使扫描图像中的模糊最小化的方法和设备.pdf

上传人:t**** 文档编号:146545 上传时间:2018-01-29 格式:PDF 页数:25 大小:1.43MB
返回 下载 相关 举报
摘要
申请专利号:

CN200410058818.5

申请日:

2004.07.30

公开号:

CN1605322A

公开日:

2005.04.13

当前法律状态:

授权

有效性:

有权

法律详情:

专利权的转移IPC(主分类):A61B 6/03登记生效日:20160726变更事项:专利权人变更前权利人:株式会社东芝变更后权利人:东芝医疗系统株式会社变更事项:地址变更前权利人:日本东京都变更后权利人:日本枥木变更事项:专利权人变更前权利人:东芝医疗系统株式会社|||授权|||实质审查的生效|||公开

IPC分类号:

A61B6/03; G06T1/00; A61B8/14; A61B5/055

主分类号:

A61B6/03; G06T1/00; A61B8/14; A61B5/055

申请人:

株式会社东芝; 东芝医疗系统株式会社

发明人:

利府俊裕

地址:

日本东京都

优先权:

2003.07.31 JP 205025/2003

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

李春晖

PDF下载: PDF下载
内容摘要

由于X射线CT扫描设备的各个不同的源产生的模糊现象,导致三维重建图像并不理想。为了使三维重建图像中的模糊基本上最小化,根据预定参数的组合对点扩展函数(PSF)进行加权。所述参数包括两种类型的信息。一组参数与扫描设备的设备特性有关,而另一组与特定扫描的扫描条件有关。对X、Y和Z方向的任意组合进行所述改进。改进后的PSF被用来对所述三维量建CT图像去卷积。结果,从三维重建图像数据中基本上消除了模糊现象,从而使扫描图像既有好的可视化效果又有精确的物理量度。根据本发明的改进技术可应用于二维图像数据。

权利要求书

1.  一种使图像数据中的模糊基本上最小化的方法,包括下述步骤:
扫描一个已知对象以产生第一图像数据;
基于所述已知对象的所述第一图像数据确定一个点扩展函数;
扫描一个所关心的对象以产生第二图像数据;
根据多个参数的组合对所述点扩展函数加权,以产生一个改进的点扩展函数;以及
用所述改进的点扩展函数对所述第二图像数据去卷积。

2.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,所述改进的点扩展函数将X方向的模糊基本上最小化。

3.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,所述改进的点扩展函数将Y方向的模糊基本上最小化。

4.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,所述改进的点扩展函数将Z方向的模糊基本上最小化。

5.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,所述第二图像数据包括多个像素,所述改进的点扩展函数被应用于每一个所述像素。

6.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,所述多个参数包括与设备有关的参数和扫描条件参数的组合。

7.
  如权利要求6所述的使图像数据中的模糊基本上最小化的方法,其中,每一个所述参数的值最终与一个预定的权重值相关。

8.
  如权利要求7所述的使图像数据中的模糊基本上最小化的方法,其中,所述与设备有关的参数包括:表示在x方向的焦点尺寸的dfocus-x,表示在Z方向的焦点尺寸的dfocus-z,表示在x方向的检测器孔径的adet-x,以及表示焦点和旋转中心之间的距离的dfocus to center

9.
  如权利要求7所述的使图像数据中的模糊基本上最小化的方法,其中,所述扫描条件参数包括:表示用于检测器校准的切片厚度的tdetector collimation,表示用于重建的切片厚度的treconstruction,表示用于重建的卷积滤波器的类型的typeconv.filter,表示重建模式类型的typereconstruction,表示像素大小的sizepixel,以及表示螺旋节距的phelical

10.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,所述第一图像数据和所述第二图像数据是二维的。

11.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,所述第一图像数据和所述第二图像数据是三维的。

12.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,对所述第二图像数据中的每一个像素执行所述去卷积步骤。

13.
  如权利要求1所述的使图像数据中的模糊基本上最小化的方法,其中,用X射线CT设备扫描所述第一图像数据和所述第二图像数据。

14.
  如权利要求13所述的使图像数据中的模糊基本上最小化的方法,其中,所述所关心的对象是人体,对人体的扫描方向沿着在Z方向的身体轴线,所述改进的点扩展函数在所述Z方向基本上使模糊最小化。

15.
  如权利要求14所述的使图像数据中的模糊基本上最小化的方法,其中,所述改进的点扩展函数在垂直于所述Z方向的X和Y方向使模糊基本上最小化。

16.
  如权利要求15所述的使图像数据中的模糊基本上最小化的方法,其中,所述参数包括表示用于重建的切片厚度的treconstruction

17.
  如权利要求16所述的使图像数据中的模糊基本上最小化的方法,其中,所述参数包括表示重建模式类型的typereconstruction

18.
  如权利要求17所述的使图像数据中的模糊基本上最小化的方法,其中,对所述第二图像数据中的每一个像素执行所述去卷积步骤。

19.
  一种使图像数据中的模糊基本上最小化的方法,包括下述步骤:
扫描一个已知对象以产生第一三维图像数据;
基于所述已知对象的所述第一三维图像数据确定一个点扩展函数;
扫描一个所关心的对象以产生第二三维图像数据;
根据多个参数的组合对所述点扩展函数加权,以产生一个改进的点扩展函数,所述多个参数包括与设备有关的参数和扫描条件参数的组合;以及
用所述改进的点扩展函数对所述第二三维图像数据去卷积。

