PES和PSF膜上的UV辅助接枝聚合 相关申请
本申请的优先权基础为以下临时申请:
60/238,209 申请日:2000年10月5日
60/268,098 申请日:2001年2月12日
60/270,233 申请日:2001年2月21日
技术领域和背景技术
本发明主要涉及超滤膜,尤其是新的聚醚砜膜以及在UV辐照下通过乙烯基单体接枝聚合制造此类膜的方法,还涉及采用了此类膜因而具有溶质截留率高,渗透性高而结垢少等特性的过滤器。
超滤膜在食品和生物技术领域具有广泛用途。超滤(UF)被用于普通和转基因乳、奶酪和禽蛋的处理,乳清蛋白和马铃薯蛋白的回收,果汁和果酒的澄清,动物血液中蛋白的回收,以及水的净化。UF还被用于生物技术领域通过诸如细胞发酵液澄清、细胞收获、分离前的蛋白质溶液浓缩或渗滤(diafiltrate)以及最终的浓缩等过程来回收生物制品。
在产业化过程中采用膜技术的一大障碍是随着诸如蛋白质之类生物制品超滤的进行,膜通量会因结垢而下降。结垢不仅降低膜的渗透性,导致过滤时间延长,从而降低生产能力,而且会因清除所用的腐蚀性化学物质而缩短膜的使用寿命。此外,结垢还会改变膜的选择性,造成产物严重的变性损失。
虽然蛋白质过滤中通量降低的确切原因尚不清楚,但普遍认同的主要原因被认为是:浓度极化引起的反渗透压,表面上或孔内蛋白质地吸附或淤积,吸附于膜上流(upstream)侧蛋白质层的紧实或固结。结垢指蛋白质和蛋白质凝聚体在膜表面或孔内的可逆和不可逆吸附和淤积,造成膜孔变窄或堵塞,继而导致膜渗透性下降。不可逆结垢造成的通量下降只有用强除垢剂和/或化学物质才能恢复。而可逆蛋白质结垢引起的通量下降是暂时性的,只需水洗就可去除蛋白质。而且,在一段时间后,在适当的操作条件和溶液条件下,可能发生更严重的通量下降,因为吸附的一层或多层蛋白质会固结成更致密、流阻更高的层。
为了减少和消除通量下降,已可采用在膜上进行UV辅助的单体接枝。接枝即将较小的化学单元连接到分子主链上。过去,用光引发剂来启动膜表面的自由基聚合反应。然而,接枝的优选方法是UV辐照而非等离子法或化学法,该方法的优点是简单和迅速。UF辐射一般被认为指波长100-450nm的辐射。UV辐射可使聚合物链交连,也可切断聚合物键,在膜表面形成诸如羟基、羰基或羧酸等官能团。膜聚合物内的化学键被直接切断。聚合物键的切断可在膜表面形成自由基位点。当存在乙烯基单体时,就会在这些位点发生自由基接枝聚合反应,从而形成与膜表面共价键合的聚合物链。
美国专利5,468,390,《膜科学杂志》105(1995),p.237-247和《膜科学杂志》105(1995),p.249-259揭示了孔壁表面上接枝有亲水性乙烯基单体的改性芳基聚砜膜。将非改性膜浸入单体的溶液,并在没有致敏剂和自由基引发剂存在的条件下接受紫外光辐照,从而引发光化学接枝反应。所用单体仅使聚砜膜的孔壁表面具有亲水性。膜固体基质的其余部分仍由非改性聚砜构成。这种表面改性膜在干燥后不会重新被润湿,因此,一旦变干将严重丧失渗透性。所以,必须在使用前保持膜表面湿润。
1990年2月28日公开的日本专利JP-A-2-59029揭示了一种仅用一种可聚合单体对聚砜多孔性膜的孔壁表面进行改性的方法:将膜浸入单体溶液并用紫外光辐照该溶液。需控制反应条件使聚砜膜不致溶解。结果,如果采用的是亲水性可聚合单体,则只有多孔膜的孔壁被改性而获得亲水性。
