具有动态镜的浮动光头.pdf

上传人:柴****2 文档编号:1427010 上传时间:2018-06-14 格式:PDF 页数:25 大小:801.62KB
返回 下载 相关 举报
摘要
申请专利号:

CN97197574.4

申请日:

1997.08.27

公开号:

CN1230278A

公开日:

1999.09.29

当前法律状态:

驳回

有效性:

无权

法律详情:

发明专利申请公布后的驳回|||著录事项变更变更项目:申请人变更前:西加特技术有限公司变更后:西加特技术有限责任公司||||||公开

IPC分类号:

G11B11/10; G11B7/12

主分类号:

G11B11/10; G11B7/12

申请人:

西加特技术有限公司;

发明人:

杰佛瑞·P·怀德; 约瑟夫·E·大卫斯; 小杰利·E·赫斯特; 约翰·F·希纽; 克特·彼得森; 德瑞·马克丹尼尔; 杰佛·崔山

地址:

美国加利福尼亚州

优先权:

1996.08.27 US 60/025,801; 1996.10.10 US 08/731,214

专利代理机构:

上海专利商标事务所

代理人:

钱慰民

PDF下载: PDF下载
内容摘要

磁光浮动光头将可导引式反射镜(340)与光源和透镜结合使用,用以对磁光存储盘片(180)读写数据。从光源传送到光头的激光束被反射到可导引式微加工折叠式反射镜(340)上。通过埋入式微型GRIN物镜(420)引导来自折叠式反射镜的反射光。通过将反射镜绕旋转轴旋动,实现精细跟踪和短时间寻找相邻磁道的动作。以此方式,焦点沿大致平行于存储盘片径向的方向前后扫描。

