铜线及其制造方法以及具有该铜线的薄膜晶体管基板.pdf

上传人:111****11 文档编号:1331190 上传时间:2018-04-15 格式:PDF 页数:17 大小:636.03KB
返回 下载 相关 举报
摘要
申请专利号:

CN200810181103.7

申请日:

2008.11.21

公开号:

CN101471327A

公开日:

2009.07.01

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

H01L23/532; H01L27/12; H01L21/768

主分类号:

H01L23/532

申请人:

乐金显示有限公司

发明人:

韩奎元; 金东先; 扈源俊; 杨熙正

地址:

韩国首尔

优先权:

2007.12.26 KR 10-2007-0137386

专利代理机构:

北京律诚同业知识产权代理有限公司

代理人:

徐金国

PDF下载: PDF下载
内容摘要

本发明涉及一种铜线及其制造方法以及具有该铜线的薄膜晶体管基板,该无需任何额外的制造步骤即可形成用以提高铜线附着力的阻挡层。所述铜线包括形成于底层结构上的阻挡层;和在所述阻挡层上的铜导电层,其中所述阻挡层包括Cu2O层和CuOxNy层中的至少之一。

权利要求书

1.  一种铜线,包括:
形成于底层结构上的阻挡层;和
在所述阻挡层上的铜导电层,
其中所述阻挡层包括Cu2O层和CuOxNy层中的至少之一。

2.
  根据权利要求1所述的铜线,其特征在于,在所述阻挡层包括Cu2O层和CuOxNy层时,CuOxNy层形成在Cu2O层下面。

3.
  一种薄膜晶体管基板,包括:
形成于基板上的多条栅极线,和形成于所述栅极线和栅极绝缘膜之间用以定义像素区并垂直于所述栅极线的多条数据线;
形成于所述栅极线和数据线分别相交的区域的多个薄膜晶体管;和
形成于所述像素区并分别连接到所述薄膜晶体管的多个像素电极,
其中所述栅极线和数据线中的至少之一由所述铜线构成;其中所述铜线包括形成于底层结构上的阻挡层和位于所述阻挡层上的铜导电层,其中所述阻挡层包括Cu2O层和CuOxNy层中的至少之一。

4.
  根据权利要求3所述的薄膜晶体管基板,其特征在于,由所述铜线构成的栅极线或数据线不具有置于其上的单独的覆盖层。

5.
  一种制造铜线的方法,包括如下步骤:
将基板放在其中设有铜靶的溅射室中;
使用O2气体在所述基板上形成Cu2O层;
去除O2气体,并在同一个室内在Cu2O层上形成铜层;和
同时图案化所述铜层和Cu2O层,以形成具有阻挡层和铜导电层的多层堆叠结构的铜线。

6.
  根据权利要求5所述的方法,其特征在于,在形成Cu2O层的步骤中,设置所述室的内部压力为2.0Pa以下。

7.
  一种制造铜线的方法,包括如下步骤:
将基板放在其中设有铜靶的溅射室;
通过一起使用O2气体和N2气体,或通过使用NO和NO2气体中的至少之一,在所述基板上形成CuOxNy层;
去除形成所述CuOxNy层时使用的气体,并在同一个室内在CuOxNy层上形成铜层;和
同时图案化所述铜层和Cu2O层,以形成具有阻挡层和铜导电层的多层堆叠结构的铜线。