20.
  如权利要求19所述的使图像数据中的模糊基本上最小化的方法,其中,所述参数包括表示用于重建的切片厚度的treconstruction

21.
  如权利要求19所述的使图像数据中的模糊基本上最小化的方法,其中,所述参数包括表示重建模式类型的typereconstruction

22.
  一种用软件程序改进已有的扫描系统的方法,该软件程序用于执行使图像数据中的模糊基本上最小化的任务,包括下述步骤:
将所述软件程序安装到所述现有的扫描系统的处理单元上;
扫描一个已知对象以产生第一图像数据;
基于所述已知对象的所述第一图像数据确定一个点扩展函数;
扫描一个所关心的对象以产生第二图像数据;
根据多个参数的组合对所述点扩展函数加权,以产生一个改进的点扩展函数;以及
用所述改进的点扩展函数对所述第二图像数据去卷积。

23.
  一种用软件程序改进已有的扫描系统的方法,该软件程序用于执行使图像数据中的模糊基本上最小化的任务,包括下述步骤:
将所述软件程序安装到所述现有的扫描系统的处理单元上;
扫描一个已知对象以产生第一三维图像数据;
基于所述已知对象的所述第一三维图像数据确定一个点扩展函数;
扫描一个所关心的对象以产生第二三维图像数据;
根据多个参数的组合对所述点扩展函数加权,以产生一个改进的点扩展函数,所述多个参数包括与设备有关的参数和扫描条件参数的组合;以及
用所述改进的点扩展函数对所述第二三维图像数据去卷积。

24.
  一种将扫描图像数据中的模糊基本上最小化的设备,包括:
一个扫描单元,用于分别扫描一个已知对象以产生第一图像数据以及一个所关心的对象以产生第二图像数据;以及
一个连接到所述扫描单元的数据处理单元,用于基于所述已知对象的所述第一图像数据确定一个点扩展函数,所述数据处理单元根据多个参数的组合校正所述点扩展函数以产生一个改进的点扩展函数,所述数据处理单元利用所述改进的点扩展函数对所述第二图像数据去卷积,以使所述第二图像数据中的模糊基本上最小化。

25.
  如权利要求24所述的使模糊基本上最小化的设备,还包括一个连接到所述扫描单元和所述数据处理单元的存储单元,用于存储所述参数、所述第一图像数据和所述第二图像数据。

26.
  如权利要求24所述的使模糊基本上最小化的设备,其中,所述数据处理根据所述改进的点扩展函数将X方向的模糊基本上最小化。

27.
  如权利要求24所述的使模糊基本上最小化的设备,其中,所述数据处理根据所述改进的点扩展函数将Y方向的模糊基本上最小化。

28.
  如权利要求24所述的使模糊基本上最小化的设备,其中,所述数据处理根据所述改进的点扩展函数将Z方向的模糊基本上最小化。

29.
  如权利要求24所述的使模糊基本上最小化的设备,其中,所述数据处理单元对所述第二图像数据中的每一个所述像素应用所述改进的点扩展函数。

30.
  如权利要求25所述的使模糊基本上最小化的设备,其中,所述存储单元存储所述多个参数,所述多个参数包括与设备有关的参数和扫描条件参数的组合。

31.
  如权利要求30所述的使模糊基本上最小化的设备,其中,所述存储单元存储一个每一个所述参数的权重值的预定集合。

32.
  如权利要求30所述的使模糊基本上最小化的设备,其中,所述与设备有关的参数包括:表示在x方向的焦点尺寸的dfocus-x,表示在Z方向的焦点尺寸的dfocus-z,表示在x方向的检测器孔径的adet-x,以及表示焦点和旋转中心之间的距离的dfocus to center

33.
  如权利要求30所述的使模糊基本上最小化的设备,其中,所述扫描条件参数包括:表示用于检测器校准的切片厚度的tdetector collimation,表示用于重建的切片厚度的treconstruction,表示用于重建的卷积滤波器的类型的typeconv.filter,表示重建模式类型的typereconstruction,表示像素大小的sizepixel,以及表示螺旋节距的phelical

34.
  如权利要求24所述的使模糊基本上最小化的设备,其中,所述数据处理单元二维重建所述第一图像数据和所述第二图像数据。

35.
  如权利要求24所述的使模糊基本上最小化的设备,其中,所述数据处理单元三维重建所述第一图像数据和所述第二图像数据。

36.
  如权利要求24所述的使模糊基本上最小化的设备,其中,所述数据处理单元对所述第二图像数据中的每一个像素进行去卷积。

37.
  如权利要求24所述的使模糊基本上最小化的设备,其中,所述扫描单元是X射线CT扫描设备。

38.
  如权利要求37所述的使模糊基本上最小化的设备,其中,所述所关心的对象是人体,所述X射线CT扫描设备沿着在Z方向的身体轴线扫描所述人体,所述数据处理单元基于所述改进的点扩展函数在所述Z方向基本上使模糊最小化。