美国专利5,468,390揭示了一种UF光化学法改性聚砜膜的方法,即通过紫外光(UV)辅助的亲水性乙烯基单体接枝聚合反应来减小蛋白质溶液过滤过程中的通量下降。尤其是,其用254nm的辐照形成单体与膜发生聚合反应所需的自由基位点。该方法包括将聚砜膜浸入亲水性乙烯基单体的溶液中,然后在254nm波长处对膜进行辐照。
然而,最近的试验显示,虽然以浸渍技术(immersion technique)进行的UV辅助接枝聚合通过赋予表面亲水性成功减少了膜上结垢,但是,由于高密度长链接枝聚合物堵塞膜孔造成改性后膜的渗透性严重降低。因此,必须在赋予表面充分亲水性以减少结垢与提高膜渗透性之间进行综合平衡。而且,聚砜膜的光活性并不很高(例如,键的打开不很容易),因而较难改性。因此,需要这样一种改性膜,它的光活性高,表面具有高密度接枝的短链,不易结垢,改性后更好地保持原有的膜渗透性。
此外,现有技术所用的浸渍技术需要大量的单体,而且不适合产业规模的连续运作。现有技术所用的浸渍技术还会造成单体对UV的大量吸收或单体溶液对UV的屏蔽,使得相当数量的UV光无法到达膜上。在蘸涂技术(dipping technique)中,当UV光通过溶液射到膜上时,可观察到膜孔张大,蛋白质排斥减少,这是因为UV光没有象在浸渍技术中那样多地被单体溶液吸收。254nm的UV光具有高能量,能令膜孔张大并破坏,从而使膜报废。所以,需要这样一种技术,它使用较少的单体,并可使高强度低能量的UV光到达膜上,因为高强度低能量的UV光可优化膜表面的链密度和链长度,从而尽可能提高膜的渗透性和截留特性,同时减少结垢。
聚醚砜是一种较好的膜材料,因为它生物技术膜中应用广泛,它具有一定的疏水性,并自身具有光活性。加入链转移剂有助于在多个位点终止单体的聚合从而缩短接枝链。此外,如果改性采用蘸涂技术而非浸渍技术,由于蘸涂技术可明显使更多的UV光到达膜上,所以优选280-300nm的低能UV光以免将膜损坏。需要使用滤光器来滤除高能UV光从而减少膜孔张大。采用液体或固体滤光器的改进蘸涂技术可形成不易结垢且膜孔不易张大的改性膜。
发明概述
本发明目的之一在于提供一种多孔性超滤膜,其表面具有高接枝密度的短链乙烯基单体。因此,本发明膜不易结垢,并可在改性后更好地保持原有的膜渗透性。
虽然许多材料能够实现超滤膜上的单体接枝聚合,但是它们必须具有足够高的反应性以使聚合反应尽可能迅速而高效。膜材料应选择光活性高的,尤其优选的是聚醚砜。
本发明目的还在于提供一种制造超滤膜的方法,包括将聚醚砜膜浸在含有一种或多种乙烯基单体的溶液中,然后在滤光液存在下用280nm以上的高密度低能UV光辐照该膜。
权利要求书具体指明了本发明具有新颖性的特征,权利要求书构成本次公开的一部分。为了更好地理解本发明,其操作上的优点,及其用途所实现的独特目的,可参考附图和以下描述,其中给出了本发明的优选实施方式。
附图说明
图1:制造聚醚砜膜的流程图;
图2:有聚醚砜膜固定于其中的石英容器;
图3:一石英容器放在装有UV滤光液的石英槽中;
图4:处于光反应器系统内的石英容器和石英槽;
图5:蛋白质溶液渗透率与辐射能关系图。
优选实施方式的描述
各附图中相同的数字表示同一或同功能的元件。图1是膜表面接枝有大量单体链的多孔性聚醚砜膜的制备流程图。