8.
  根据权利要求7所述的方法,还包括在形成铜层的步骤之前使用O2气体形成Cu2O层的步骤。

9.
  根据权利要求8所述的方法,其特征在于,设置N2气体对O2气体的流速比N2/O2在0.1~1的范围内。

说明书

铜线及其制造方法以及具有该铜线的薄膜晶体管基板
相关申请的交叉参考
本申请要求2007年12月26日提交的韩国专利申请No.10-2007-137386的优先权,在这里将其并入本申请中作为参考,就像在这里完全列出的一样。
发明领域
本发明涉及半导体器件中的铜线,尤其涉及这样一种半导体器件中的铜线,其中无需任何额外的制造步骤便可形成用以提高铜线附着力的阻挡层;以及涉及制造该铜线的方法,和具有该铜线的平板显示设备。
背景技术
随着信息社会的发展,半导体器件的快速发展不断促进大量信息的快速存储。将半导体器件集成为具有在较小的区域存储大量信息的高器件封装密度成为一种趋势。
半导体器件作为向平板显示设备提供信号的普通集成电路或直接作为显示图像的平板显示设备上的像素矩阵的驱动器件,来驱动显示图像的平板显示设备。
因此要求应用于多种领域的半导体器件中布线的区域减小,使占用较少的面积且能够快速处理大量信息。布线的区域的减小和因此造成的邻近图案间距离的减小增加了布线的阻抗,造成信号延迟以及布线中电子迁移的问题。
为解决以上问题,需要开发一种具有低阻抗的布线的器件,具有高导电性和低介电常数的铜Cu作为低阻抗布线的材料受到关注。
然而,铜用作低阻抗布线具有对硅的氧化物膜、硅的氮化物膜或主要用作绝缘膜的玻璃的附着力差的特点。而且,由于铜在硅中的扩散系数是铝的大约100倍,因此额外需要导电阻挡层来增加对绝缘膜的附着力及防止铜的扩散。
在相关技术中已出现由含Ti、TiN或TaN的材料构成阻挡层,但是由于该材料包含不同于铜的金属,因此要求制造该材料的过程在一个和沉积铜的室分开的室里进行。换句话说,形成阻挡层的过程变得复杂。
为解决上述问题,提出铜的氮化物阻挡层。
然而,由于铜和氮化物彼此间的溶解性差,所以尽管成分精确的材料的准备是困难的,足以用作阻挡层的铜的氮化物是Cu3N。
图1例示了形成在基板1上的Cu3N阻挡层10上的铜线的铜导电层20的截面。
由于Cu3N具有相对稳定的特性,Cu3N被用作光盘的存储介质。然而,由于Cu3N还具有低的热稳定性,举例来说,如果阻挡层形成之后由于制造步骤中的基板温度升高而使Cu3N受热,就会沉积铜,即Cu3N中的Cu还原为Cu而形成一个还原的Cu层15,如图1所示。
如果Cu3N由此还原为Cu,那么阻挡层就失去了阻挡作用,导致其与下面的膜的附着力变差,不能防止铜的扩散。
发明内容
因此,本发明旨在提供一种铜线及其制造方法,其能克服上述现有技术中的一个或多个缺点。
本发明的目的是在提供一种铜线及其制造方法,其中,无需额外的制造步骤便可容易地形成稳定的阻挡层,该阻挡层由包含铜的氧化物,尤其是Cu2O或CuOxNy的材料构成。
关于本发明其它的优点、目的和特征,一部分将在下文的说明书中阐明,一部分对于所属领域普通技术人员将通过研究下文而变得显而易见,或者可从本发明的实践领会到。通过书面说明书及其权利要求以及附图中特别指出的结构可实现和获得本发明的目的和其它优点。
为了实现这些目的和其它的优点,依照本发明的意图,如这里具体化和广泛描述的,铜线包括形成于底层结构上的阻挡层,和位于阻挡层上的铜导电层,其中阻挡层包括Cu2O层和CuOxNy层中的至少之一。
根据本发明的另一方面,提供一种薄膜晶体管基板,包括形成于基板上的多条栅极线,和形成于所述栅极线和栅极绝缘膜之间用以定义像素区并垂直于所述栅极线的多条数据线;形成于所述栅极线和数据线分别相交的区域的多个薄膜晶体管;和形成于所述像素区并分别连接到所述薄膜晶体管的多个像素电极,其中所述栅极线和数据线中的至少之一由所述铜线构成;其中所述铜线包括阻挡层和位于所述阻挡层上的铜导电层,其中所述阻挡层包括Cu2O层和CuOxNy层中的至少之一。