39.
  如权利要求38所述的使模糊基本上最小化的设备,其中,所述数据处理单元基于所述改进的点扩展函数在垂直于所述Z方向的X和Y方向使模糊基本上最小化。

40.
  如权利要求39所述的使模糊基本上最小化的设备,其中,所述参数包括表示用于重建的切片厚度的treconstruction

41.
  如权利要求40所述的使模糊基本上最小化的设备,其中,所述参数包括表示重建模式类型的typereconstruction

42.
  如权利要求41所述的使模糊基本上最小化的设备,其中,所述数据处理单元对所述第二图像数据中的每一个像素进行去卷积。

43.
  一种将扫描图像数据中的模糊基本上最小化的设备,包括:
一个扫描单元,用于分别扫描一个已知对象以产生第一三维图像数据以及一个所关心的对象以产生第二三维图像数据;以及
一个连接到所述扫描单元的数据处理单元,用于基于所述已知对象的所述第一三维图像数据确定一个点扩展函数,所述数据处理单元根据多个参数的组合校正所述点扩展函数以产生一个改进的点扩展函数,所述多个参数包括与设备有关的参数和扫描条件参数的组合,所述数据处理单元利用所述改进的点扩展函数对所述第二三维图像数据去卷积,以使所述第二三维图像数据中的模糊基本上最小化。

