充电装置、电动车和充电系统.pdf

上传人:1520****312 文档编号:1330996 上传时间:2018-04-15 格式:PDF 页数:27 大小:1.25MB
返回 下载 相关 举报
摘要
申请专利号:

CN200680043499.8

申请日:

2006.11.14

公开号:

CN101312847A

公开日:

2008.11.26

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):B60L 11/18公开日:20081126|||实质审查的生效|||公开

IPC分类号:

B60L11/18; H01M10/44; H02J7/00; H02J7/02

主分类号:

B60L11/18

申请人:

丰田自动车株式会社

发明人:

中村诚; 及部七郎斋; 石川哲浩

地址:

日本爱知县

优先权:

2005.11.22 JP 337362/2005

专利代理机构:

北京市中咨律师事务所

代理人:

杨晓光;于 静

PDF下载: PDF下载
内容摘要

在由商用电源(55)对蓄电装置(B)进行充电的控制中,蓄电装置(B)的充电和冷却分时进行。也就是说,当蓄电装置(B)的温度上升时,控制装置(60)关断系统主继电器(5),停止升压转换器(10),驱动变换器(40)以运行用于空气调节器的压缩机(MC)。当蓄电装置(B)冷却下来时,控制装置(60)重新开通系统主继电器(5),驱动升压转换器(10),并停止变换器(40)。

权利要求书

1.  一种充电装置,该充电装置包含:
电力输入单元,其接收供自商用电源的商用电力;
充电控制单元,其将输入自所述电力输入单元的所述商用电力转换为具有蓄电装置的电压等级的电力,并对所述蓄电装置进行充电;
冷却装置,其对所述蓄电装置进行冷却;以及
控制单元,其以分时方式驱动所述充电控制单元和所述冷却装置。

2.
  根据权利要求1的充电装置,其中,所述冷却装置通过接收输入自所述电力输入单元的所述商用电力受到驱动。

3.
  根据权利要求1的充电装置,其中,所述控制单元对所述充电控制单元和所述冷却装置进行控制,使得所述蓄电装置的由所述冷却装置进行的冷却优先于所述蓄电装置的由所述充电控制单元进行的充电。

4.
  根据权利要求1的充电装置,其中,所述控制单元对所述充电控制单元和所述冷却装置进行控制,使得用于所述蓄电装置的充电电力和所述冷却装置的电力消耗各自被保持在规定量之内。

5.
  根据权利要求1的充电装置,其还包含继电器装置,所述继电器装置连接在所述蓄电装置与所述充电控制单元之间,并根据提供自所述控制单元的指令运行,其中,
所述控制单元:
当所述蓄电装置要被冷却时,向所述继电器装置输出截止指令,并向所述冷却装置输出驱动指令,且
当所述蓄电装置要被充电时,向所述继电器装置输出连接指令,并向所述冷却装置输出停止指令。

6.
  根据权利要求1的充电装置,其中,所述冷却装置包含电动空气调节器。

7.
  一种电动车,其包含:
蓄电装置;
电动机,其通过使用来自所述蓄电装置的电力产生用于所述车辆的驱动力;以及
权利要求1-6中任意一项所述的充电装置。

8.
  根据权利要求7的电动车,其还包含:
内燃机,以及
另一电动机,其能够通过使用所述内燃机的动力产生用于驱动所述电动机的电力。

9.
  根据权利要求8的电动车,其中,
所述电动机与所述另一电动机各自具有作为定子绕组的、星形连接的多相绕组,
所述充电装置中的所述电力输入单元被连接到所述电动机与所述另一电动机各自的多相绕组的中性点,
所述充电装置中的所述充电控制单元包含被设置为分别与所述电动机以及所述另一电动机对应的第一与第二变换器,且
所述第一与第二变换器分别将通过所述电力输入单元提供到所述电动机以及所述另一电动机的多相绕组中性点的商用电力转换为用于对所述蓄电装置进行充电的直流电力。