应当理解,本发明前面的一般性描述和下面的详细描述都是示范性的和解释性的,意在提供对要求保护的本发明进一步的解释。
附图说明
附图结合在本申请中构成本申请的一部分,用以提供对本发明的进一步理解。附图例示了本发明的实施方式并与说明书一起用以解释本发明的原理。在附图中:
图1为例示相关技术阻挡层的问题的剖视图;
图2A为例示根据本发明第一优选实施方式的铜线的剖视图;
图2B为例示根据本发明第二优选实施方式的铜线的剖视图;
图3A为例示根据本发明优选实施方式的薄膜晶体管基板的平面图;
图3B为从图3A的线I-I’得到的剖视图;
图4A-4C为例示根据本发明第一优选实施方式的铜线的制造方法的剖视图;
图5A-5C为例示根据本发明第二优选实施方式的铜线的制造方法的剖视图;
图6A为例示仅用氮气N2制造的Cu3N阻挡层的物理特性的曲线图;以及
图6B为例示CuOxNy阻挡层的物理特性的曲线图;
具体实施方式
现在详细描述本发明的优选实施方式,其中的一些实例在附图中示出。在整个附图中尽可能地使用相同的参考标号表示相同或相似的部件。
本发明的铜线包括位于底层结构上的阻挡层,和位于阻挡层上的铜导电层,其中阻挡层由Cu2O铜氧化物层,或至少一种CuOxNy层构成。
下面将参照附图描述根据本发明第一优选实施方式的铜线。
图2A为例示根据本发明第一优选实施方式的铜线的剖视图。
参照图2A,铜线包括形成于底层结构100上的阻挡层200,和形成于阻挡层200上的铜导电层300,其中阻挡层200为Cu2O铜氧化物层或CuOxNy的铜氧化物层(其中x和y为正数)。
举例来说,底层结构100可以是基板,比如玻璃基板或硅基板,或是绝缘膜,比如硅的氮化物膜或硅的氧化物膜。
阻挡层200是Cu2O铜氧化物层或最好是CuOxNy层。
铜氧化物层或最好是CuOxNy层的阻挡层200具有足够好的热稳定性,以使得阻挡层不会在随后的制造阶段由于基板受热而被还原,从而实现阻挡层的阻挡特性,或是实现防止铜向绝缘膜中扩散的效果,并且与此同时提高铜的附着力。
下面将参照附图描述根据本发明第二优选实施方式的铜线。
图2B为例示根据本发明第二优选实施方式的铜线的剖视图。
参照图2B,铜线包括位于底层结构100上的第一阻挡层202,位于第一阻挡层202上的第二阻挡层204,和位于第二阻挡层204上的铜导电层300。
举例来说,底层结构100可以是基板,比如玻璃基板或硅基板,或是绝缘膜,比如硅的氮化物膜或硅的氧化物膜。
虽然第一阻挡层202和第二阻挡层204可以是CuOxNy或Cu2O的铜氧化物层,但最好第一阻挡层202由CuOxNy构成且第二阻挡层204由Cu2O构成。
由于CuOxNy与绝缘膜的交界面的特性比Cu2O与绝缘膜的交界面的特性稳定,所以在第二阻挡层204下的第一阻挡层202最好由CuOxNy构成。
CuOxNy阻挡层最好沉积到50~1000□的厚度。
按如上方式形成有双层阻挡层的更稳定。
下面描述根据本发明优选实施方式的薄膜晶体管基板。
图3A是根据本发明优选实施方式的薄膜晶体管基板的平面图,图3B是从图3A的线I-I’得到的剖视图。
参照图3A和3B,薄膜晶体管基板包括形成于基板100上的多条栅极线110,形成于栅极线110和栅极绝缘膜101之间用来定义像素区P且垂直于栅极线110的多条数据线,形成于栅极线和数据线分别相交的区域的多个薄膜晶体管,以及形成于像素区并分别连接至薄膜晶体管的多个像素电极150。
栅极线110的一端有栅极焊盘112,用来接收来自器件外部的栅极信号,数据线120的一端有数据焊盘123,用来接收来自器件外部的数据信号。
薄膜晶体管包括从栅极线分岔出的栅极115,用来覆盖栅极115的栅极绝缘膜101,与栅极115相对地形成于栅极绝缘膜上的半导体层126,形成于半导体层126一端的从数据线120分岔出的源极122,以及与源极122相对的漏极124。