44.
  如权利要求43所述的使模糊基本上最小化的设备,其中,所述参数包括表示用于重建的切片厚度的treconstruction

45.
  如权利要求43所述的使模糊基本上最小化的设备,其中,所述参数包括表示重建模式类型的typereconstruction

说明书

使扫描图像中的模糊最小化的方法和设备
技术领域
本发明总体上涉及一种改进图像分辨率的图像增强或者校正技术,更具体地涉及图像增强或者校正软件、方法,以及使来自X射线计算机辅助层析摄影或者说计算机层析摄影(CT)扫描设备的三维重建扫描图像中的模糊基本上最小化的设备和系统。
背景技术
近年来,X射线CT扫描设备已经取得了很大的进展,并已经广泛地用于计算机层析摄影。扫描设备的使用不仅用在医疗领域,而且用在其它领域包括工业应用领域。X射线CT扫描设备已经取得了迅速的进展。例如,作为对医疗界对高分辨率和宽扫描范围的需求的回应,已经开发了广泛使用的多切片X射线CT扫描设备。多切片X射线CT扫描设备通常包括一个在切片方向辐射扇形X射线束的X射线源,以及也设置在切片方向的二维X射线检测器部件。切片方向通常是患者所躺的扫描床的纵轴的方向。X射线检测器包括4、8、16或者32排检测器部件,就象可从东芝医疗系统公司(Toshiba Medical Systems inAquilion Models)可买到的产品那样。如下面将要详细说明的,在CT扫描设备中以多扫描模式或者螺旋扫描模式进行扫描操作。由于上述进步,与单切片X射线CT扫描设备相比,可以在更短的时间内、以更高的精度、在患者的更宽的区域上获得三维图像数据。
三维重建上述获得的图像数据,以不仅用于显示,而且用于其它各种目的。例如,一个医疗目的是测量由于血管狭窄导致的凝块大小或者梗塞率(occlusion rate)。为了进行上述测量,在对患者注入造影剂之后,所述X射线CT扫描设备对流过血管中的造影剂的分布进行成像而获得三维图像数据。根据反映在所述三维图像数据中的造影剂的分布CT值,实际测量到凝块尺寸和梗塞率。在测量梗塞率的情况下,根据表示在三维图像数据或者体数据(volume data)中的正常区域的血管和梗塞区域的血管之间的内部厚度或者距离的比较,确定所述梗塞率。对于血管厚度测量,为CT值建立一个预定的阈值。在上述例子中,尽管是用X射线CT扫描设备获得上述三维图像数据,但也可以用其它类型的扫描设备获得所述三维图像数据。
其它类型的扫描设备包括超声波成像扫描设备和磁共振成像扫描设备。为了确实地对显示的图像进行血管测量,日本专利申请11-342232公开了一种基于垂直于血管的横截面的所希望的截面上的像素值分布的血管尺寸测量技术。另一方面,日本专利申请2000-350726公开了一种根据最大强度投影(MIP,maximal intensityprojection)图像精确地测量对象的长度的技术,所述对象比如是在不平行于投影面的方向上具有弯曲的血管或者肠管。
对于某些微细结构的测量和显示,在三维图像数据中,CT扫描设备系统通常有一定量的模糊、浸润或者不精确。图像中的模糊或者模糊不清的图像是由空间分辨率的局限造成的。空间分辨率还取决于扫描设备的基本性能以及扫描条件。例如,扫描设备的基本性能参数包括两个相邻检测器部件之间的间距。扫描条件包括进行特定扫描或者重建三维图像时的条件。所述条件的一个例子包括扫描的切片厚度。沿着患者体轴或者说Z轴方向的切片厚度越大,沿着Z方向的空间分辨率就越小。从而,在Z方向或者说体轴方向造成模糊,从而导致较低的图像质量。最终,特定结构比如血管壁厚度的测量的不精确导致信息包括梗塞率不可靠。在PCT申请″Imaging″,WO 00/22573,Chui etal.中公开了点扩展函数(PSF,point spread function)的某些方面。
相对于扫描方向,在预定方向进行超分辨率(super-resolution)或者校正处理。假设扫描方向是Z方向或者说体轴方向,CT图像中的模糊发生在垂直于Z方向的X和Y方向。但是,模糊量或者PSF在三维图像数据的每一个方向上是不同的。作为空间分辨率不同的结果,图像质量不稳定。
对于上述问题,希望在扫描地三维图像数据上,使模糊效应基本上最小化,以精确地测量感兴趣的特定结构。在基本上消除模糊时,还希望所应用的技术能够适用于用各种类型的扫描设备在各种变化的条件下扫描的三维图像数据。最终,希望改进高质量的三维图像数据。
发明内容
为了解决上述以及其它问题,根据本发明的第一方面,一种使图像数据中的模糊基本上最小化的方法,包括下述步骤:扫描一个已知对象以产生第一图像数据;基于所述已知对象的所述第一图像数据确定一个点扩展函数(PSF);扫描一个所关心的对象以产生第二图像数据;根据多个参数的组合对所述点扩展函数加权,以产生一个改进的点扩展函数;以及用所述改进的点扩展函数对所述第二图像数据去卷积。
根据本发明的第二方面,一种使图像数据中的模糊基本上最小化的方法,包括下述步骤:扫描一个已知对象以产生第一三维图像数据;基于所述已知对象的所述第一三维图像数据确定一个点扩展函数;扫描一个所关心的对象以产生第二三维图像数据;根据多个参数的组合对所述点扩展函数加权,以产生一个改进的点扩展函数,所述多个参数包括与设备有关的参数和扫描条件参数的组合;以及用所述改进的点扩展函数对所述第二三维图像数据去卷积。
根据本发明的第三方面,一种用软件程序改进已有的扫描系统的方法,该软件程序用于执行使图像数据中的模糊基本上最小化的任务,包括下述步骤:将所述软件程序安装到所述现有的扫描系统的处理单元上;扫描一个已知对象以产生第一图像数据;基于所述已知对象的所述第一图像数据确定一个点扩展函数;扫描一个所关心的对象以产生第二图像数据;根据多个参数的组合对所述点扩展函数加权,以产生一个改进的点扩展函数;以及用所述改进的点扩展函数对所述第二图像数据去卷积。
根据本发明的第四方面,一种用软件程序改进已有的扫描系统的方法,该软件程序用于执行使图像数据中的模糊基本上最小化的任务,包括下述步骤:将所述软件程序安装到所述现有的扫描系统的处理单元上;扫描一个已知对象以产生第一三维图像数据;基于所述已知对象的所述第一三维图像数据确定一个点扩展函数;扫描一个所关心的对象以产生第二三维图像数据;根据多个参数的组合对所述点扩展函数加权,以产生一个改进的点扩展函数,所述多个参数包括与设备有关的参数和扫描条件参数的组合;以及用所述改进的点扩展函数对所述第二三维图像数据去卷积。
