电源装置.pdf

上传人:111****112 文档编号:1542615 上传时间:2018-06-23 格式:PDF 页数:13 大小:801.82KB
返回 下载 相关 举报
摘要
申请专利号:

CN201280077551.7

申请日:

2012.12.04

公开号:

CN104838573A

公开日:

2015.08.12

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H02M 3/28申请日:20121204|||公开

IPC分类号:

H02M3/28; H02M3/335; H02M3/155; H02J7/00; H01M10/44; B60L11/18

主分类号:

H02M3/28

申请人:

沃尔沃卡车公司

发明人:

山田良昭; 土屋孝幸; 肥喜里邦彦; 井谷幸一; 三宅范明

地址:

瑞典哥德堡

优先权:

专利代理机构:

北京林达刘知识产权代理事务所(普通合伙)11277

代理人:

刘新宇

PDF下载: PDF下载
内容摘要

电源装置将二次电池与同上述二次电池并联连接的电容器组合起来向负载提供电源。上述电源装置具备绝缘型DC-DC转换器,该绝缘型DC-DC转换器具有初级线圈和次级线圈,该初级线圈与上述二次电池并联连接,通过从上述二次电池提供的电流来蓄积能量,该次级线圈与上述电容器串联连接,从上述初级线圈利用所蓄积的能量向上述次级线圈流入感应电流。

权利要求书

权利要求书1.  一种电源装置,将二次电池与同上述二次电池并联连接的电容器组合起来向负载提供电源,该电源装置具备绝缘型DC-DC转换器,该绝缘型DC-DC转换器具有初级线圈和次级线圈,该初级线圈与上述二次电池并联连接,通过从上述二次电池提供的电流来蓄积能量,该次级线圈与上述电容器串联连接,从上述初级线圈利用所蓄积的能量向上述次级线圈流入感应电流。2.  根据权利要求1所述的电源装置,其特征在于,上述绝缘型DC-DC转换器是反激式转换器,该绝缘型DC-DC转换器将从上述次级线圈输出的电流的电压调整为与上述电容器的电压的总计成为设定电压。3.  根据权利要求1或2所述的电源装置,其特征在于,直接向上述初级线圈提供来自上述二次电池的电流。4.  根据权利要求3所述的电源装置,其特征在于,上述绝缘型DC-DC转换器将从上述次级线圈输出的电流的电压调整为与上述电容器的电压的总计同上述二次电池的电压相同。5.  根据权利要求1或2所述的电源装置,其特征在于,还具备非绝缘型DC-DC转换器,该非绝缘型DC-DC转换器能够将上述二次电池的电压升高后对上述负载提供电流,并且能够将来自上述负载的再生电流降压后对上述二次电池充电。6.  根据权利要求5所述的电源装置,其特征在于,向上述初级线圈提供由上述非绝缘型DC-DC转换器升压后的上述二次电池的电流。7.  根据权利要求5所述的电源装置,其特征在于,不经由上述非绝缘型DC-DC转换器而直接向上述初级线圈提供来自上述二次电池的电流。8.  根据权利要求1至7中的任一项所述的电源装置,其特征在于,上述负载是从上述二次电池和上述电容器提供电源来驱动电动机的逆 变器。