权利要求书

1: 一种包含存储媒体的组件,其特征在于,该组件还包括: 一个能量源;以及 至少一个光头,所述光头还包含一个用于耦合能 量源与存储媒体之间能量的可导引式微加式致动器。
2: 如权利要求1所述的组件,其特征在于,所述能量源是激光二极管。
3: 如权利要求1所述的组件,其特征在于,所述能量源是由二极管抽运的的 微晶片激光器。
4: 如权利要求1所述的组件,其特征在于,所述组件包含多个光头和相应多 个存储媒体。
5: 如权利要求1所述的组件,其特征在于,所述能量源通过一光学耦合器与 所述可导引式微加工致动器耦合。
6: 如权利要求1所述的组件,其特征在于,所述组件是一个磁光盘驱动器。
7: 如权利要求1所述的组件,其特征在于,所述能量源是一个单模极性保持 光缆。
8: 如权利要求1所述的组件,其特征在于,在所述能量源与所述存储媒体之 间的耦合距离是可以调整的。
9: 如权利要求1所述的组件,其特征在于,还包括一支 撑臂,所述支撑臂还包括一个用于支持光纤的v形槽。
10: 如权利要求1所述的组件,其特征在于,还包含一个支撑臂,所述支撑臂 还包含一个用于使所述光头绕所述支撑臂移动的滑件轨道机构。
11: 如权利要求1所述的组件,其特征在于,所述光头还包含一个用于耦合可 导引式微加工致动器与存储媒体之间能量的透镜。
12: 如权利要求11所述的组件,其特征在于,所述透镜沿可导引式微加工致 动器与存储媒体之间的光轴布置。
13: 如权利要求11所述的组件,其特征在于,所述透镜是GRIN透镜。
14: 如权利要求11所述的组件,其特征在于,所述透镜用于同焦点的光学系 统中。
15: 如权利要求11所述的组件,其特征在于,所述透镜是一个平凸GRIN透 镜。
16: 如权利要求1所述的组件,其特征在于,所述光头被安置成平行于存储媒 体的表面。
17: 如权利要求1所述的组件,其特征在于,所述存储媒体是盘片媒体。
18: 如权利要求1所述的组件,其特征在于,还包含一个与所述能量源配合的 磁性线圈元件,用于将数据存储在存储媒体中。
19: 如权利要求18所述的组件,其特征在于,所述线圈包含在光头内。
20: 一种光头装置,其特征在于,包含: 一个光源;以及 一个用于引导从光源接收到的光线的可导引式微型致动器。
21: 如权利要求20所述的光头,其特征在于,所述光源是一个激光二极管。
22: 如权利要求20所述的光头,其特征在于,所述光源是一光缆。
23: 如权利要求20所述的光头,其特征在于,还包含一个支撑臂,所述支撑 臂包含一个用于支持光缆的V形槽。
24: 如权利要求20所述的光头,其特征在于,还包含一个支撑臂,所述支撑 臂还包含一个用于使光头绕所述支撑臂移动的滑件轨道机构。
25: 如权利要求24所述的光头,其特征在于,所述光头是一个浮动磁光头, 而所述支撑臂是一个旋转的温彻斯特式致动器臂状物。
26: 如权利要求20所述的光头,其特征在于,所述微型致动器沿大致与存储 盘的径向平行的方向扫瞄。
27: 一种用于传送数据到存储媒体上的方法,其特征在于,包括以下步骤: 从能量源传送出能量; 将能量提供给微加工致动器;以及 通过导引微加工致动器,将能量引导到存储媒体的特定位置。
28: 如权利要求27所述的方法,其特征在于,通过一GRIN透镜引导所述能 量。
29: 如权利要求27所述的方法,其特征在于,所述透镜沿微加工致动器与存 储媒体之间的光轴布置。
30: 如权利要求27所述的方法,其特征在于,所述透镜用于同焦点的光学系 统。
31: 如权利要求27所述的方法,其特征在于,所述微加工致动器与存储媒体 的表面平行布置。
32: 如权利要求27所述的方法,其特征在于,所述存储媒体是一盘片媒体。
33: 如权利要求32所述的方法,其特征在于,所述盘片媒体是双面的。
34: 一种用于传送数据至存储媒体上的系统,其特征在于,包括: 用于从能量源传送出能量的装置: 用于把能量提供给微加工致动器的装置;以及 用于通过导引所述微加工致动器而将能量引导到存储媒体之特定位置的装 置。
35: 如权利要求34所述的系统,其特征在于,用于引导能量的所述装置是一 个微加工的可导引式反射镜。
36: 如权利要求34所述的系统,其特征在于,所述系统是一个同焦点的光学 系统。
37: 如权利要求34所述的系统,其特征在于,所述微加工致动器被引导沿着 大致与存储媒体的径向平行的方向扫瞄。
38: 一种包含存储媒体的组件,其特征在于,所述组件还包括: 一个能量源; 一个用于从能量源处接收能量的耦合器;以及 至少一个光头,所述光头还包含一个用于从所述耦合器接收能量并将能量引 导到存储媒体的可导引式微加工致动器。

说明书


具有动态镜的浮动光头

    相关申请的交叉文献

    本申请要求以下专利申请的利益:1996年7月30日提交的标题为“一种基于浮动磁光头的数据存储和检索系统”的临时申请第60/002,775号;1996年8月6日提交的标题为“一种基于浮动磁光头的数据存储和检索系统”的临时申请第60/023,476号;以及1996年8月27日提交的标题为“一种基于浮动磁光头的数据存储和检索系统”的临时申请第60/025,801号。上述相关申请中每项申请的主题通过引用包括在此。所有相关的专利申请案被共同转让。

    【发明背景】

    1.发明领域

    本发明总体上涉及光学数据存储系统,尤其涉及在光学数据存储系统中使用的浮动光头(optical head)。

    2.背景技术

    在一光存储系统中,使用一种沉积在旋转磁盘上的磁光(MO)记录材料,由于磁域的空间变化,可将信息记录在磁盘上。当读取数据时,磁域模式会调制光极化,并且检测系统会将所得信号从光学模式转换成电子格式。

    在一种磁光存储系统中,磁光头组件被安置在线性致动器上,在记录和读取期间,线性致动器将光头沿磁盘的径向移动,把光头组件定位在数据磁道上。将一磁性线圈放在位于光头组件上的独立组件上,以产生一个在与磁盘表面垂直的方向上具有一磁分量的磁场。通过首先聚焦激光束,在磁盘上形成一光点,将极性地垂直磁化(与媒体的周边材料相反)记录成表示为“零”或“一”的记号。该光点的作用是将磁光材料加热到接近或超过居里点的温度(即,用施加的磁场使磁化改变的温度)。通过磁性线圈的电流会使自发性磁化向上或向下。此种定向过程只温度适当高的光点区域内发生。在移开激光束后,保持磁化标记的取向。如果用激光束将标记局部再加热到居里点,并且磁性线圈沿反方向产生一磁场,那么上述标记会被擦除或盖写。