根据本发明的第五方面,一种将扫描图像数据中的模糊基本上最小化的设备,包括:一个扫描单元,用于分别扫描一个已知对象以产生第一图像数据以及一个所关心的对象以产生第二图像数据;以及一个连接到所述扫描单元的数据处理单元,用于基于所述已知对象的所述第一图像数据确定一个点扩展函数,所述数据处理单元根据多个参数的组合校正所述点扩展函数以产生一个改进的点扩展函数,所述数据处理单元利用所述改进的点扩展函数对所述第二图像数据去卷积,以使所述第二图像数据中的模糊基本上最小化。
根据本发明的第六方面,一种将扫描图像数据中的模糊基本上最小化的设备,包括:一个扫描单元,用于分别扫描一个已知对象以产生第一三维图像数据以及一个所关心的对象以产生第二三维图像数据;以及一个连接到所述扫描单元的数据处理单元,用于基于所述已知对象的所述第一三维图像数据确定一个点扩展函数,所述数据处理单元根据多个参数的组合校正所述点扩展函数以产生一个改进的点扩展函数,所述多个参数包括与设备有关的参数和扫描条件参数的组合,所述数据处理单元利用所述改进的点扩展函数对所述第二三维图像数据去卷积,以使所述第二三维图像数据中的模糊基本上最小化。
在所附的构成说明书的一部分的权利要求中,具体指出了作为本发明的特征的上述以及其它各种优点和新颖特征。但是为了更好地理解本发明及其优点,以及使用本发明所获得的对象,需要参考构成本说明书的一部分的附图,以及对附图加以说明并描述本发明的优选实施例的说明内容。
附图说明
图1是一个框图,图解了根据本发明的多切片CT扫描设备以及外部图像处理设备或者控制台的一个优选实施例;
图2是一个流程图,图解了根据本发明,基本上消除三维重建图像中的模糊、污涂或者不清楚的优选方法的一般步骤;
图3的示意图形象地概括了根据本发明的上述优选方法,其中包括扫描CT图像数据上的模糊被最小化的最终效果。
具体实施方式
根据引入的外部参考,本申请包括本申请要求优先权的相应外国优先权文件(2003年7月31日提交的JP2003-205025)的所有公开内容。
现在参见附图,其中类似的附图标记表示相应的结构。参见图1,该框图图解了根据本发明的一个多切片CT扫描设备10的一个优选实施例和一个外部图像处理设备或者控制台。该多切片CT设备10一般包括一个环形的门架G,在其中用X射线扫描已知的对象或者受检者比如患者P。该多切片CT设备10还包括一个数据处理单元IPU,在这里对扫描数据进行处理。该门架G还包括一个滑环17、一个旋转环部分21、一个门架操作单元16、一个X射线管11和一个X射线检测系统14。X射线管是一个X射线辐射源,与所述X射线检测系统14相对地位于所述旋转环部分21上。患者P通过门架G的开口OP进入X射线管11和X射线检测系统14之间。
该多切片CT设备10通常执行扫描过程以收集患者P或者已知对象的所需的扫描数据。患者P被置于扫描床SB上,扫描床SB沿着虚线所示的预定的Z方向位于门架G附近。一般患者P的体轴平行于Z方向。扫描床SB在主控制器20的控制下载着患者沿着Z方向在开口OP中移动。当患者P被移动时,主控制器通过门架操作单元16控制旋转环部分关于开口的中心轴线以预定的高速度旋转,该速度低于一秒每周。
随着旋转环部分21的旋转,从X射线管11向患者P辐射预定量的X射线,部分辐射的X射线到达X射线检测系统14。从高压电产生所述X射线,所述高压电通过所述滑环从一个高压源15被提供到所述X射线管11。X射线以锥形射束或者扇形射束的形式通过一个准直器19投射到患者P的预定视场区域内。所述准直器19位于所述X射线管11和所述患者P之间,用于调节上述X射线投射的尺寸和形状。投射的X射线在两个方向延展。一个方向是平行于旋转轴的切片方向,切片方向是由一系列投影射线进行渐进的扫描以产生扫描图像的方向。另一个方向是通道方向,垂直于该切片方向。由于患者P躺在沿着纵向的运动床上,纵向的体轴与切片方向一致。这样,X射线管11和X射线检测系统14按照一种相互之间的相对位置绕着患者P旋转,以按照预定的高速度收集扫描数据。
所述X射线检测系统14包括一个二维X射线检测单元12和一个数据采集系统13,二者都位于旋转环部分21上。该二维检测单元12绕着扫描床SB旋转,检测从X射线管11投射透过患者P的X射线。通过数据采集系统13中的一个预定的电路收集检测到的X射线信号,之后输出到位于所述门架G中的一个非接触数据传输装置15。来自旋转环部分21上的数据采集系统13的数据以非接触的方式比如无线数据传输方式被传输到所述非接触数据传输装置15。
所述多切片CT设备10执行扫描过程以收集所要的扫描数据。该扫描过程包括下述扫描特性的组合,比如螺旋,环形(非螺旋),单切片,多切片。扫描特性的一些例子包括螺旋扫描过程,环形单切片扫描过程或者环形多切片扫描过程。在螺旋扫描过程中,扫描床SB按照预定的速度保持Z方向运动,同时旋转环部分21也按照预定的角速度保持旋转。这样,扫描数据反映了扫描面,其外缘类似于螺旋轨道。相反,环形单切片扫描过程在特定的已知固定位置沿着环形轨道在一周期间从单个检测器收集数据。换句话说,每一组收集的数据反映基本上垂直于Z方向的单个扫描面。另一方面,在特定的已知固定位置的沿着一个环形轨道的一周期间,传统的多切片扫描过程从多个检测器收集数据。换句话说,每一组收集的数据反映基本上垂直于Z方向的多个扫描面。在所述优选实施例中,任何上述扫描过程用来实现本发明。
所述图像数据处理单元IPU包括以下各个单元以在扫描操作期间控制所述门架,并处理来自门架G的收集到的数据。在扫描过程之前,通过输入装置26输入参数以指定扫描的特定方面。根据输入的参数,主控制器20控制用于产生高压的高压发生装置18、用于旋转所述旋转环部分21的门架操作单元16以及用于移动患者P的扫描床SB。在重建之前,一个预处理单元21从所述非接触数据传输装置15接收收集到的扫描数据。该数据被存储在一个主存储单元22以及/或者一个辅助存储单元23中。一个数据处理单元24和一个重建单元25处理所述收集到的数据,之后按照已经通过输入装置26输入的其它特定参数在显示单元27上绘制所要的图像。上述单元通过公共总线28连接起来。
