粉尘的最大程度吸附与过滤,有效保证室内空气质量,同
时又可保证良好的透气性。金属纤维网格布层对中间活性碳纤维毡过滤吸附层起到了有效
的支撑固定和保护作用。
第二,基于对材料以及材料面密度的特殊选择,本实用新型的防雾霾纱窗不仅可以有
效阻止PM2.5,还可以阻止二氧化硫、氮氧化物、一氧化碳和臭氧等小分子物质,使用本
实用新型的纱窗可以明显净化室内空气,并且具有良好的力学性能和透气性。
第三,防雾霾纱窗叠合层的整体表面两侧配置磁吸条,磁吸条通过磁性吸引与窗框架
装配成整体,可在长期使用后实现对纱窗的随时更换。
附图说明
图1是碳纤维防雾霾纱窗的总体结构示意图,包括中间的防雾霾叠合层整体和框架边
缘的磁吸条结构以及纱窗框架。
图2是碳纤维防雾霾纱窗叠层内部结构示意图,包括室内外两侧表面有机纤维无纺布
层、两侧金属纤维网格布层和中心活性碳纤维毡吸附层三部分。
其中,1、纱窗本体,2、磁吸条,3、纱窗框架,4、有机纤维无纺布层,5、金属纤维
网格布层、6、活性碳纤维毡吸附层。
具体实施方式
实施例1
如图1和2所示,一种有机纤维熔喷无纺布层与活性碳纤维吸附层叠合结构的雾霾吸
附纱窗,该纱窗包括纱窗本体1,沿纱窗本体边缘设有磁吸条2,磁吸条外侧设有纱窗框架
3;其中,所述纱窗本体包括活性碳纤维毡过滤吸附层6,在活性碳纤维毡过滤吸附层两侧
依次对称设有金属纤维网格布层5和有机纤维无纺布层4。
一种有机纤维熔喷无纺布层与活性碳纤维吸附层叠合结构的雾霾吸附纱窗的制备包括
如下步骤:
第一,有机纤维熔喷无纺布层的制备。选用聚乙烯纤维作为无纺布层的纤维原料,该
无纺布的面密度为30g/m2。
第二,金属纤维网格布层的制备。选用不锈钢纤维作为金属纤维网格布层的纤维原料,
金属网格布的目数为500目。
第三,中间活性碳纤维吸附层的制备。选用活性碳纤维毡吸附层的厚度为1mm(面密
度:70g/m2),吸附能力以比表面积判定,其比表面积为1000m2/g。
第四,对称叠合结构布置。采用“有机纤维无纺布层(1层,无纺布单层的厚度为0.2mm)
/金属纤维网格布层(1层)/活性碳纤维毡吸附层(1层)/金属纤维网格布层(1层)/有机
纤维无纺布层(1层)”的对称叠合结构。其中有机纤维无纺布的单结构位置的叠合层数为
1层,金属纤维网格布层的单结构位置的叠合层数为1层,中心活性碳纤维毡吸附层为1层。
第五,无纺布层熔融热压合及窗框磁吸装配。热压合的热熔温度为150℃,压合压力在
0.7MPa。通过有机纤维无纺布的熔融粘合,将无纺布层、金属网格布层以及活性碳纤维毡
吸附层形成整体。防雾霾纱窗叠合层整体表面两侧配置磁吸条,磁吸条通过磁性吸引与窗
框架装配成整体,最终可将室内API指数(空气质量指数)有效控制在50以下。
实施例2
一种有机纤维熔喷无纺布层与活性碳纤维吸附层叠合结构的雾霾吸附纱窗的制备包括
如下步骤:
第一,有机纤维熔喷无纺布层的制备。选用聚丙烯纤维作为无纺布层的纤维原料,该
无纺布的面密度为50g/m2。
第二,金属纤维网格布层的制备。选用铜纤维作为金属纤维网格布层的纤维原料,金
属网格布的目数为900目。
第三,中间活性碳纤维吸附层的制备。选用活性碳纤维毡吸附层的厚度为2mm(面密
度:150g/m2),吸附能力以比表面积判定,其比表面积为1200m2/g。
第四,对称叠合结构布置。采用“有机纤维无纺布层(2层,无纺布单层的厚度为0.2mm)
/金属纤维网格布层(1层)/活性碳纤维毡吸附层(1层)/金属纤维网格布层(1层)/有机
纤维无纺布层(2层)”的对称叠合结构。
第五,无纺布层熔融热压合及窗框磁吸装配。热压合的热熔温度为230℃,压合压力在
0.9MPa。通过有机纤维无纺布的熔融粘合,将无纺布层、金属网格布层以及活性碳纤维毡
吸附层形成整体。防雾霾纱窗叠合层整体表面两侧配置磁吸条,磁吸条通过磁性吸引与窗
框架装配成整体,最终可将室内API指数(空气质量指数)有效控制在45以下。
实施例3
一种有机纤维熔喷无纺布层与活性碳纤维吸附层叠合结构的雾霾吸附纱窗的制备包括
如下步骤:
第一,有机纤维熔喷无纺布层的制备。选用聚乙烯纤维作为无纺布层的纤维原料,该
无纺布的面密度为50g/m2。