    由于Kerr磁效应效应能够检测出光极化的Kerr旋转,所以可以在磁盘上的特殊标记处读取信息,其中所述Kerr旋转是通过在特定标记处的磁化而加在反射光束上的,而Kerr旋转的大小由材料特性(具体的形式为Kerr系数)来决定。根据特定标记处自发性磁化现象的旋转方向来建立不同的检测方式,从而测量出旋转方向是顺时针或逆时针。

    尽管传统式磁光头目前可以对区域密度在1吉位/英寸2左右的磁光盘进行读取,但它依赖于相当大的光学组件,造成光头的物理尺寸相当庞大(线性尺寸为3-15mm)。结果,以机械方式驱动传统式磁光头在磁光存储盘片上读取新数据磁道的移动速度会很慢。此外,由于这些光学组件的尺寸较大,所以市面上最可能采用的磁光盘驱动器只能使用一个磁光头来同时读写磁光盘的一侧。举例而言,目前市面上已有的磁光存储装置可以读取130毫米的双面型2.6 ISO吉位磁光盘的一面,其中磁盘读取时间为40毫秒,而数据传输速率为每秒4.6MB/秒。N.Yamada(美国专利第5,255,260)揭示了一种外形较低的浮动光头,用于读写多个光盘的上表面和下表面。Yamada揭示的浮动光头使用一个用于对相位变化光盘发送和接收光的静态反射镜或棱镜。虽然Yamada描述的静态光学装置可以对包含在固定容积内的多个相位变化光盘的两个表面进行存取,但是使用Yamada揭示的光学装置会受到光学装置能做到多小的限制。因此,制造出来的能够在给定容积内起作用的光盘的数目亦会受到限制。另一缺点是有关使用静态折叠式反射镜。由于此种方式为了改变光焦点的位置,要求整个光头组件移动,所以限制了磁道的伺服带宽。相同的限制亦会发生于由Murakami等人在美国专利第5,197,050号中揭示的浮动磁光头。一般而言,用于施行精细跟踪伺服的元件质量愈大,伺服带宽就变得愈小,而且能够读写的磁道密度亦变小。

    C.Wang在美国专利第5,243,241号中提示了一种用微型电流计致动器移动折叠式棱镜或反射镜以便进行精细跟踪的方法。电流计由庞大的线圈和一个安装在线性致动器臂状物上(但不安装在滑件本体上)的可旋转式磁体组成,其中线性致动器臂状物固定于浮动磁光头。由于尺寸和重量,此种设计限制了跟踪伺服带宽和可用的磁道密度。其本身的复杂程度亦增加制造成本和困难度。

    因此,所需的小型的改进式磁光浮动光头,于是,与现有技术相比,容许增加能够安置在给定容积内的磁光盘的数目。经改进的浮动光头最好能够提供数值孔径较大、光头质量减小、共振频率非常高的精细跟踪伺服装置,从而产生非常精细的磁道伺服带宽,而且相当容易制造。此外,浮动磁光头亦应改善磁光盘的驱动存取时间、数据传输速率以及可用的磁光盘磁道密度。

    【发明内容】

    本发明能够改进在一种基于浮动磁光(FMO)头的系统中存储和检索数据,所述浮动磁光头最好能够提供较高的数值孔径、减小光头质量、提供高精细的磁道伺服带宽、提高磁光盘的磁道密度、降低数据存取时间、提高数据传输速率、增加给定容积中可获得的磁光盘数目,并且能够对使用的每个磁盘的两面进行读写。