像素电极150通过第一接触孔140连接至薄膜晶体管,其中,当形成于包括源极122、漏极124和数据线120的整个基板表面上的用于保护薄膜晶体管的保护膜146的一部分被去除时,形成该第一接触孔140以暴露漏极124。
像素电极150最好由透明导电材料构成,比如铟-锡氧化物(ITO)。
尽管图3A例示了将像素电极150形成为具有与先前阶段的栅极线重叠的区域以形成存储电容器的情况,还存在像素电极150与公共线重叠以形成存储电容器的情况。
在栅极焊盘112上具有用来覆盖第二接触孔142的栅极焊盘电极152,经由第二接触孔142去除栅极绝缘膜101和保护膜146,以暴露栅极焊盘122。
在数据焊盘123上具有用来覆盖第三接触孔144的数据焊盘电极154,经由第三接触孔144去除保护膜146的一部分,以暴露数据焊盘。
栅极线110和数据线120中的至少之一是由本发明的实施方式中的铜线构成。
图3B例示了栅极线和数据线均为具有阻挡层和铜导电层的双层结构构成的情况。
参照图3B,本发明的实施方式的薄膜晶体管中,栅极焊盘112具有栅极焊盘阻挡层112a和位于该栅极焊盘阻挡层112a上的铜导电层112b的双层结构。尽管没有显示出来,栅极线110具有栅极线阻挡层和铜导电层的双层结构,栅极115具有栅极阻挡层115a和铜导电层115b的双层结构。
数据焊盘123具有数据焊盘阻挡层123a和位于数据焊盘阻挡层123a上的铜导电层123b的双层结构,源极122具有源极阻挡层122a和铜导电层122b的双层结构,漏极124具有漏极阻挡层124a和铜导电层124b的双层结构。
换句话说,在薄膜晶体管中,栅极线110具有栅极线阻挡层和铜导电层的双层结构,数据线120具有数据线阻挡层和铜导电层的双层结构。
尽管图3例示了栅极线110和数据线120均具有双层结构,但也可以是栅极线110和数据线120的其中之一具有双层结构。
此外,本发明的实施方式的薄膜晶体管基板中,具有双层结构的栅极线110和/或数据线120不需要覆盖层。换句话说,由于在制造平板显示设备的过程中基板的温度不会升高到超过320℃,所以不需要额外的覆盖层。
本发明的实施方式的薄膜晶体管基板包括多条栅极线和数据线,这两种线中至少有一种是具有阻挡层和铜导电层的多层堆叠结构,其中阻挡层由Cu2O构成,或最好是至少一种CuOxNy,以形成阻挡层具有不会被受热还原的稳定结构的铜线。
下面对根据本发明第一优选实施方式的铜线制造方法进行描述。
图4A至4C为例示在一个封闭室里通过反应溅射法制造根据本发明第一优选实施方式的铜线的方法的剖视图。
参照图4A,在将基板100放在其中设有铜靶T的溅射室内之后,溅射铜靶T,以在基板100上形成阻挡材料层200a。在这种情况下,只使用O2气体,且要求不能把Ar气体和O2气体一起使用。
在这种情况下,设置室的内部压力为2.0Pa以下,内部温度为400℃以下。尤其是,因为根据不同的压力会形成非Cu2O的其它材料,因此要注意压力。
由此形成的阻挡材料层200a是Cu2O层。
参照图4B,在从室内去除O2气体之后,在仅有Ar气体存在的环境中溅射铜靶T,以在阻挡材料层200a上形成铜层300a。
这样,参照图4C,当把基板100从室内取出后,将阻挡材料层200a和铜层300a图案化,以形成具有阻挡层200和铜导电层300的铜线。
因为制造根据本发明第一优选实施方式的铜线的方法是在同一个室(其中设有铜靶T)内形成阻挡层200和铜导电层300,只是改变一次气体的种类,而相关技术制造铜线的方法是在不同的室内形成阻挡层和铜导电层,所以,本发明能够以简单的制造过程形成稳定的阻挡层,且其不易因受热而还原。
下面对根据本发明第二优选实施方式的铜线制造方法进行描述。
图5A至5C为例示也是在一个封闭室内通过反应溅射法制造根据本发明第二优选实施方式的铜线的方法的剖视图。