另外,该公共总线28也可选地连接到外部图像处理装置30。如上所述,该外部图像处理装置30包括一个辅助存储单元31、一个数据处理单元32和一个重建单元33、一个输入装置34和一个显示单元35。所述总线28还相互连接以支持内部图像处理单元IPU和外部图像处理单元30之间的通信。但是,这两个处理单元也通过其它装置或者以其它方式进行通信。
在上述优选实施例中,高速地执行图像数据收集和图像处理。例如,在每一周中或者在大约一秒中,将X射线检测操作重复大约1000次。由于上述采样速率,对于二维X射线检测单元12绕患者P的每一周旋转,对M×N个通道产生1000次大量的二维投影数据。为了无延迟地传输快速发生的大量二维投影数据,数据采集系统12和非接触传输装置15都以高速工作以将投影数据输出到预处理单元21。预处理单元21对接收到的投影数据执行灵敏度校正和/或X射线强度校正。在上述校正之后,360度的二维投影数据,比如1000组或者说1000个视图被临时存储到所述辅助存储单元23中。所述图像重建单元25通过对存储在所述辅助存储单元23中的投影数据执行预定的重建方法重建每一个切片的剖面图像数据,所述预定的重建方法比如是扇形射束重建方法或者锥形射束重建方法。这样,产生了三维图像数据,并随后存储在主存储单元22中。
根据本发明,在一个优选实施例中,为了使三维重建图像数据中的模糊、污涂或者不清楚最小化,所述数据处理单元24执行后重建处理。在另一个优选实施例中,上述模糊最小化处理由所述图像重建单元25进行。另外,在另一个优选实施例中上述模糊最小化处理由所述外部图像处理装置或者控制台30的所述数据处理单元32和/或所述图像重建单元33执行。所述外部图像处理装置或者控制台30可选地位于远程地点比如数据处理中心。在替代实施例中,上述模糊最小化处理由一个与所述多切片CT装置分开的独立的通用计算机执行。换句话说,所述数据处理单元24、32、所述图像重建单元25、33或者所述通用计算机在功能上实现根据本发明的图像数据处理装置。
现在参见图2,该流程图图解了根据本发明使三维重建图像数据中的模糊、污涂或者不清楚基本上被消除的优选方法所涉及的概括步骤。在对后续步骤的说明中,要引述图1中的部件或者单元以提供所述步骤的举例的实现方式。但是,以下对步骤的说明只是举例性的,并不限于图1中的部件、单元或者装置。在步骤S1中,数据存储单元24读取已经被收集并存储在存储单元22中的三维重建图像数据。例如,使用造影剂的三维重建图像数据被用来基本上消除重建图像中的模糊。在随后的步骤2中,数据处理单元24还读取已经针对该三维重建图像数据存储在存储单元中的相关基本信息和相关扫描条件。所述基本信息与CT设备10具体相关,包括X射线焦点尺寸、检测器宽度和焦距-中心距离。扫描条件是收集三维重建图像数据的特定集合时的条件。例如,扫描条件包括扫描和重建时的切片厚度、重建算法的种类、重建条件、重建函数、像素尺寸、螺旋扫描时的螺旋节距以及脉管对象情况下的角度。最好,扫描条件最低限度地包括重建时和扫描时的切片厚度。或者,扫描条件最低限度地包括重建时和扫描时的切片厚度以及重建算法的种类。
仍然参照图2,数据处理单元24执行后面的确定改进的校正函数、应用改进的校正函数并根据改进的数据测量所需值的步骤。根据上述基本信息和扫描信息,扫描处理单元24在步骤S3确定每一个像素的模糊最小化函数。该模糊最小化函数按像素使三维重建图像数据中的模糊或者污涂基本上最小化。如上所述,模糊与空间分辨率有关,空间分辨率是由点扩展函数(PSF,point spread function)确定的。但是,在三维重建图像数据中,沿着Z方向或者体轴方向的空间分辨率不同于沿着X或者Y轴方向的空间分辨率。由于空间分辨率的基础是CT设备规格和扫描条件,根据CT设备规格和扫描条件对每一个像素调节所述模糊校正函数。在一个优选实施例中,在X、Y和Z方向的每一个方向确定所述模糊校正函数。或者,对于特定的需要,在一个优选实施例中,仅对Z方向确定所述模糊校正函数。随后,在步骤S4,数据处理单元24根据上面确定的模糊校正函数对所述三维重建图像数据进行去卷积。作为去卷积的结果,从三维重建图像数据中基本上消除了模糊。校正后的三维重建图像数据被可选地存储于所述存储单元22中。在最后的步骤S5,数据处理单元24显示所述经校正的三维重建图像数据。另外,根据用户命令,在步骤S5中,在校正后的三维重建图像数据中可选地进行特定测量比如血管阻塞或者血管梗塞率的测量。由于经校正后的三维重建图像数据被用来确定梗塞率,从测量结果中基本上消除了模糊或者污涂的负面影响。结果,根据本发明,测量结果比如梗塞率在临床上更为可靠。
为了进一步明确对上述优选方法中的某些步骤的描述,对本发明定义以下术语。模糊最小化函数是用于使从测量的CT图像数据重建的三维图像中的模糊、污涂或者不清楚基本上最小化的校正函数或者改进的PSF。模糊最小化处理或者说去卷积处理是应用所述模糊最小化函数的处理。在后面,术语“模糊函数”和“PSF”的使用是同义的,用来指现有技术。而术语“校正函数”、“模糊校正函数”、“模糊最小化”和“改进的PSF”基本上是可互换的,用来指根据本发明的技术。
为了在步骤S3中确定所述校正函数,根据以下参数组改进PSF。一般,参数分为两组,包括基本信息和扫描条件。一组参数与特定的三维重建图像有关。尽管所述参数一般是相互独立的,但并不需要这些参数必须相互独立。基本信息是与设备有关的信息,或者说具体联系到一个特定的CT设备的信息。例如,基本信息包括X射线焦点尺寸、检测器宽度和角度-中心距离。扫描条件是收集三维重建图像数据的特定集合时的条件。例如,扫描条件包括扫描时和重建时的切片厚度、重建算法的种类、重建条件、重建函数、像素尺寸、螺旋扫描的螺旋节距以及脉管对象情况下的角度。最好,扫描条件最低限度地包括重建时和扫描时的切片厚度。或者,扫描条件最低限度地包括重建时和扫描时的切片厚度以及重建算法的种类。上述参数用来改进已知的PSF。所述已知的PSF是在基于已知对象的测量的训练过程中初始建立的。
在与设备有关的参数中,下面的表1概括了每一个参数的某些细节。这些参数各具有一个在该表中被描述为变量的参数名。对于典型的CT扫描设备,对每一个参数提供了举例的范围值。离散的加权指数是整数值,表示相应范围的离散子范围和相关的权重值。相关的权重值用来对所述已知的PSF加权,以基本上使从扫描的CT图像数据重建的三维图像数据中的模糊、污涂或者不清楚最小化。尽管数字范围值取决于具体的扫描设备,在优选实施例中,许多子范围或者许多离散加权指数仍然是一样的。
表1:

  参数名      描述    范围 离散加权指数的数量  dfocus-x  x方向的焦点尺寸0.1mm-2mm    1  dfocus-z  z方向的焦点尺寸0.1mm-2mm    1  adet-x  x方向的检测器孔径0.1mm-2mm    1  dfocus to center  焦点和旋转中心之间  的距离50cm-65cm    1

在扫描条件参数中,下面的表2概括了每一个参数的一些细节。这些参数各具有一个在该表中被描述为变量的参数名。对于典型的CT扫描设备或者典型的处理环境,对每一个参数提供了举例的范围值。离散的加权指数是整数值,表示相应范围的离散子范围、特定算法或者特定重建模式。每一个相关的权重值用来对所述已知的PSF加权,以基本上使从扫描的CT图像数据重建的三维图像数据中的模糊、污涂或者不清楚最小化。尽管数字范围值取决于具体的扫描设备,在优选实施例中,许多子范围或者许多离散加权指数仍然是一样的。卷积滤波器的类型typeconv.filter大约包括40种已知的从扫描的CT图像数据重建三维图像的算法或方法。这些算法用作在三维重建中调节图像质量的滤波器。例如,对被扫描体图像数据的特定部分使用不同的滤波器。重建类型typereconstruction包括进行三维重建的四种预定条件。举例的条件包括半重建模式、全重建模式、扇形射束重建模式和锥形射束重建模式。对于螺旋节距,假设螺旋节距等于每旋转一周的床距。在螺旋扫描中同时四个切片的情况下,假设X射线束是4mm,而射线束节距为0.5mm到2mm,螺旋节距为2mm到8mm。
表2:    参数名          描述    范围离散加权指数   的数量  tdetector collimation  检测器校准的切片厚度0.5mm-8mm    6  treconstruction  用于重建的切片厚度0.5mm-10mm    6  typeconv.filter  用于重建的卷积滤波器的类型40种    40  typereconstruction  重建模式类型4种    4  sizepixel  像素大小0.1mm-1mm    5  phelical  螺旋节距(例如,四行,0.5mm<  phelical<2mm)2mm-8mm    6