    在较佳实施例中,磁光存储装置的机械构造将一外形较低的光头与一种磁光数据系统相结合,该磁光数据系统采用温彻斯特式旋转致动臂、悬吊和空气承载技术。在较佳实施例中,激光光学组件光源融合到一个或多个光头臂状物,每个臂状物支撑光头,以使对磁盘存储媒体进行数据读写。在较佳实施例中,在写数据期间,通过个体的单模极化保持光纤将光传送到各自的磁光头,用以对旋转的磁光(MO)存储媒体的表面进行局部加热,从而产生一个“热点”。用埋在光头内的磁性线圈产生一磁场,该磁场轮流按向上或向下的垂直取向自发地磁化热点内的区域。因此,当磁光存储媒体旋转时,所施加的磁场会被调制,以致于将数字数据编码成为一种“上或下”的磁域取向模式。在读取数据期间,将低强度的光从个体的单模极化保持光纤传送至浮动磁光头,以便聚焦光点探测旋转的存储媒体。对数据读取操作进行编程,以便媒体在聚焦光点处的磁化方向可以通过Kerr磁光效应来改变光的光极化。以此方式,代表着被存储数字数据的向上或向下的磁化取向模式调制磁光存储媒体之反射光的极化。然后,存储媒体的反射光信号通过FMO光头向后耦合到用于解码的差动放大器。

    从光纤传给光头的激光束被反射到一可导引式微加工折叠式反射镜上。通过诸如GRIN透镜等埋入式微型物镜引导来自折叠式反射镜的反射光。在较佳实施例中,通过将微加工的反射镜绕一旋转轴转动,实现精细跟踪和短时间寻找相邻磁道的动作。以此方式,使聚焦光点沿大致与存储盘片之径向平行的方向前后扫描。使用微加工的可导引式反射镜可以得到重量轻、成本低廉的浮动磁光头,并且该浮动磁光头具有数据密度极高的磁性光学存储媒体。

    附图概述

    图1为较佳磁光存储装置的示意图;

    图2为一示意图,示出了图1之磁光存储装置中激光/光学组件;

    图3为一顶视图,示出了图1的浮动磁光头;

    图4为图3之浮动磁光头的侧视图;

    图5为图3之浮动磁光头的正视图;

    图6为侧视图,示出了经过图4之磁光头的光路;

    图7为侧视示意图,示出了图4之磁光头的细节;

    图8为一透视图,示出了图1组件中的较佳微加工反射镜;

    图9是一透视图,示出了较佳实施例中的磁光头;以及

    图10是一透视图,示出了较佳实施例中的磁光头。

    较佳实施例的详细描述

    现参考图1,该图表示磁光存储装置的一个实施例。在本发明中,磁光存储装置100的机械结构将浮动磁光(FMO)头技术与温彻斯特式旋转致动臂、悬吊以及磁光(MO)数据存储系统中的空气承载技术相结合。在较佳实施例中,磁光存储装置100包括激光光学组件110、单模极化保持(SMPM)光纤130、相位补偿器120、光纤开关150、致动磁体和线圈145、多根SMPM光纤140、多个光头臂状物160、多个悬吊165、多个MO存储媒体180,以及多个FMO头170。最好将每个MO存储媒体180安装在心轴185上,以便按恒定的角速度连续旋转,而且最好通过各自的弹性悬吊165和光头臂状物160将每一个FMO头170与电磁致动磁体和线圈145固定。本领域的熟练技术人员将认识到:MO存储装置100可以最少包含一个FMO头170和一个MO存储媒体180,或者每个MO存储媒体180有上方和下方FMO头180。

    现参考图2,激光/光学组件110包括激光光源、差动光电二极管检测系统和相关的光学元件,此激光/光学组件最好是分立的子组件110,或者是一混合的集成电路元件。在较佳实施例中,激光-光学组件110还包括由激光二极管255极化的光源,它是30到40mW的激光二极管,或者是在可见光或近紫外线区域(以在635nm附近为较适宜)工作的二极管驱动微晶片激光器;漏光分束器245;准直光学装置250,它用在来自激光二极管255的激光通向漏光分束器245之前;以及耦合透镜240,它最好是陡度折射率(GRIN)透镜,用于将漏光分束器245的出射光聚焦到单模极化保持(SMPM)光纤130内传送。