步骤10中,将聚醚砜(PES)膜在单体溶液中浸渍约30分钟,期间伴以搅拌。建议采用50KDa的PES UF膜,可购自Pall-Filtron Corp.,East Hills,NY。需要指出的是,聚砜膜和聚芳基砜膜都可用来代替聚醚砜膜,但是它们的反应性较低。溶液中的单体可以是乙烯基单体。优选的单体包括N-乙烯基-2-吡咯烷酮(NVP),丙烯酰氨基乙醇酸一水合物(AAG),丙烯酰氨基-1-甲基-丙磺酸(AAP),可购自Aldrich Chemical Co.,Milwaukee,WI。可用的其他单体包括:丙烯酸2-羟基乙酯,丙烯酸2-羟基丙酯,丙烯酸3-羟基丙酯,甲基丙烯酸2-羟基乙酯,丙烯酸2,3-二羟基丙酯,丙烯酰胺,磺酸乙烯酯,磷酸乙烯酯,4-苯乙烯磺酸,甲基丙烯酰胺,丙烯酸缩水甘油酯,甲基丙烯酸缩水甘油酯,N-羟甲基-丙烯酰胺,丙烯酸,甲基丙烯酸,甲基丙烯酸甲酯和N-乙烯基咔唑。如果单体溶液采用NVP,建议先真空蒸馏去除所有抑制剂,然后将其溶解于去离子水中制成溶液。单体溶液中必须含有用来缩短膜表面上接枝链长度的链转移剂。可用于单体水溶液的链转移剂例如十二烷硫醇。
步骤20中,将膜固定在聚丙烯支架上,放入石英反应器中,详见图2。然后,将该石英容器放入装有UV滤光液的圆形石英槽内,详见图3。
步骤30中,将石英反应器和石英槽放在Rayonet光化学舱式反应器系统(RPR-100型)内中央,该系统配备有16盏UV灯,由Connecticut的Southern NewEngland Ultraviolet Company制造。如图4所示,石英槽放在光化学反应器系统的基座之上。
步骤40中,将一氮气钢瓶与石英反应器的入口接通。从氮气钢瓶中放出氮气,令其通过石英容器的入口进入,驱除氧气,因为氧气会在光化学改性过程中令生成的自由基终止。氮气流还必须通过一个小水池,以使石英容器内充满水蒸气。
步骤50中,用波长280-300nm的UV光对膜进行辐照。如图4所示,可用多盏UV灯围绕着固定在石英容器内的膜,令UV光透过滤光液后辐照到膜上。
步骤60中,将石英容器从反应器中取出,清洗改性膜以去除所有未反应的单体或与之物理吸附的聚合物。所述清洗可以包括将膜放在装有去离子水的瓶中室温下振荡2小时。改性膜清洗的时间可通过用FTIR-ATR光谱仪监测1678cm-1处PVP吸收峰的减弱来确定,任何本领域技术人员都能完成。2小时后,吸收峰不再改变,说明清洗已完成。
图2,3和4例举了用于实施本发明的装置。图2显示的石英容器1中有一张PES膜5,该膜固定在塑料支架7上。石英容器1的体积可大到300ml,直径可以是5.5cm,长度可以是35cm。石英容器1还具有入口13和出口15,用于除氧所需的氮气吹洗。PES膜5的制备可以是:以4000rpm的转速将用二氯甲烷配制的5wt%PES溶液旋涂在一块石英板上,进行30秒,然后室温下干燥过夜。PES膜由聚醚砜制成,通体有许多孔隙。塑料支架7的材料可以是聚乙烯、聚丙烯之类聚合物。氮气可从入口13进入,然后通过含有30ml水的池25,用于尽可能减少PES膜上单体溶液中水分的蒸发。底部出口15处的玻璃料用于协助氮气喷射或搅拌。
图3显示将石英容器1放在圆形石英槽17内。石英槽17内装有UV滤光液21。石英容器1用夹子固定在石英槽17内。UV滤光液优选苯,其对280nm UV光的透光率为0%。其他可用于280-300nm波长的滤光液还包括甲苯,其对286nm UV光的透光率为0%,N-甲基吡咯烷酮,其对285nm UV光的透光率为0%。