10.
  一种充电系统,其包含:
多个电动车,其各自包含权利要求1-6中任意一项所述的充电装置;以及
充电设备,其允许所述多个电动车连接于其上,并将供自所述商用电源的商用电力输出到所述多个电动车中的至少一个,
所述充电设备包含电力控制单元,该单元对输出到所述多个电动车的电力进行控制,使得输出到所述多个电动车的电力的总和被保持在规定量之内。

11.
  根据权利要求10的充电系统,其中,
所述多个电动车各自还包含:
状态量计算单元,其计算表示所述蓄电装置的充电状态的状态量,以及
输出单元,其将由所述状态量计算单元计算得到的状态量输出到所述充电设备,其中,
所述电力控制单元优先地将所述商用电力输出到具有接收自所述多个电动车的所述状态量中的最小状态量的电动车。

说明书

充电装置、电动车和充电系统
技术领域
本发明涉及充电装置、电动车和充电系统,特别涉及安装在电动车上且能够从车外商用电源对蓄电装置进行充电的充电装置的充电方法。
背景技术
日本特开No.5-276677公开了一种充电装置,该装置通过使用外部电源对安装在例如电气车辆或混合动力车等电动车上的蓄电装置充电。充电装置包含用于对蓄电装置进行冷却的冷却装置以及使用来自充电器的充电电力驱动冷却装置的驱动电路。
在充电装置中,当充电电力从充电器供到蓄电装置时,充电电力的一部分也被供到冷却装置,故冷却装置在蓄电装置被充电的同时对蓄电装置进行冷却。因此,采用此充电装置,可以抑制蓄电装置的温度上升并进行有利的充电。
然而,在日本特开No.5-276677所公开的充电装置中,如果冷却装置的电力消耗大,大多数外部供给的电力用于驱动冷却装置,因此,蓄电装置可能不能被充电。
在消耗大量电力但具有高冷却能力的电动空气调节器等被用作用于蓄电装置的冷却装置以保证蓄电装置的充分冷却状态的情况下,以及在蓄电装置在普通家庭中(其中,将要使用的外部供给电力(商用电力)的量被限制为在与电力公司的契约下的规定量)被充电时,特别地,日本特开No.5-276677中公开的充电装置可能不能确保蓄电装置的充电电力。
换言之,在这种充电装置中,输入的商用电力被分配用于对蓄电装置进行充电以及对冷却装置进行驱动。因此,这可导致这样的情况:输入的商用电力可由冷却装置的驱动和电压转换中产生的损耗消耗,不能确保用于蓄电装置的充电电力。
另一方面,增大在与电力公司的契约下设置的电力量对用户产生负担。即使在增大在契约下设置的电力量的情况下,如果在未来蓄电装置放大尺寸且冷却装置相应地具有更高的冷却能力,不能确保用于蓄电装置的充电电力能够得到可靠的保证。
发明内容
做出本发明,以便解决上面介绍的问题。本发明的目的在于提供一种能够在适当地对蓄电装置进行冷却的同时可靠地对蓄电装置进行充电的充电装置。
本发明的另一目的在于提供一种能够在适当地对蓄电装置进行冷却的同时可靠地对蓄电装置进行充电的电动车。
本发明的又一目的在于提供一种能够在适当地对蓄电装置进行冷却的同时可靠地对蓄电装置进行充电的充电系统。
根据本发明,充电装置包含:电力输入单元,其接收供自商用电源的商用电力;充电控制单元,其将从电力输入单元输入的商用电力转换为具有蓄电装置的电压等级的电力,并对蓄电装置进行充电;冷却装置,其对蓄电装置进行冷却;控制单元,其以分时方式对充电控制单元以及冷却装置进行驱动。
在根据本发明的充电装置中,充电控制单元和冷却装置以分时的方式受到驱动,使得蓄电装置的充电和冷却以分时的方式进行。因此,所有输入自电力输入单元的商用电力——除转换损耗外——在蓄电装置被充电的时间帧内被供到蓄电装置,并在蓄电装置被冷却的时间帧内被供到冷却装置。