    在较佳实施例中,用相位补偿器120补偿产生于每个极化保持光纤130和140之固有双重极化模式之间的相对相位波动。由于光纤固有的双重折射现象,光纤130和140的每个极化模式均具有不同的折射率。举例而言,由于每根光纤130和140在温度、压力及机械运动方面的变化会导致两个折射率之间的差产生少许的变化,因此会产生相对相位波动现象。这些波动可以用激光-光学组件110来检测,而且在明显变化发生之前,可用一个反馈伺服机构(未示出)来调节相位补偿器,以消除波动。以此方式,一个由光纤130和140组成的往返于浮动磁光头155的光路可以类似于自由空间光路按其本身的极化特性来处理。

    在较佳实施例中,相位补偿器120包括一压电圆柱形壳体,该壳体最好由诸如铅铬酸盐铂酸盐等压电材料制成,以便形成相位调制器,而且高度最好小于其直径,以便提供较低的外形,该形状适用于在快速操作状况下,电容已被减小的小型磁光存储系统。光纤130通过紫外线固化环氧树脂或类似的粘结剂固定于相位补偿器203的周围。在较佳实施例中,将金属电极涂覆在圆柱形的平坦末端,用以减小电容,致使施加在电极之间的电压使得壳体产生径向膨胀,从而伸展光纤130。该伸展作用可以进行相位调制。为了减少作用在光纤130上的机械应力,相位补偿器120的直径大小最好大于光纤130之纤维包层直径的几百倍。举例而言,纤维包层直径在80微米左右,其对应于直径在10到40毫米附近的相位补偿器120。

    在较佳实施例中,光纤开关150在输入端接收单模极化保持光纤130,而且在输出端将光纤130发出的光传送给多个单模极化保持光纤140中的一个。光纤开关150的切换特性是双向的,所以在输出端沿任何一个单模极化保持光纤140传回开关150的光也能够在输入端传给光纤130。从光纤开关150伸出的单模极化保持光纤140最好能够沿各自的光头臂状物160和悬吊165通向各自的浮动磁光头170。在较佳实施例中,每个浮动磁光头170具有一根单模极化保持光纤140,而且光纤开关150用来选择哪个磁光头170能够对磁光存储媒体180的对应表面进行读或写。

    在较佳实施例中,在写操作期间,为了局部加热旋转磁光存储媒体180的一个表面,可以通过一个体光纤140将光传送给对应的浮动磁光头170,从而产生一个“热点”。用埋在浮动磁光头170中的磁性线圈(将在下文中作更详细的讨论)产生一磁场,此磁场能够按向上或向下的垂直方向对热点内的区域进行自发磁化。于是,当磁光存储媒体180旋转时,所加的磁场被调制,从而将数字数据编码成一种“上或下”的磁域取向模式。在读取数据期间,为了用聚焦光点探测旋转的存储媒体180,单模极化保持光纤140将低强度的极化光传送给各自的浮动磁光头170。读取操作是按以下方法进行的,即磁光存储媒体180在聚焦光点位置上的磁化方向通过Kerr磁光效应改变光线的光学极化。以此方式,表示所存数字数据的上下极化定向型式对磁光存储媒体180反射的光的极化进行调制。然后,来自MO存储媒体180的反射光信号向后耦合,经过浮动磁光头170、若干单模极化保持光纤140中的一条,以及光纤开关150,最后到达两个光电二极管检测器215,由此通过差动放大器210转换成电子形式。

    现参考图3,该图是浮动磁光头170的详细顶视图。在较佳实施例中,每一个浮动磁光头170包括一小滑件330。浮动磁光头170还包括用于容纳单模极化保持光纤350的V形槽360、可控微加工折叠式反射镜340,以及磁性线圈310。

    现参考图4,该图是图3所示浮动磁光头170的侧视图。图5是同一浮动磁光头170的正视图。在较佳实施例中,光头170使用一承载空气的表面510,该表面浮于磁光存储媒体180之上涂覆表面的上方或下方。极化激光束经由单模极化保持光纤350传送给可控微加工折叠式反射镜340。V形槽的轴以至于V形槽上的光纤350的轴与媒体180的表面大致平行。微加工折叠式反射镜340以相对于光纤350的轴大约90度的平均角度反射从光纤350射出的光。此反射光被引导经过诸如GRIN透镜420等埋入式微型物镜。在较佳实施例中,通过将反射镜340绕旋转轴410转动(如图4所示),进行精细跟迹和短时间寻找相邻磁道的动作。以此方式,沿几乎平行于媒体180之径向的方向前后扫描聚焦光点440。当致动臂状物160前后移动滑件330横越媒体180的表面时,滑件的位置会稍微倾斜,使得方向520不与磁光存储媒体180的径向严格平行。虽然无法严格平行,但倾角足够小,可使扫瞄方向520上的部份元件位于存储媒体180的径向方向。