图4例举了一种用于通过UV滤光液对膜进行辐照的装置。具体地说,该图显示了反应系统24,它具有基座26,与装置的其他部件—例如电源、风扇或UV灯—电连接的指示灯28,这样,指示灯28将在这些部件用时开启。基座26支承着第二基座32,该第二基座可用于加热或磁力搅拌容器内的物质。石英容器1位于第二基座32上,被弧形壁35所围绕,壁内侧是均匀间隔的多盏垂直UV灯38,这些灯能发射21瓦、波长最大达300nm的UV光。UV灯38直径1cm,长28cm,与固定有PES膜5的石英容器1的轴平行,它们用于透过UV滤光液21辐照PES膜5。PES膜5与UV灯38之间的距离约为6cm。可通过接在入口13与氮气钢瓶出口45之间的管路将石英容器1与氮气钢瓶40接通。氮气通过该管路从入口13进入,流过石英容器1,然后从出口15排出。实施例1
比较了多种膜的渗透性、溶质通量和通量恢复率。这些膜包括改性膜和非改性膜。分别以非改性的再生纤维素(RC)膜和PES膜为样品1和2。其他试验中所用的PES膜均分别用254nm和300nm的UV光改性,作为样品3和4。另用300nmUV光与两种不同的滤光器,即苯滤光液和芳族聚酯滤光膜,进行PES膜改性,分别作为样品5和6。
取一片足以进行蛋白质过滤的6×5cm样品,先在去离子水中于室温下超声波清洗3次,每次1分钟,用以去除膜润湿剂甘油。用去离子水制备5wt%NVP溶液。然后,将膜在该NVP溶液中浸30分钟,期间伴以搅拌。然后,借助于聚丙烯片上的切口将膜固定在该正方形聚丙烯片上。然后,将该组件放入石英容器,用夹子固定在光化学反应器的中央。对石英容器进行10分钟流速为2L/min(2-5psig)的氮气吹洗,然后透过位于石英容器底部的约20ml去离子水进行鼓泡以保持石英容器内的湿度。
改性样品3用254nm的UV灯辐照。改性样品4用300nm的UV灯辐照。改性样品5用300nm的UV灯辐照,并处于装有苯液体的石英槽内。改性样品6用UV灯辐照,但UV光需先滤过一片芳族聚酯滤光膜。完成辐照后,从反应器中取出石英容器,将膜放入含去离子水的瓶中,室温下振荡2小时,洗去膜上的所有未反应单体或与之物理吸附的聚合物。
由于254nmUV灯的平均发射频率较高,因而能量也较高,所以254nm UV光下与PES膜接枝的NVP比300nm下或滤光后300nm光下的多。因此,改性膜样品4,5和6保持了其通量和溶质截留率。这些改性膜在渗透率、溶质通量或截留率以及可洗性或水洗后通量恢复率方面的总体性能优于RC膜和非改性膜。实施例2
采用50kDa的Omega PES膜(Pall Corp.),50kDa的聚砜(PSF)GR51 PP膜(Danish Separation Systems)和50kDa再生纤维素膜(Pall Filtron)。将它们分别浸在5wt%的NVP,AAG和AAP单体溶液中。只用在300nm波长处以最大频率发射的UV灯进行辐照。比较接枝程度。接枝程度(“DG”)等于单体分子内酰胺I之羰基的峰高与苯环之碳-碳双键峰高之比。对PES膜来说,采用这三种不同单体的最佳接枝情况是在最低辐射能时获得的。PES对UV辐照的敏感性比PSf高得多,因而成为优选,但是这两种材料都可使用。实施例3
采用50kDa的PES膜。在所列条件下,用5wt%NVP进行不同时间(因此,不同辐射能)的蘸涂改性。与300nm UV光分别联用两种滤光器,液体苯和芳族聚酯膜。用再生纤维素膜作为对照表面。在22℃,按照衡量渗滤方法过滤以10MmPBS(pH7.4)配制的0.1wt%BSA溶液。
图5是蛋白质溶液渗透率与辐射能的关系图。黑色柱代表纯缓冲液的渗透率,灰色柱代表蛋白质溶液的渗透率。采用苯滤光液和300nm波长辐照时的渗透率最佳。渗透率、溶质通量和截留率都以低辐射能时的为佳。
虽然,以上为了说明本发明原理的运用例举并详细描述了本发明的具体实施例,但是应当懂得,本发明还有许多符合其原理的其他实施方式。