因此,采用根据本发明的充电装置,可以可靠地保证用于蓄电装置的充电电力。因此,可以在适当地对蓄电装置进行冷却的同时可靠地对蓄电装置进行充电。另外,可以在不增大在契约下设置的商用电力量的情况下对蓄电装置进行充电。
优选为,冷却装置通过接收输入自电力输入单元的商用电力受到驱动。
在充电装置中,存储在蓄电装置中的电力不用于驱动冷却装置。因此,采用这种充电装置,可以对蓄电装置高效率充电。
优选为,控制单元对充电控制单元和冷却装置进行控制,使得由冷却装置进行的对蓄电装置的冷却优先于由充电控制单元进行的对蓄电装置的充电。
在该充电装置中,由冷却装置进行的对蓄电装置的冷却优先于由充电控制单元进行的对蓄电装置的充电。因此,采用这种充电装置,可以可靠地防止由于过热引起的蓄电装置损坏。
优选为,控制单元对充电控制单元和冷却装置进行控制,使得用于蓄电装置的充电电力和冷却装置的电力消耗各自被保持在规定量之内。
因此,采用这种充电装置,可以对蓄电装置进行充电和冷却,同时,把将要使用的商用电力量保持在规定量(例如在与电力公司的契约下设置的电力量)之内。
优选为,充电装置还包含继电器装置,该继电器装置连接在蓄电装置和充电控制单元之间,并根据从控制单元提供的指令运行。当蓄电装置被冷却时,控制单元向继电器装置输出截止指令,并向冷却装置输出驱动指令。当蓄电装置被充电时,控制单元向继电器装置输出连接指令,并向冷却装置输出停止指令。
在充电装置中,当蓄电装置被冷却时,控制单元向继电器装置输出截止指令,使得蓄电装置从充电控制单元电气断开。当蓄电装置被充电时,控制单元向继电器装置输出连接指令,并向冷却装置输出停止指令,使得蓄电装置被电气连接到充电控制单元,冷却装置被停止。因此,采用这种充电装置,可以防止蓄电装置同时被冷却和充电。
优选为,冷却装置包含电动空气调节器。
在充电装置中,消耗大量电力但具有高的冷却能力的电动空气调节器被用作冷却装置,以便确保蓄电装置的充分冷却的状态。因此,采用这种充电装置,可以可靠地对蓄电装置进行充电,同时,确保蓄电装置的充分冷却的状态。
另外,根据本发明,电动车包含:蓄电装置;电动机,其通过使用来自蓄电装置的电力产生用于车辆的驱动力;上面介绍的充电装置的任何一种。
因此,采用根据本发明的电动车,可以在适当地对蓄电装置进行冷却的同时可靠地对蓄电装置进行充电。另外,可以对蓄电装置进行充电,而不增大在契约下设置的商用电力的量。
优选为,电动车还包含内燃机以及能够通过使用内燃机的动力产生用于驱动电动机的电力的另一电动机。
更为优选的是,电动机和所述另一电动机各自具有作为定子绕组的星形连接的多相绕组。充电装置中的电力输入单元被连接到电动机与所述另一电动机各自的多相绕组的中性点。充电装置中的充电控制单元包含被设置为分别与电动机以及所述另一电动机对应的第一与第二变换器。第一与第二变换器分别将由电力输入单元提供给电动机以及所述另一电动机的多相绕组中性点的商用电力转换为用于对蓄电装置进行充电的直流电力。
另外,根据本发明,充电系统包含:多个电动车,其各自包含上面介绍的充电装置中的任何一种;充电设备,其允许所述多个电动车被连接于其上,并向所述多个电动车中的至少一个输出供自商用电源的商用电力。充电设备包含电力控制单元,该单元对输出到所述多个电动车的电力进行控制,使得输出到所述多个电动车的电力的总和被保持在规定量之内。
在根据本发明的充电系统中,从充电设备供到所述多个电动车的电力的总和被保持在规定量之内。因此,根据这种充电系统,可以对各电动车中的蓄电装置进行充电和冷却,同时,把将要使用的商用电力的量保持在规定量(例如在与电力公司的契约下设置的电力量)之内。