    现参考图6,该图是本发明较佳透镜420的侧视图。折叠式反射镜340的反射光被一聚焦光学装置接收,该聚焦光学装置包含一GRIN物镜420,GRIN透镜的作用是将反射光聚焦到磁光存储媒体180的表面上。光纤350在V形槽360内的位置可以调整,由此改变从单模极化保持光纤350之未端到反射镜340的距离。重新安置单模极化保持光纤350在V形槽内的位置可以有效地调整透镜420之出射光630的焦点位置。一旦光纤350的位置可对媒体180的表面适当聚集,则利用紫外线固化环氧树脂或类似的粘结剂将光纤固定到位。

    GRIN透镜420的使用提供了一种简单小型的圆柱形,可以方便地将透镜插入滑体330的孔中。为了减小球差并得到限制衍射的聚焦,对透镜420抛光,采样一平-凸表面,其中凸表面650是一简单球面。透镜420的厚度640和曲率半径决定于以下因子,包括折射率梯度的大小、光波长、单模极化保持光纤350的数值孔径,以及由透镜420的有效数值孔径决定的所需聚焦光点440的大小。在较佳实施例中,透镜420的厚度640大约为170到500微米,曲率半径大约为150到400微米,而透镜直径620大约为200到500微米。

    虽然图3-6所示的较佳实施例揭示了一种包含GRIN透镜的单元件物镜,但是熟知本项技术的人士可知:还可使用附加的物镜来增强透镜420的性能。举例而言,聚焦物镜可以包括一个消球差透镜或一个与GRIN透镜420相结合的固态浸入式透镜(solid immersion lense)。使用这类附加透镜元件可以得到较大的数值孔径和较小的聚焦光点440。较小光点440的尺寸容许将较高的区域数据密度写入磁光存储媒体180并从中读出。

    可以用由模塑玻璃或塑胶材料所制成的微光学透镜取代GRIN透镜420。举例而言,通过把两个凸表面彼此面对放置,合并两个模塑的平-凸非球面镜,从而提供一微型透镜系统,当反射镜340旋转时,该微型透镜系统具有较大的数值孔径和良好的离轴性能。在双重非球面光学设计中,光线大致在两个光学元件之间对准,从而在不需要额外透镜的状况下,在两元件之间放置一个四分之一波片。在另一实施例中,将单个具有较小数值孔径(0.2-0.4)的模塑球面镜结合消球差或固态浸入式透镜一起使用,以产生一个具有相当高数值孔径(大于0.6)的光学聚焦系统。从制造的观点来看,由于大量制造的成本低廉,因此采用模塑透镜是很有利。在此所揭示的一种用于大量制造透镜的方法包含模塑一透镜阵列,然后通过钻石锯切割或激光切割来分割该透镜阵列,以得到个别透镜。当考虑上述双透镜的设计时,通过在分割透镜陈列之前进行锥状匹配,使二个经模塑的平-凸透镜陈列匹配在一起,以确保透镜精确对准。

    现参考图7,该图是图4所示光头170的侧视示意图。在较佳实施例中,磁性线圈310被埋在GRIN透镑420以下,成为浮动磁光头170的一部份。磁性线圈310产生一个磁场,该磁场在与磁光存储媒体180正交(即,垂直)的方向上具有一较大的分量。从顶端开始蚀刻用于插入透镜420的蚀刻孔740或槽,并在预定深度处停止。在制作蚀刻孔740之前,先在滑体330的底端形成一个直径较小的光通路720开口。在制作期间,将光通路720的深度和直径做成能够为聚焦光束提供通畅的光路。光通路720最好为圆锥形,其锥角大致等于极化光聚焦圆锥的角度(在数值孔径为0.6的状况下,半角大约为37度)。以此方式,形成一个支架730区域,用于支撑透镜420,同时,还容许将平面型磁性线圈310安置于一个被蚀刻在支架底部的凹陷区内。在较佳实施例中,光通路720的直径大得足以容纳极化光的离轴转向。