参照图5A,在将基板100放在其中设有铜靶T的室内之后,溅射铜靶T,以在基板100上形成CuOxNy层200a。在这种情况下,N2气体和O2气体共同使用,也可以在其中加入Ar气体。
在这种情况下,设置N2气体对O2气体的流速比N2/O2在0.1~1的范围内,室的内部温度设为400℃以下。
除了共同使用N2气体和O2气体的方法,也可以使用一种一次能够形成氧基和氮基基团的气体,诸如NO气体或NO2气体,使用这些气体中任何一种来形成CuOxNy层200a。
参照图5B,在把室内的N2气体和O2气体去除后,在仅有Ar气体存在的环境中溅射铜靶T,以在CuOxNy层200a上形成铜层300a。
这样,参照图5C,当把基板100从室内取出后,CuOxNy层200a和铜层300a被图案化,以形成具有阻挡层200和铜导电层300的铜线。
因为制造根据本发明第二优选实施方式的铜线的方法是在同一个室(其中设有铜靶)内形成阻挡层200和铜导电层300,只是改变一次气体的种类,所以本发明能够以简单的制造过程形成稳定的阻挡层,且其不易因受热而还原。
尽管没有显示出来,在形成铜层300a之前,也可以在CuOxNy层200a上用O2气体形成Cu2O层。
图6A为例示仅使用N2气体形成的Cu3N阻挡层的物理特性的曲线图,图6B为例示CuOxNy阻挡层的物理特性的曲线图。
每幅曲线图显示了发声测量结果,其分别通过施加从0N到40N间变化的力(图中横坐标所示的临界负荷)用尖物来刮擦裸面玻璃基板上形成的阻挡层而得到的。换句话说,如果膜在刮擦的过程中膜被剥落,沉积的膜的附着力便通过发声量的急剧改变而估测出。
由图6A可知,通过仅使用N2气体形成的Cu3N阻挡层恰好在膜沉积后施加7N的力时发生剥落(见左图),在温度为450℃时,施加10N的力时发生剥落(见右图)。
与以上相比,由图6B可知,CuOxNy阻挡层恰好在膜沉积后施加19N的力时发生剥落(见左图),在温度为450℃时,施加21N的力时发生剥落(见右图)。
因此,像本发明形成的CuOxNy阻挡层可使铜线稳定性比相关技术中仅用氮气N2形成Cu3N阻挡层的铜线稳定性高。
正如所描述的,本发明的铜线及其制造方法及具有该铜线的平板显示设备具有如下优点。
由于在同一个室(其中设有铜靶)内仅改变一次气体种类形成阻挡层和铜导电层,能够以简单的制造过程形成稳定的阻挡层,且其不易因受热而还原。
尽管铜的氮化物阻挡层很容易因受热而还原,并且除Cu2O外的铜的氧化物阻挡层的膜特性取决于沉积条件表现出差的膜特性,但本发明能提供一种阻挡层在受热条件下稳定且膜特性卓越的铜线。
在不脱离本发明精神或范围的情况下,在本发明中可进行各种修改和变化,这对于所属领域技术人员来说是显而易见的。因此,本发明意在覆盖落入所附权利要求及其等同范围内的对本发明的所有修改和变化。

铜线及其制造方法以及具有该铜线的薄膜晶体管基板.pdf_第1页
第1页 / 共17页
铜线及其制造方法以及具有该铜线的薄膜晶体管基板.pdf_第2页
第2页 / 共17页
铜线及其制造方法以及具有该铜线的薄膜晶体管基板.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《铜线及其制造方法以及具有该铜线的薄膜晶体管基板.pdf》由会员分享,可在线阅读,更多相关《铜线及其制造方法以及具有该铜线的薄膜晶体管基板.pdf(17页珍藏版)》请在专利查询网上搜索。

本发明涉及一种铜线及其制造方法以及具有该铜线的薄膜晶体管基板,该无需任何额外的制造步骤即可形成用以提高铜线附着力的阻挡层。所述铜线包括形成于底层结构上的阻挡层;和在所述阻挡层上的铜导电层,其中所述阻挡层包括Cu2O层和CuOxNy层中的至少之一。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1