第二,金属纤维网格布层的制备。选用铝纤维作为金属纤维网格布层的纤维原料,金
属网格布的目数为200目。
第三,中间活性碳纤维吸附层的制备。选用活性碳纤维毡吸附层的厚度为3mm(面密
度:200g/m2),吸附能力以比表面积判定,其比表面积为1400m2/g。
第四,对称叠合结构布置。采用“有机纤维无纺布层(3层,无纺布单层的厚度为0.2mm)
/金属纤维网格布层(2层)/活性碳纤维毡吸附层(1层)/金属纤维网格布层(2层)/有机
纤维无纺布层(3层)”的对称叠合结构。
第五,无纺布层熔融热压合及窗框磁吸装配。热压合的热熔温度为180℃,压合压力在
0.9MPa。通过有机纤维无纺布的熔融粘合,将无纺布层、金属网格布层以及活性碳纤维毡
吸附层形成整体。防雾霾纱窗叠合层整体表面两侧配置磁吸条,磁吸条通过磁性吸引与窗
框架装配成整体,最终可将室内API指数(空气质量指数)有效控制在40以下。
实施例4
一种有机纤维熔喷无纺布层与活性碳纤维吸附层叠合结构的雾霾吸附纱窗的制备包括
如下步骤:
第一,有机纤维熔喷无纺布层的制备。选用聚丙烯纤维作为无纺布层的纤维原料,该
无纺布的面密度为45g/m2。
第二,金属纤维网格布层的制备。选用钼纤维作为金属纤维网格布层的纤维原料,金
属网格布的目数为900目。
第三,中间活性碳纤维吸附层的制备。选用活性碳纤维毡吸附层的厚度为4mm(面密
度:250g/m2),吸附能力以比表面积判定,比表面积为1900m2/g。
第四,对称叠合结构布置。采用“有机纤维无纺布层(1层,无纺布单层的厚度为0.2mm)
/金属纤维网格布层(1层)/活性碳纤维毡吸附层(1层)/金属纤维网格布层(1层)/有机
纤维无纺布层(1层)”的对称叠合结构。
第五,无纺布层熔融热压合及窗框磁吸装配。热压合的热熔温度为210℃,压合压力在
1MPa。通过有机纤维无纺布的熔融粘合,将无纺布层、金属网格布层以及活性碳纤维毡吸
附层形成整体。防雾霾纱窗叠合层整体表面两侧配置磁吸条,磁吸条通过磁性吸引与窗框
架装配成整体,最终可将室内API指数(空气质量指数)有效控制在20以下。
对比例1:如实施例1所述的纱窗,其不同之处在于:所述有机纤维熔喷无纺布层的面
密度为20g/m2,中间活性碳纤维毡吸附层的面密度为50g/m2。
对比例2:如实施例1所述的纱窗,其不同之处在于:所述有机纤维熔喷无纺布层的面
密度为25g/m2,中间活性碳纤维毡吸附层的面密度为55g/m2。
对比例3:如实施例4所述的纱窗,其不同之处在于:所述有机纤维熔喷无纺布层的面
密度为410g/m2,中间活性碳纤维毡吸附层的面密度为410g/m2。
对比例4:如实施例4所述的纱窗,其不同之处在于:所述有机纤维熔喷无纺布层的面
密度为420g/m2,中间活性碳纤维毡吸附层的面密度为420g/m2。
实验例
在冬季严重雾霾天气时,在当天6:00启用防雾霾模式,对室外(R0)、安装了本实用新型实
施例1~4中的纱窗的居室(R1~R4)和安装了本实用新型对比例1~4的纱窗的居室(R5~R8)进
行了对比测试,测试方法:在当天的20:00进行检测。实验结果如下表1:
对纱窗的抗拉强度和透气量进行测试,得到结果如表2所示:
横向拉伸强度
纵向拉伸强度
透气量
|
实施例1
95N/3cm
112N/3cm
3520L/m2·s
实施例4
150N/3cm
189N/3cm
2250L/m2·s
对比例1
82N/3cm
92N/3cm
3750L/m2·s
对比例3
165N/3cm
201N/3cm
1820L/m2·s
结论:通过表1和表2的数据可以看出,本实用新型纱窗的有机纤维熔喷无纺布层的
面密度和中间活性碳纤维毡吸附层的面密度对防雾霾效果和纱窗的力学性能影响非常大,
随着有机纤维熔喷无纺布层和中间活性碳纤维毡吸附层的面密度的增大,纱窗的防护效果
和力学性能逐渐提高,通气性逐渐减低;醉着有机纤维熔喷无纺布层和中间活性碳纤维毡
吸附层的面密度的减小,虽然纱窗的通气量增大,但是其防护效果和力学性能明显降低。
基于此,在选择合适材料的同时,本实用新型优化了有机纤维熔喷无纺布层和中间活性碳
纤维毡吸附层的面密度,使得本实用新型的纱窗的综合性能较突出,否则本实用新型的纱
窗综合性能不理想。