《一种基于微流控芯片的PH响应微阀及其制备方法.pdf》由会员分享,可在线阅读,更多相关《一种基于微流控芯片的PH响应微阀及其制备方法.pdf(6页珍藏版)》请在专利查询网上搜索。
1、(10)申请公布号 CN 103075572 A(43)申请公布日 2013.05.01CN103075572A*CN103075572A*(21)申请号 201210586900.X(22)申请日 2012.12.31F16K 99/00(2006.01)B81C 1/00(2006.01)B01L 3/00(2006.01)(71)申请人苏州汶颢芯片科技有限公司地址 215028 江苏省苏州市园区方洲路128号1区A栋2层(72)发明人聂富强 沙俊 王晓东 叶嘉明(54) 发明名称一种基于微流控芯片的pH响应微阀及其制备方法(57) 摘要本发明涉及一种基于微流控芯片的pH响应微阀及其制备方。
2、法,该微流控芯片表面有微结构和微通道,主微通道设有亲水/疏水门控开关,通过pH响应性分子对微通道表面进行改性,在不同pH刺激下,微通道的表面形貌和化学构型的可逆性变化导致表面浸润性的变化,控制液流体在微通道表面的运动,从而实现对微流体流动的控制的智能微阀,主要应用于电泳分离、色谱分离、免疫分析等相关领域。该微流控芯片实现了微流体的智能驱动和控制,极大降低了微流体驱动和控制的成本,具有便携、经济、快速、高效的特点,为微流体的驱动和控制提供了一种全新的分析技术。(51)Int.Cl.权利要求书1页 说明书3页 附图1页(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书3。
3、页 附图1页(10)申请公布号 CN 103075572 ACN 103075572 A1/1页21.一种基于微流控芯片的pH响应微阀及其制备方法,该微流控芯片表面有微结构和微通道,主微通道设有亲水/疏水门控开关,通过pH响应性分子对微通道表面进行改性,在不同pH刺激下,微通道的表面形貌和化学构型的可逆性变化导致表面浸润性的变化,控制液流体在微通道表面的运动,从而实现对微流体流动的控制的智能微阀。2.按权利要求1所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,其制作步骤如下:(1)用计算机辅助设计软件设计和绘制微流控芯片中各层芯片的微结构和微通道图形。(2)通过微加工技术在各层微流。
4、控芯片基材表面和粘性薄膜上加工所需的微结构和微通道,包括进样孔、分离主通道和分离分通道。(3)利用双层粘性薄膜,将各层微流控芯片对齐、粘合、加压封合,组成微滴流动可控的微流控芯片。(4)在微通道进行pH响应性分子对微通道的表面改性。(5)在微流体通道中切换溶液的pH值,微通道表面的浸润性从亲水至疏水可调。3.按权利要求1或2所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,这种基于微流控芯片的pH响应微阀的核心功能器件是微流控芯片,此芯片可以批量生产、多次利用、灵活设计与组装。4.按权利要求1或2所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,这种基于微流控芯片的pH响应。
5、微阀的微结构和微通道是通过数控铣刻、激光刻蚀、LIGA技术、模塑法、热压法、化学腐蚀、软刻蚀技术的微加工方法在芯片基材表面制备,尺寸在微米级别。5.按权利要求1或2所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,这种基于微流控芯片的pH响应微阀是由两层芯片叠加而成,构成三维立体的微结构和微通道网络。6.按权利要求1或2所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,这种基于微流控芯片的pH响应微阀可以在一块芯片上制作多组微结构和微通道,构成多组控制单元,可选择性控制微流体的流动方向。7.按权利要求1或2所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,这种基于。
6、微流控芯片的pH响应微阀在微通道表面进行了pH响应性分子的表面修饰。8.按权利要求1或2所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,这种基于微流控芯片的pH响应微阀通过响应性分子的自动识别,在微通道表面进行亲水开/关和疏水开/关调控。9.按权利要求1或2所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,这种基于微流控芯片的pH响应微阀可快速实现对溶液的开/关。10.按权利要求1或2所述的基于微流控芯片的pH响应微阀及其制备方法,其特征在于,这种基于微流控芯片的pH响应微阀具有便携、经济、快速、高效,在电泳分离、色谱分离、免疫分析所涉及的众多相关领域具有广泛的应用前景。。
7、权 利 要 求 书CN 103075572 A1/3页3一种基于微流控芯片的 pH 响应微阀及其制备方法技术领域0001 本发明涉及一种基于微流控芯片的pH响应微阀及其制备方法,该微流控芯片表面有微结构和微通道,主微通道设有亲水/疏水门控开关,通过pH响应性分子对微通道表面进行改性,在不同pH刺激下,微通道的表面形貌和化学构型的可逆性变化导致表面浸润性的变化,控制液流体在微通道表面的运动,从而实现对微流体流动的控制的智能微阀,主要应用于电泳分离、色谱分离、免疫分析等相关领域。背景技术0002 微流控分析芯片作为一种新型的分析平台具有微型化、自动化、集成化、便捷和快速等优点,已经在很多领域获得了。