说明书

说明书电源装置
技术领域
本发明涉及一种向负载提供电源的电源装置。
背景技术
以往以来,使用一种将电池与电容器组合起来向负载提供电源的电源装置。在日本JP2006-345606A中公开了一种将电池与电容器并联连接的车辆用电源系统。在该电源系统中,通过从电容器和电池提供的电能来驱动电动机的逆变器。
发明内容
然而,在日本JP2006-345606A的电源系统中,当电容器的电压低于能够驱动逆变器的电压时,变得无法利用来自电容器的电能来驱动电动机。另外,与在放电时电压缓慢下降的二次电池不同,电容器具有在放电时电压线性地下降的特性。因此,当电容器的电压下降时,即便还残存有电能,也会变得无法从电容器提供电能来驱动逆变器。
本发明是鉴于上述问题而完成的,其目的在于有效地活用电容器的电能。
根据本发明的某一方式,提供一种将二次电池与同上述二次电池并联连接的电容器组合起来向负载提供电源的电源装置,该电源装置具备绝缘型DC-DC转换器,该绝缘型DC-DC转换器具有初级线圈和次级线圈,该初级线圈与上述二次电池并联连接,通过从上述二次电池提供的电流来蓄积能量,该次级线圈与上述电容器串联连接,从上述初级线圈利用所蓄积的能量向上述次级线圈流通感应电流。
下面,参照附图来详细说明本发明的实施方式、本发明的优点。
附图说明
图1是本发明的第一实施方式所涉及的电源装置的电路图。
图2是本发明的第一实施方式所涉及的电源装置的框图。
图3是本发明的第二实施方式所涉及的电源装置的电路图。
图4是本发明的第二实施方式所涉及的电源装置的框图。
图5是本发明的第三实施方式所涉及的电源装置的电路图。
具体实施方式
下面,参照附图来说明本发明的实施方式。
(第一实施方式)
下面,参照图1和图2来说明本发明的第一实施方式所涉及的电源装置100。
电源装置100是将二次电池1与同二次电池1并联连接的电容器2组合起来向负载提供电源的装置。该负载是从二次电池1和电容器2提供电源来驱动电动机5的逆变器50。电源装置100应用于HEV(Hybrid Electric Vehicle:混合动力型车辆)、EV(Electric Vehicle:电动车辆)等。
首先,说明从电源装置100提供电源的逆变器50和由逆变器50驱动的电动机5。
电动机5是搭载于HEV、EV的驱动用电动机。电动机5是利用三相交流来生成旋转磁场而被驱动的三相感应电动发电机。电动机5具备定子和转子,该定子在内周具有分别构成U相、V相以及W相的多个线圈(省略图示),该转子具有永磁体,在定子的内周旋转。电动机5的定子固定于车体(省略图示),转子的旋转轴与车轮的车轴(省略图示)连结。电动机5能够将电能转换为车轮的旋转,并且能够将车轮的旋转转换为电能。
逆变器50是从由二次电池1和电容器2提供的直流电力生成交流电力的电压电流转换机。逆变器50的额定电压为600V,能够驱动它的最低电压为300V。该最低电压相当于能够驱动负载的最低电压。
逆变器50将从二次电池1和电容器2提供的直流电力转换为由相位依次相差120度的U相、V相以及W相构成的三相的交流并提供到电动机5。
逆变器50具有正侧电力线51a、负侧电力线51b、U相电力线51u、V相电力线51v、W相电力线51w。正侧电力线51a与二次电池1及电容器2的正极连接。负侧电力线51b与二次电池1及电容器2的负极连接。U相电力线51u、V相电力线51v以及W相电力线51w设置于正侧电力线51a与负侧电力线51b之间。另外,在正侧电力线51a与负侧电力线51b之间并联连接有平滑电容器55,该平滑电容器55使在二次电池1及电容器2与逆变器50之间流动的直流电流的电压平滑化。
逆变器50具有六个作为开关元件的IGBT(Insulated Gate Bipolar Transistor:绝缘栅双极型晶体管)53u、54u、53v、54v、53w及54w。这些IGBT53u~54w是具有反向地并联连接的整流二极管的带二极管的IGBT。
IGBT 53u与IGBT 54u串联地设置于U相电力线51u。U相电力线51u的IGBT 53u与IGBT 54u之间与电动机5的构成U相的线圈连接。IGBT 53v与IGBT 54v串联地设置于V相电力线51v。V相电力线51v的IGBT 53v与IGBT54v之间与电动机5的构成V相的线圈连接。IGBT 53w与IGBT 54w串联地设置于W相电力线51w。W相电力线51w的IGBT 53w与IGBT 54w之间与电动机5的构成W相的线圈连接。
通过电动机控制器(省略图示)来控制IGBT 53u、54u、53v、54v、53w以及54w,由此逆变器50生成交流电流来驱动电动机5。
接着,说明电源装置100的结构。
电源装置100具备:二次电池1;电容器2;绝缘型DC-DC转换器(下面简称为“DC-DC转换器”)30,其利用二次电池1的电能来对电容器2施加偏置电压;以及控制器40(参照图2),其控制DC-DC转换器30。