优选为,所述多个电动车各自还包含:状态量计算单元,其计算表示蓄电装置的充电状态的状态量;输出单元,其将由状态量计算单元计算得到的状态量输出到充电设备。电力控制单元优先将商用电力输出到具有从所述多个电动车接收的状态量中的最小状态量的电动车。
在充电系统中,具有最小状态量(SOC)——该状态量表示蓄电装置的充电状态——的电动车优先受到充电。因此,采用这种充电系统,可以高效地对所述多个电动车进行充电。
如上所述,根据本发明,蓄电装置的充电和冷却以分时方式进行,因此,可以可靠地对蓄电装置进行充电,同时,保证蓄电装置的冷却状态。
附图说明
图1为混合动力车的总体框图,该混合动力车被示为根据本发明第一实施例的电动车的实例;
图2示出了图1所示变换器和电动发电机的零相等效电路;
图3为一过程的流程图,该过程与由图1所示控制装置进行的蓄电装置充电控制有关;
图4示出了在混合动力车中通过输入端口输入的商用电力的使用状态;
图5示出了在假设同时进行蓄电装置的充电和冷却的情况下商用电力的使用状态;
图6为一总体框图,其原理性地示出了根据本发明第二实施例的充电系统;
图7为图6所示混合动力车的总体框图;
图8为一过程的流程图,该过程与图6所示充电站中的电力ECU的电力控制有关;
图9示出了从图6所示充电站供到混合动力车的商用电力的使用状态。
具体实施方式
下面参照附图详细介绍本发明的实施例。注意,图中相同或对应的部分具有同样的参考标号,且不重复对其进行介绍。
[第一实施例]
图1为混合动力车的总体框图,该混合动力车被示为根据本发明第一实施例的电动车的实例。参照图1,混合动力车100包含发动机4、电动发电机MG1与MG2、动力分割装置3、车轮2。混合动力车100还包含蓄电装置B、系统主继电器5、升压转换器10、变换器20与30、输入端口50、控制装置60、电容器C1与C2、电源线PL1与PL2、接地线SL1与SL2、U相线UL1与UL2、V相线VL1与VL2以及W相线WL1与WL2。混合动力车100还包含变换器40、U相线UL3、V相线VL3、W相线WL3、用于空气调节器的压缩机MC以及温度传感器70。
动力分割装置3连接到发动机4和电动发电机MG1与MG2,以便在它们之间分配动力。例如,具有恒星齿轮、行星齿轮架、环形齿轮的三个旋转轴的行星齿轮机构可被用作动力分割装置3。这三个旋转轴分别被连接到发动机4和电动发电机MG1与MG2的旋转轴。例如,通过使发动机4的曲轴穿过电动发电机MG1的转子的中空的中心,可使发动机4、电动发电机MG1与MG2机械连接到动力分割装置3。
注意,电动发电机MG2的旋转轴经由未示出的减速齿轮或差动齿轮连接到车轮2。用于电动发电机MG2的旋转轴的减速器可进一步并入动力分割装置3。
电动发电机MG1装入混合动力车100,以便作为由发动机4驱动的发电机运行以及作为能够起动发动机4的电动机运行,而电动发电机MG2被装入混合动力车100,以便作为对被称为驱动轮的车轮2进行驱动的电动机。
蓄电装置B经由系统主继电器5连接到电源线PL1和接地线SL1。电容器C1连接在电源线PL1与接地线SL1之间。升压转换器10连接在电源线PL1与接地线SL1之间,以及电源线PL2与接地线SL2之间。电容器C2连接在电源线PL2与接地线SL2之间。变换器20、30、40以彼此并联的方式连接到电源线PL2与接地线SL2。
电动发电机MG1包含作为定子线圈的未示出的Y形连接的三相线圈,并经由U、V、W相线UL1、VL1、WL1连接到变换器20。电动发电机MG2也包含作为定子线圈的未示出的Y形连接的三相线圈,并经由U、V、W相线UL2、VL2、WL2连接到变换器30。电力输入线ACL1、ACL2一端分别连接到电动发电机MG1、MG2的三相线圈的中性点N1、N2,另一端连接到输入端口50。用于空气调节器的压缩机M3经由U、V、W相线UL3、VL3、WL3连接到变换器40。