8、广泛的应用,例如细胞生物学、分析化学、环境监测与保护、司法鉴定和药物合成筛选。在微流控分析芯片中,微量液体的精确进样是样品处理和分析的关键,例如微流控芯片电泳分离、色谱分离、免疫分析中就需要这样的操作,这是由于微流控分析芯片的特点就要对微观尺度下的微流体进行操作和控制,而作为操作和控制对象的流体量又极其微小,导致微流体的流动特性与宏观有很大的不同,在宏观尺度下可以忽略的现象在微观尺度下成为流体流动的主要影响因素。近年来,在微流控分析芯片上如何实现对微流体的驱动和控制,已经成为微流控分析芯片技术中的研究难题和热点。0003 对微流控芯片中微流体的驱动和控制可通过微阀来实现。近年来,随着微流控技术。
9、的发展和成熟,研发了很多方法和器件,在一定程度上实现了对微流控芯片中微流体的驱动和控制,同时也存在一些局限性。在微阀研究方面,根据是否有动力驱动机构分为有源和无源阀,有源阀如电磁微阀、静电微阀、形状记忆合金微阀、压电微阀、热气动微阀等,这类微阀可以实现阀的开/关,制动性能好、密闭性高,但缺点是结构复杂、体积大、难以实现芯片上的集成化。无源阀不需要外部动力制动,依靠阀两侧的压力差来实现开关,其体积较小,但不能主动进行阀的开/关或切换。0004 然而,常规技术很难在微通道中完成对微流体的智能驱动和控制,因此,通过调控pH的变化来控制表面浸润性的变化从而驱动和控制微流控芯片中的微流体,发展一种便捷、。
10、快速、高效、低成本的微流体驱动和控制技术,应是微流控芯片上微阀的研究方向之一,目前尚未有实质性的突破。发明内容0005 本发明的目的是提供了一种基于微流控芯片的pH响应微阀及其制备方法,该微流控芯片表面有微结构和微通道,主微通道设有亲水/疏水门控开关,通过pH响应性分子对微通道表面进行改性,在不同pH刺激下,微通道的表面形貌和化学构型的可逆性变化导致表面浸润性的变化,控制液流体在微通道表面的运动,从而实现对微流体流动的控制的智能微阀,主要应用于电泳分离、色谱分离、免疫分析等相关领域。0006 为实现上述目的,本发明采用以下的操作步骤:0007 (1)用计算机辅助设计软件设计和绘制微流控芯片中各。
11、层芯片的微结构和微通道说 明 书CN 103075572 A2/3页4图形。0008 (2)通过微加工技术在各层微流控芯片基材表面和粘性薄膜上加工所需的微结构和微通道,包括进样孔、分离主通道和分离分通道。0009 (3)利用双层粘性薄膜,将各层微流控芯片对齐、粘合、加压封合,组成微滴流动可控的微流控芯片。0010 (4)在微通道进行pH响应性分子对微通道的表面改性。0011 (5)在微流体通道中切换溶液的pH值,微通道表面的浸润性从亲水至疏水可调。0012 本发明中,微流体流动可控的微流控芯片的芯片基材可以是PMMA、PC、PVC、COC、铜、铝、不锈钢、硅片、玻璃圆片,也可是市售的各类普通C。
12、D光盘。0013 本发明中,基于微流控芯片的pH响应微阀的微流控芯片和粘性薄膜的微结构和微通道可以通过数控铣刻、激光刻蚀、LIGA技术、模塑法、热压法、化学腐蚀制备,也可用软刻蚀技术制备。0014 本发明中,基于微流控芯片的pH响应微阀的微流控芯片是由两层芯片组成,各层芯片之间用粘性薄膜贴合,粘性薄膜可以是双层力致粘性薄膜,也可是普通双面胶薄膜。0015 本发明中,基于微流控芯片的pH响应微阀的微流控芯片的微通道是用pH响应性分子进行表面修饰的。0016 本发明中,基于微流控芯片的pH响应微阀的微流控芯片的pH响应性分子在不同的pH产生亲水和疏水的变化。0017 本发明提出的基于微流控芯片的p。
13、H响应微阀及其制备方法,操作简单、实现了微流体的智能驱动和控制,极大降低了微流体驱动和控制的成本,具有便携、经济、快速、高效的特点,在电泳分离、色谱分离、免疫分析等相关领域中具有良好的应用前景。附图说明0018 图1.基于微流控芯片的pH响应微阀的微流控芯片的结构示意图。0019 a.溶液入口,b.微流体控制通道(微阀),c.pH响应亲水修饰区域,d.pH响应疏水修饰区域,e.溶液出口。具体实施方案0020 实施例10021 用计算机辅助设计软件设计和绘制微流体流动可控的微流控芯片的两层芯片的微结构和微通道图形。利用数控CNC系统加工制备两层聚甲基丙烯酸甲酯(PMMA)芯片的微结构和微通道,分。
14、别用自来水、蒸馏水清洗各层芯片,并用乙醇擦拭芯片表面残留的指纹、油渍等污渍。在双面胶薄膜上,用刻字机加工制备所需的微结构和微通道。将两层芯片小心对齐、粘合、加压封合,制成基于微流控芯片的智能微阀。将样品溶液加入微流控芯片的进样注入孔,溶液在外置蠕动泵的驱动下进入微通道中,在微通道的微阀区域,表面对溶液的pH值进行响应,获得亲水开/关和疏水开/关的切换,最后实现了微阀对微流体流动的智能控制。0022 实施例20023 用计算机辅助设计软件设计和绘制离心式微流控芯片的两层芯片的微结构和微说 明 书CN 103075572 A3/3页5通道图形。利用数控CNC系统加工制备两层圆片状聚碳酸酯(PC)芯片的微结构和微通道,分别用自来水、蒸馏水清洗各层芯片,并用乙醇擦拭芯片表面残留的指纹、油渍等污渍。在双面胶薄膜上,用刻字机加工制备所需的微结构和微通道。将两层芯片小心对齐、粘合、加压封合,制成基于微流控芯片的智能微阀。将样品溶液加入微流控芯片的进样注入孔,溶液在外置蠕动泵的驱动下进入微通道中,在微通道的微阀区域,表面对溶液的pH值进行响应,获得亲水开/关和疏水开/关的切换,最后实现了微阀对微流体流动的智能控制。说 明 书CN 103075572 A1/1页6图1说 明 书 附 图CN 103075572 A。