二次电池1是锂离子二次电池、镍氢二次电池等化学电池。在此,二次电池1的电压被设定为600V。对二次电池1设置检测电压并将对应的信号发送到控制器40的二次电池电压检测器1a(参照图2)。
电容器2是串联连接多个来设定成期望的电压并且并联连接多个来设定成期望的蓄电容量的双电层电容器。在此,电容器2的电压被设定为300V。对电容器2设置检测电压并将对应的信号发送到控制器40的电容器电压检测器2a(参照图2)。
DC-DC转换器30具有:初级线圈31,其与二次电池1并联连接;次级线圈32,其与电容器2串联连接;变压器芯33,其通过在初级线圈31中流动的电流来蓄积能量;作为开关元件的IGBT 34,其与初级线圈31串联设置;以及平滑电容器35,其与次级线圈32并联连接。DC-DC转换器30是调整从次级线圈32输出的电压使得该输出的电压与电容器2的电压的总计成为设定电压的反激式转换器。
向初级线圈31直接提供来自二次电池1的电流。通过控制器40来切换IGBT 34,由此在初级线圈31中断续地流通电流。初级线圈31通过从二次电池1提供的电流来在变压器芯33中蓄积能量。
当IGBT 34被切换为导通时,变压器芯33由于初级线圈31中流动的电流而被磁化。由此,在变压器芯33中蓄积磁能。当IGBT 34被切换为截止时,变压器芯33中蓄积的磁能被转换为次级线圈32中流动的感应电流。
由于从初级线圈31蓄积到变压器芯33的能量,而在次级线圈32中流通感应电流。在次级线圈32中流通电压低于二次电池1的电压的感应电流。也就是说,DC-DC转换器30是降压转换器。
由控制器40对IGBT 34进行斩波控制。通过对IGBT 34变更斩波控制的占空比来调整次级线圈32中流动的感应电流的电压。IGBT 34的占空比越高,则次级线圈32中流动的感应电流的电压越高。
平滑电容器35使通过对IGBT 34进行斩波控制而在次级线圈32中断续地流动的感应电流的电压平滑化。由此,在次级线圈32中流动的感应电流成为电压大致固定的直流电流。
控制器40(参照图2)进行电源装置100的控制。控制器40是具备CPU(中央运算处理装置)、ROM(只读存储器)、RAM(随机存取存储器)以及I/O接口(输 入输出接口)的微型计算机。RAM存储CPU的处理中的数据。ROM预先存储CPU的控制程序等。I/O接口用于与所连接的设备之间的信息的输入输出。通过使CPU、RAM等按照ROM中保存的程序进行动作来实现电源装置100的控制。
控制器40控制DC-DC转换器30来调整从次级线圈32输出的电流的电压,使得该电压与电容器2的电压的总计同二次电池1的电压相同。该从次级线圈32输出的电流的电压相当于设定电压。由此,在电源装置100中,能够进行如下的控制。
接着,说明电源装置100的作用。
在二次电池1和电容器2均被满充电的情况下,控制器40控制DC-DC转换器30使得二次电池1的电压降低到300V,从次级线圈32对电容器2施加偏置电压。由此,电容器2的电压与偏置电压的总计为600V,与二次电池1的电压相等。因此,能够从二次电池1和电容器2向逆变器50提供电源来驱动电动机5。
当从电容器2向逆变器50提供电源来驱动电动机5时,电容器2的电压成比例地下降。此时,控制器40控制DC-DC转换器30,使二次电池1的电压降低到比300V仅高出电容器2的电压下降量的电压。
具体地说,例如,在电容器2的电压下降到250V的情况下,控制器40控制DC-DC转换器30使得二次电池1的电压从600V降低到350V,从次级线圈32对电容器2施加偏置电压。由此,电容器2的电压与偏置电压的总计为600V,与二次电池1的电压相等。因此,在这种情况下,也能够从二次电池1和电容器2向逆变器50提供电源来驱动电动机5。
然后,当保持该状态不变地持续利用二次电池1和电容器2向逆变器50提供电源时,电容器2的电压下降而接近0V。此时,控制器40控制DC-DC转换器30,使得二次电池1的电压几乎不下降而从次级线圈32对电容器2施加接近600V的偏置电压。由此,能够使电容器2的电压与偏置电压的总计为600V。因此,能够向逆变器50提供电源来驱动电动机5直到电容器2的电压变为大致 0V为止。
以往,当电容器2的电压低于能够驱动逆变器50的最低电压时,即使电容器2内残存有电能,也会变得无法使用电容器2的电能来驱动逆变器50。由于能够驱动逆变器50的最低电压是300V,因此,当电容器2的电压低于300V时,变得无法使用电容器2的电能来驱动逆变器50。
与此相对地,在电源装置100中,在电容器2的电压下降时,能够控制DC-DC转换器30来从二次电池1对电容器2施加偏置电压。因此,即使电容器2的电压下降,也能够通过偏置电压来使表观电压上升,由此将电容器2内残存的电能提供给逆变器50来驱动电动机5。因而,能够有效地活用电容器2的电能。