这样,根据上述参数的组合确定改进的PSF。换句话说,按照下式粗略地确定改进的PSF或者说PSFimproved
PSFimproved=PSF(dfocus-x,dfocus-z,adet-x,dfocus to center,tdetector collimation,treconstruction,typeconv.filter,typereconstruction,sizepixel,phelical)
(1)
尽管可以用任何参数组合对PSF加权,但最好所述扫描条件最低限度地包括treconstruction。或者,所述扫描条件最低限度地包括treconstruction以及typeconv.filter。实际的加权处理以各种方式进行。在一种优选实施例中,用一个单独的表实现每一个上述参数,所述表包含离散加权指数和用于改进已知的PSF的效果的相应的权重值。权重值的组合的总数是所有上述参数的离散加权指数的数量的倍数。
一般,步骤S4的去卷积处理涉及卷积的逆。令M是扫描已知对象的结果的CT图像,该已知对象的理想图像是O,则M被定义为一个卷积结果,如下:
M=PSFO    (2)
其中,PSF是点扩展函数,是卷积。从测得的CT图像M,通过根据PSF对CT图像进行去卷积,确定真实的对象图像O。令PSF-1为去卷积函数,则由下式(3)确定去卷积图像O’:
O’=MPSF-1    (3)
为了获得去卷积图像O’,使用一种迭代求解技术。该迭代方法与解高度复杂的线性齐次函数(simultaneous liner function)所用的各种通用迭代方法基本上相同。在下面的例子中进一步描述雅各比(Jacobi)方法。一开始,假设一个初始解。例如,该初始解被设置为作为测量到的图像的去卷积图像的空图像。随后,按照下式(4)计算误差E:
E=(M-PSFO)2    (4)
上述迭代方法以使得误差E最小的方式获得对象图像O。也就是E→min。根据误差E的斜率,确定一个校正向量dE/d0,用于在如下式(5)所述的迭代期间使对象图像O收敛。
ON+1=(ON-a)dE/d0(5)
其中,a为常数。为了使收敛速度最大化,其它方法比如最大驱动方法和共轭梯度方法最优地选择所述常数a和校正向量。但是,随着收敛速度的增加,由于变得更容易受图像噪声这样的影响而使收敛和去卷积受到负面影响,因此需要考虑图像质量和收敛速度之间的平衡。
仍然参考图2,在本发明的上述用于将三维重建图像数据中的模糊、污涂和不清楚基本上消除掉的优选方法中,使用改进的PSF或者模糊最小化函数来取代等式(3)和(4)中的PSF。PSFimproved或者模糊最小化函数的使用极大地使去卷积图像O’中不希望有的模糊最小化,所述去卷积图像O’基本上接近于真实图像O。尽管上述说明书表明PSFimproved在三个方向可同一地应用于扫描图像数据。最好对于X、Y和Z方向的每一个定义PSFimproved,因为模糊量通常与相对于扫描的方向有关。为此,用另外的指示方向的参数进一步限定PSFimproved,PSFimproved或者被定义如下:
PSFimproved(x1,y1,z1)=PSF(dfocus-x,dfocus-z,adet-x,dfocus to center,tdetector collimation,treconstruction,typeconv.filter,typereconstruction,sizepixel,phelical)    (6)
其中,x1,y1,z1是扫描的各坐标或者方向。另外,上述对已知PSF的改进也适用于其它任何方向比如预定倾斜方向。换句话说,我们知道,由于各种不精确源,包括机械和光学部件,不能理想地测量到感兴趣的对象的真实图像。真实图像用PSFimproved表示如下:
V(x,y,z)=PSFimproved(x1,y1,z1,)|v(x,y,z)    (7)
其中,v(x,y,z)是三维理想或者三维真实图像数据,而V(x,y,z)是测量到的三维图像数据。这样,从测量到的CT扫描图像数据V(x,y,z),由下面等式(8)所描述的去卷积方法确定接近理想的经过校正的三维图像数据v′(x,y,z):
v′(x,y,z)=PSFimproved-1(x1 y1,z1)|V(x,y,z)    (8)
尽管如上所述等式(8)是有噪声倾向的,合适的迭代技术仍然会产生基本上精确的结果。同样如上所述,在一个优选实施例中,对每一个像素执行等式(8)。
现在参照图3。该示意图形象地概括了根据本发明的上述优选方法,包括扫描CT图像数据上的模糊被最小化的最终效果。图3A图示了一个子处理,其中,根据已知对象比如线模型(wire model)确定PSF。例如,两条线的尺寸小于特定CT扫描设备的检测器的孔径分辨率。这样,如图3B所示,在X、Y和Z方向建立一组三个PSF。这三个PSF分别由一个钟形曲线图示,指示了相当宽的点分布范围。随后,同一CT扫描设备扫描感兴趣的对象比如血管,并重建三维图像比如图3E所示的图像。血管的三维重建图像包括模糊的和不清楚的部分,这容易导致对血管的物理特性的测量不精确。所述模糊或者不清楚的图像被认为是模糊或者不清楚与有关的原始或者理想图像的卷积的结果。
对于特定的扫描图像数据,收集和存储一组信息。这些信息包括CT扫描设备的设备特性以及扫描获得特定扫描数据时的条件。如图3C所示,设备信息和扫描信息均用作改进PSF的参数以基本上消除血管的扫描CT图像中的模糊或者不清楚。所述参数包括如参照表1和表2所述的dfocus-x、dfocus-z、adet-x、dfocus to center、tdetector collimation、treconstruction、typeconv.filter、typereconstruction、sizepixel和phelical的组合。作为改进的结果,图3D图示了三个PSF比图3B所示更窄,这表明点的分布更受限制,因而有更好的分辨率。现在,用改进的PSF对图3E的重建三维图像进行去卷积,以基本上去除所述模糊和不清楚。由于模糊和不清楚基本上被最小化,血管的三维重建图像现在在附图3F中具有更加清晰的边界。从而,在图3F的改进的三维图像中,与图3F的三维图像相比,对血管的物理测量变得更为精确。
最后,上述改进的PSF可应用于三维数据、三维重建数据、二维数据或者它们的任意组合。上述改进的PSF也可应用于由其它类型的扫描设备包括MRI扫描设备和超声波扫描设备收集到的图像数据。根据本发明的上述技术不限于医疗应用,而是也可以应用于其它领域,比如半导体器件的反向工程。
但是,应当理解,在前面的说明中,虽然与本发明的结构和功能的细节一起给出了本发明的许多特征和优点,这里的公开仍然仅仅是说明性的。并且,尽管可以详细地进行变化(尤其是在部件的形状、尺寸和布置方面,软件和硬件的实现方面,以及所述两方面),这些变化总是在本发明的原理的范围之内,这个范围由所附权利要求所使用的术语的最宽泛的含义来限定。

使扫描图像中的模糊最小化的方法和设备.pdf_第1页
第1页 / 共25页
使扫描图像中的模糊最小化的方法和设备.pdf_第2页
第2页 / 共25页
使扫描图像中的模糊最小化的方法和设备.pdf_第3页
第3页 / 共25页
点击查看更多>>
资源描述

《使扫描图像中的模糊最小化的方法和设备.pdf》由会员分享,可在线阅读,更多相关《使扫描图像中的模糊最小化的方法和设备.pdf(25页珍藏版)》请在专利查询网上搜索。

由于X射线CT扫描设备的各个不同的源产生的模糊现象,导致三维重建图像并不理想。为了使三维重建图像中的模糊基本上最小化,根据预定参数的组合对点扩展函数(PSF)进行加权。所述参数包括两种类型的信息。一组参数与扫描设备的设备特性有关,而另一组与特定扫描的扫描条件有关。对X、Y和Z方向的任意组合进行所述改进。改进后的PSF被用来对所述三维量建CT图像去卷积。结果,从三维重建图像数据中基本上消除了模糊现象。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1