    在较佳实施例中,平面线圈350传送垂直于磁光存储媒体180的磁场,该磁场在磁光存储媒体180的磁性存储层处,二个极性具有大约170Oe的磁场强度,而且平面线圈包括2-3个存储层,每一层具有5-10个电镀导体圈。存储层的数目和每层的圈数是线圈310与磁性记录层之间间距(一般在5到20微米范围内)的函数。在较佳实施例中,存储层相隔大约6微米,电镀导体线圈310回路具有大约5微米的径向节距,而且产生大约170Oe磁场强度的磁场要求线圈电流大约为50-70毫安(零到峰值)。由线圈电感(大约为200纳亨或更小)和驱动电子元件所确定的线圈切换时间在10纳秒左右或更短,而且依据上述在线圈与磁性记录层之间的间隙,线圈310的直径范围是从最里区的大约10微米到周边处的大约80微米。线圈电导线710最好沿孔740的壁面,或者经过滑体中的分离孔(未示出)。

    现参考图8,该图是微加工反射镜340之较佳实施例的透视图。在较佳实施例中,反射镜340是一种扭转型反射镜,其包含硅衬底810、驱动电极825和830、接合垫815和820、接合硅板850,以及由诸如二氧化硅、氮化硅或硅等材料制成的薄膜挠性层845。反射镜340可以用精密加工技术来制作,用以产生一个用于反射的内部扭转反射区835,其顶端有挠性层845,底端有提供机械刚性的硅板层850,而且该反射区由挠性层铰链(hinge)840所支持。反射区835可以涂覆一层金或其他类似物质,用以增强光的反射率并改善反射镜的静电致动作用。在较佳实施例中,由于反射镜特定的几何形状和材料性质,反射镜340的共振频率大约在50至200千赫兹的范围内。在较佳实施例中,反射镜340大约呈正方形,其外侧的线性尺寸大约在100到170微米的范围内,而厚度大约从2到50微米。在较佳实施例中,内反射区835的外侧线性尺寸大约在25至200微米的范围内,厚度大约从1到20微米。反射镜340最好被扭转驱动,没有任何过度的侧向运动。

    在一实施例中,反射区835在一侧的尺寸最好为100微米左右,共振频率最好大于100千赫兹,而最大物理偏离角度最好为2度。此外,反射镜340动作时最好不要发生静态或动态上的弯曲,而且在静电偏离时的最大应力最好小于反射镜制作材料(例如,硅、二氧化硅、氮化硅和铝)的预期屈服应力。

    对反射镜34的操作是通过对驱动电极825和830施加差动电压而实现的。作用在电极825和830上的差动电压会导致一静电力作用于反射区835。反射区835沿铰链840旋转,使得反射光被引导并沿媒体1 80的表面前后扫瞄。反射镜340的操作方式将参考以下的图10作进一步的讨论。

    现参考图9,该图是浮动磁光头170的透视图,其中浮动磁学头包含一滑体330和反射镜支架910的。在较佳实施例中,反射镜支架910包括电极垫915和920,它们提供了一电气接触点,用以将差动电压施加到位于反射镜340上的相对应接合垫815和820。反射镜支架910额外包括通洞925和930,如上所述,这二个通洞用于提供从单模极化保持光纤350到反射镜反射区835,随后到达透镜420的通畅光路。在较佳实施例中,反射镜支架910为反射镜340提供一个45度的支撑表面。熟知本项技术的人士将可以得知:反射镜支架910可以与滑体330固定,而且可以用多种技术制造反射镜支架910,诸如分立地对滑体330和反射镜支架910进行微加工,然后将此二组件粘接在一起。在另一实施例中,可以使用其它技术形成45度角度,诸如使反射镜组件相对于适宜尺寸的滑体倾斜,其中滑体具有适宜尺寸阶梯940和945。