另外,由于能够有效地活用电容器2的电能,因此能够减小向逆变器50输出相同的电能所需的电容器2的容量。因此,能够使电容器2小型轻量化。具体地说,与将600V的电容器下降到300V来使用的情况相比,电容器2能够以小了约25%的容量输出同等的电能。因此,能够使电容器2的重量、设置空间降低约25%,也能够相应地削减成本。
根据以上的第一实施方式,起到以下示出的效果。
在电容器2的电压下降时,能够通过DC-DC转换器30来从二次电池1对电容器2施加偏置电压。因此,即使电容器2的电压下降,也能够通过偏置电压来使表观电压上升,由此将电容器2内残存的电能提供给逆变器50来驱动电动机5。因而,能够有效地活用电容器2的电能。
(第二实施方式)
下面,参照图3和图4来说明本发明的第二实施方式所涉及的电源装置200。此外,在以下示出的各实施方式中,对与前述的实施方式相同的结构标注相同的标记,适当省略重复的说明。
在第二实施方式中,具备能够将二次电池1的电压升高来向逆变器50提供电流的非绝缘型DC-DC转换器(下面简称为“DC-DC转换器”。)60,这一点与第一实施方式不同。
电源装置200将二次电池1与同二次电池1并联连接的电容器2组合起来向逆变器50提供电源。
电源装置200具备:二次电池1;电容器2;DC-DC转换器60,其能够将电容器2的电压升高后向逆变器50提供电流;DC-DC转换器30,其利用二次电池1的电能来对电容器2施加偏置电压;以及控制器40(参照图4),其控制DC-DC转换器60和DC-DC转换器30。
DC-DC转换器60能够将二次电池1的电压升高后向逆变器50供给电力,并且能够将来自逆变器50的再生电力降压后对二次电池1充电。DC-DC转换器60具备:电抗器61,其设置于二次电池1的下游;降压控制晶体管62,其设置于电抗器61与电动机5的上游之间;升压控制晶体管63,其设置于电抗器61与电动机5的下游之间;以及平滑电容器64,其与二次电池1并联连接。
电抗器61在升压控制晶体管63导通时蓄积能量。而且,在升压控制晶体管63变为截止时,从二次电池1输入的电压和由电抗器61中蓄积的能量产生的感应电动势被输出。由此,电抗器61能够通过升压控制晶体管63的切换来将输入电压升高后输出。
通过控制器40来切换升压控制晶体管63。升压控制晶体管63是具有反向地并联连接的整流二极管的带二极管的IGBT。升压控制晶体管63能够切换电抗器61的电流来利用感应电动势将向电动机5提供的提供电压升高。
当升压控制晶体管63被切换为导通时,来自二次电池1的正极的电流经由电抗器61和升压控制晶体管63流向二次电池1的负极。通过该电流的环路在电抗器61中蓄积能量。
通过控制器40来切换降压控制晶体管62。降压控制晶体管62是具有反向地并联连接的整流二极管的带二极管的IGBT。降压控制晶体管62能够通过切换来将来自电动机5的充电电压降低。降压控制晶体管62通过斩波控制将电动机5发电得到的电力降压后充入到二次电池1。
平滑电容器64使由降压控制晶体管62进行斩波控制后输出的电压平滑化。由此,能够使向二次电池1充入由电动机5发电得到的电力时的电压平滑 化进而稳定。
DC-DC转换器30具有:初级线圈31,其与二次电池1并联连接;次级线圈32,其与电容器2串联连接;变压器芯33,其通过在初级线圈31中流动的电流来蓄积能量;作为开关元件的IGBT 34,其与初级线圈31串联设置;以及平滑电容器35,其与次级线圈32并联连接。DC-DC转换器30与第一实施方式的DC-DC转换器30相同。在此,省略对DC-DC转换器30的结构的详细说明。
向初级线圈31提供由DC-DC转换器60升压后的二次电池1的电流。因此,可以通过DC-DC转换器30与DC-DC转换器60的协调控制来调整从次级线圈32对电容器2施加的偏置电压的大小。因此,能够更细致的调整从次级线圈32对电容器2施加的偏置电压的大小。
根据以上的第二实施方式,在电容器2的电压下降时,能够通过DC-DC转换器30与DC-DC转换器60的协调控制来从二次电池1对电容器2施加偏置电压。因此,与第一实施方式同样地,即使电容器2的电压下降,也能够通过偏置电压来使表观电压上升,由此将电容器2内残存的电能提供给逆变器50来驱动电动机5。因而,能够有效地活用电容器2的电能。
另外,通过设置能够将二次电池1的电压升高后对逆变器50提供电流的DC-DC转换器60,与第一实施方式相比,能够使用电压低的二次电池1。因而,能够使电容器2的重量、设置空间降低,并且使二次电池1的重量、设置空间也降低,还能够相应地削减成本。
此外,在车辆制动时,首先将由电动机5发电得到的电能充入到电容器2。如果电容器2变为满充电,则控制器40使DC-DC转换器60工作来将电动机5发电得到的电能降压后充入到二次电池1。此时,能够调整为适于二次电池1的充电的电压和电流,因此能够高效地对二次电池1充电。