蓄电装置B为能被充电和放电的直流电源,其例如用镍氢电池或锂离子电池等二次电池制成。蓄电装置B向升压转换器10供给直流电力。另外,蓄电装置B通过接收从升压转换器10输出到电源线PL1的直流电力进行充电。注意,大容量电容器可被用作蓄电装置B。
根据来自控制装置60的信号SE,系统主继电器5将蓄电装置B电气连接到电源线PL1与接地线SL1以及将蓄电装置B从电源线PL1与接地线SL1电气断开。具体而言,当信号SE被激活时,系统主继电器5将蓄电装置B电气连接到电源线PL1与接地线SL1。当信号SE被撤销时,系统主继电器5将蓄电装置B从电源线PL1与接地线SL1电气断开。
电容器C1对电源线PL1与接地线SL1之间的电压波动进行平滑。基于来自控制装置60的信号PWC,升压转换器10对接收自蓄电装置B的直流电压进行升压,并将升压得到的电压输出到电源线PL2。另外,基于来自控制装置60的信号PWC,升压转换器10将经由电源线PL2接收自变换器20、30的直流电压降压到蓄电装置B的电压等级并对蓄电装置B进行充电。升压转换器10具有例如升压和降压性斩波器电路等等。
电容器C2对电源线PL2与接地线SL2之间的电压波动进行平滑。变换器20基于来自控制装置60的信号PWM1将接收自电源线PL2的直流电压转换为三相交流电压,并将转换得到的三相交流电压输出到电动发电机MG1。另外,基于来自控制装置60的信号PWM1,变换器20将由接收来自发动机4的动力的电动发电机MG1产生的三相交流电压转换为直流电压,并将转换得到的直流电压输出到电源线PL2。
基于来自控制装置60的信号PWM2,变换器30将接收自电源线PL2的直流电压转换为三相交流电压,并将转换得到的三相交流电压输出到电动发电机MG2。电动发电机MG2由此被驱动,以产生规定的转矩。另外,在车辆再生制动期间,基于来自控制装置60的信号PWM2,变换器30将由从车轮2接收旋转力的电动发电机MG2产生的三相交流电压转换为直流电压,并将转换得到的直流电压输出到电源线PL2。
另外,当蓄电装置使用通过输入端口50输入自商用电源55的商用电力被充电时,基于来自控制装置60的信号PWM1、PWM2,变换器20、30分别将经由电力输入线ACL1、ACL2通过输入端口50提供到电动发电机MG1、MG2的中性点N1、N2的商用电力转换为直流电力,并将转换得到的直流电力输出到电源线PL2。
电动发电机MG1、MG2各自为三相交流电动机,并被配置为例如三相交流同步电动机。电动发电机MG1使用发动机4的动力,由此产生三相交流电压,并将所产生的三相交流电压输出到变换器20。另外,电动发电机MG1通过接收自变换器20的三相交流电压产生驱动力,并驱动发动机4。电动发电机MG2通过接收自变换器30的三相交流电压产生车辆的驱动转矩。另外,在车辆再生制动期间,电动发电机MG2产生三相交流电压并将之输出到变换器30。
输入端口50为用于从商用电源55向混合动力车100输入商用电力的输入端子。输入端口50连接到商用电源55的插座,例如连接到家庭电源插座。输入端口50在这里具有根据来自控制装置60的信号EN动作的继电器(未示出),并根据信号EN将电力输入线ACL1、ACL2电气连接到商用电源以及将电力输入线ACL1、ACL2从商用电源电气断开。
基于来自控制装置60的信号PWM3,变换器40将接收自电源线PL2的直流电压转换为三相交流电压,并将转换得到的三相交流电压输出到用于空气调节器的压缩机MC。