    现参考图10,该图表示一个安装在反射镜支架910上的可导引式反射镜340。将差动电压施加至电极垫915和920的作用是用来引导由单模极性保持光纤350所产生的激光束。可导引式微加工反射镜400被用来改变极化激光束在被传送至一物镜420之前的传播角度。光线630的合成焦点沿存储媒体180的径向520运动,此被用来循迹和短时间从一个数据磁道寻找到下一个磁道。在较佳实施例中,循迹作用的完成可以通过使用粗略和精确跟踪伺服的组合技巧。一个经采样的区段伺服模式可以被用来确定轨迹。这些伺服标记可以包括印入媒体的浮起凹坑,或是读取方式与数据标记相类似的磁性标记。在采用浮起凹坑的状况下,熟知本项技术的人士将可得知:激光光学组件110的差动放大器210的输出必须另外补充一个加法器电路。通过连续调整输入至一致动器线圈(图1中示出部份致动器磁铁和线圈145)的电流来维持粗略的跟踪作用,用以控制光头臂状物悬吊165的位置,同时,通过连续调整一个可导引式反射镜340的角度偏离来完成精确跟踪作用。

    由于能够提供一种非常快速操作光束的方法,因此,采用一可导引式微加工反射镜就很有益处。此种方法便于高速跟踪和短时间找寻,用以大幅度改善数据存取时间。由于能够使用非常窄的磁道节距,上述的改进结果所产生的高区域密度得以超过传统的光头技术。浮动磁光头170的设计在本质上是同焦点的。在读取数据期间,来自磁光存储媒体140的反射光会向后耦合至在一同焦点系统中作为口径的单模极性保持光纤140。一项因为使用同焦点光学系统所导致的优点包括沿光轴方向具有非常高的深度分辨度以及经改善的横向分辨率。另外一项因为使用同焦点系统所得到的优点是不会聚来自物镜表面的反射光,使得无需使用抗反射涂层。使用消球差透镜和一些非零的工作距离在设计上特别有益。另外,较高的深度分辨率容许多层媒体(未示出)中的各层有非常接近的间隔,各层间的数据串扰现象很少,同时,相比于非同焦点系统的状况,经改善的横向分辨率可以检测较小的存储媒体标记和较尖锐的存储介质标记边缘。

    图1-图10说明的存储装置100的结构以及浮动磁性光头的设计代表着一种在高密度磁光存储媒体上存储信息的方法。熟知本项技术的人士将可以得知:可以对本发明进行各种替换。以实现基本上相同的目标,举例而言,可以使用各种光纤开关(例如,微观机械、电-光学、热-光学)均可以被采用。此外,浮动磁光头的设计可以被修改成使用自由空间输入光束,从而取消光纤140。另外,由于还可以使用其他微型的物镜(例如。模塑成的非球面、全息透镜、“二元或其它其他衍射型光学透镜),所以无需将聚焦物镜限制成GRIN透镜。本发明亦可用作仅供读取或只能记录一次的浮动光头,或是另外一方面,一个浮动光头。熟知本项技术的人士可以得知:本发明可应用于小型光盘(CD)和数字视频光碑盘(DVD)。于是,熟知本项技术的人士还可以得知:本发明可应用于所有光学存储系统。

    熟知本项技术的人士在读过上述内容后,显然可以针对本发明进行许多其他的变化和改变,但是值得注意的是,通过说明显示和描述的特别实施例不应视为限制性的。

具有动态镜的浮动光头.pdf_第1页
第1页 / 共25页
具有动态镜的浮动光头.pdf_第2页
第2页 / 共25页
具有动态镜的浮动光头.pdf_第3页
第3页 / 共25页
点击查看更多>>
资源描述

《具有动态镜的浮动光头.pdf》由会员分享,可在线阅读,更多相关《具有动态镜的浮动光头.pdf(25页珍藏版)》请在专利查询网上搜索。

磁光浮动光头将可导引式反射镜(340)与光源和透镜结合使用,用以对磁光存储盘片(180)读写数据。从光源传送到光头的激光束被反射到可导引式微加工折叠式反射镜(340)上。通过埋入式微型GRIN物镜(420)引导来自折叠式反射镜的反射光。通过将反射镜绕旋转轴旋动,实现精细跟踪和短时间寻找相邻磁道的动作。以此方式,焦点沿大致平行于存储盘片径向的方向前后扫描。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 信息存储


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1