(第三实施方式)
下面,参照图5来说明本发明的第三实施方式所涉及的电源装置300。
在第三实施方式中,具备DC-DC转换器60这一点与第二实施方式是相 同的,但是向初级线圈31直接提供来自二次电池1的电流这一点与第二实施方式不同。
电源装置300将二次电池1与同二次电池1并联连接的电容器2组合起来向逆变器50提供电源。
电源装置300具备:二次电池1;电容器2;DC-DC转换器60,其能够将电容器2的电压升高后向逆变器50提供电流;DC-DC转换器30,其利用二次电池1的电能来对电容器2施加偏置电压;以及控制器40(参照图4),其控制DC-DC转换器60和DC-DC转换器30。
不经由DC-DC转换器60而直接向初级线圈31提供二次电池1的电流。由此,在电源装置300中,能够进行如下的控制。
接着,说明电源装置300的作用。
在电容器2被满充电的状态下从电容器2向逆变器50提供电源的情况下,控制器40使DC-DC转换器60和DC-DC转换器30均成为非工作状态。由此,从电容器2向逆变器50提供电源来驱动电动机5。
当从电容器2向逆变器50提供电源来驱动电动机5时,电容器2的电压成比例地下降。此时,控制器40使DC-DC转换器60保持非工作状态不变,并控制DC-DC转换器30来从次级线圈32对电容器2施加偏置电压。由此,即使电容器2的电压下降,也能够通过偏置电压来使表观电压上升,由此将电容器2内残存的电能提供给逆变器50来驱动电动机5。因而,能够有效地活用电容器2的电能。
另一方面,在从二次电池1向逆变器50提供电源的情况下,控制器40使DC-DC转换器30保持非工作状态不变,并对DC-DC转换器60进行升压控制。由此,能够将二次电池1的电压升高后提供给逆变器50来驱动电动机5。此外,此时,需要对DC-DC转换器60进行控制来使二次电池1的电压以与电容器2的电压相同的方式上升。
在电容器2的电压不够高的情况下,控制DC-DC转换器60来从二次电池1向逆变器50提供电源,并且控制DC-DC转换器30来从次级线圈32对电容器2 施加偏置电压。由此,防止从二次电池1向逆变器50提供的电源未被提供给逆变器50而被充入到电容器2。
根据以上的第三实施方式,在电容器2的电压下降时,能够通过DC-DC转换器30来从二次电池1对电容器2施加偏置电压。因此,与第一实施方式和第二实施方式相同,即使电容器2的电压下降,也能够通过偏置电压来使表观电压上升,由此将电容器2内残存的电能提供给逆变器50来驱动电动机5。因而,能够有效地活用电容器2的电能。
另外,通过设置DC-DC转换器60和DC-DC转换器30,即能够仅从二次电池1向逆变器50提供电源,也能够仅从电容器2向逆变器50提供电源。
以上说明了本发明的实施方式,但是上述实施方式只不过示出了本发明的应用例的一部分,并不意味着将本发明的技术范围限定为上述实施方式的具体结构。
例如,上述的实施方式中的电压等的数值是例示的数值,并不限定于这些数值。
另外,在上述的实施方式中,通过控制器40来控制电源装置100、200、300,通过电动机控制器(省略图示)来控制逆变器50。也可以取而代之通过单个控制器来控制电源装置100、200、300和逆变器50。
另外,上述的各个IGBT是具有反向地并联连接的整流二极管的带二极管的IGBT。也可以取而代之分别独立地设置不内置二极管的IGBT以及与IGBT反向地并联连接的整流二极管。另外,也可以代替IGBT而将MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属-氧化物半导体场效应晶体管)等其它晶体管用作开关元件。
本发明的实施例所包含的专属性质或特征如上那样记载于权利要求中。

电源装置.pdf_第1页
第1页 / 共13页
电源装置.pdf_第2页
第2页 / 共13页
电源装置.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《电源装置.pdf》由会员分享,可在线阅读,更多相关《电源装置.pdf(13页珍藏版)》请在专利查询网上搜索。

电源装置将二次电池与同上述二次电池并联连接的电容器组合起来向负载提供电源。上述电源装置具备绝缘型DC-DC转换器,该绝缘型DC-DC转换器具有初级线圈和次级线圈,该初级线圈与上述二次电池并联连接,通过从上述二次电池提供的电流来蓄积能量,该次级线圈与上述电容器串联连接,从上述初级线圈利用所蓄积的能量向上述次级线圈流入感应电流。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 发电、变电或配电


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1