用于空气调节器的压缩机MC为用于安装在混合动力车100上的电动空气调节器的压缩机。用于空气调节器的压缩机MC由三相交流电动机形成,并由接收自变换器40的三相交流电压驱动。当用于空气调节器的压缩机MC受到驱动且电动空气调节器运行时,电动空气调节器作为用于车辆内部的空气调节装置运行,也作为对蓄电装置B进行冷却的冷却装置运行。
温度传感器70检测蓄电装置B的温度T,并将检测得到的温度T输出到控制装置60。
控制装置60产生用于驱动升压转换器10的信号PWC以及分别驱动变换器20与30的信号PWM1与PWM2,并将所产生的信号PWC、PWM1、PWM2分别输出到升压转换器10和变换器20与30。
另外,当蓄电装置B用来自商用电源55的商用电力进行充电时,控制装置60产生分别用于控制变换器20、30与升压转换器10的信号PWM1、PWM2、PWC,并激活信号SE,使得经由电力输入线ACL1、ACL2通过输入端口50提供到中性点N1、N2的商用电力被转换为直流电力,以便由之对蓄电装置B进行充电。
这里,控制装置60基于来自温度传感器70的温度T监视蓄电装置B的温度。如果蓄电装置B的温度超过表示蓄电装置B的温度上升的预设阈值,控制装置60撤销信号SE,停止产生信号PWC,产生信号PWM3并将之输出到变换器40。
如果蓄电装置B的温度下降到表示蓄电装置B冷却下来的预设阈值之下,控制装置60再次激活信号SE,产生信号PWC,并停止产生信号PWM3。
换句话说,当蓄电装置B的温度上升时,控制装置60关断系统主继电器5,停止升压转换器10,并驱动变换器40以便运行用于空气调节器的压缩机MC。因此,到蓄电装置B的电力供给被截止,通过输入端口50输入的电力被供到用于空气调节器的压缩机MC,故蓄电装置B被冷却。
当蓄电装置B被冷却下来时,控制装置60重新开通系统主继电器5,驱动升压转换器10,并停止变换器40。因此,到用于空气调节器的压缩机MC的电力供给被截止,除了变换器20与30以及升压转换器10的开关损耗量之外,所有通过输入端口50输入的电力被供到蓄电装置B。
因此,在混合动力车100中,蓄电装置B的充电与冷却在蓄电装置B的充电控制过程中以分时的方式进行。
图2示出了图1所示电动发电机MG1与MG2以及变换器20与30的零相等效电路。变换器20与30——其被标识为三相变换器——各自具有六个晶体管中的八种开通/关断组合模式。在八种开关模式中的两种中,相间电压为零,这样的电压状态被称为零电压向量。在零电压向量中,上臂中的三个晶体管可被视为处于同样的开关状态(它们全被开通或关断),下臂中的三个晶体管也可被视为处于同样的开关状态。因此,在图2中,变换器20的上臂中的三个晶体管被共同示为上臂20A,而变换器20的下臂的三个晶体管被共同示为下臂20B。类似地,变换器30的上臂的三个晶体管被共同示为上臂30A,变换器30的下臂中的三个晶体管被共同示为下臂30B。
如图2所示,零相等效电路可被看作单相PWM转换器,经由电力输入线ACL1与ACL2被提供给中性点N1与N2的交流商用电力被输入到该单相PWM转换器。因此,通过改变各变换器20与30中的零电压向量以提供开关控制、从而使得变换器20与30分别作为单相PWM转换器的相臂运行,可以将交流商用电力转换为直流电力并将之输出到电源线PL2。
图3为一过程的流程图,该过程与由图1所示控制装置60进行的蓄电装置B的充电控制有关。注意,每当过去某个时间或满足规定的条件时,此流程图所示的过程由主程序调用和执行。
参照图3,控制装置60首先判断蓄电装置B的充电控制是否在进行(步骤S10)。对于关于蓄电装置B的充电控制是否在进行的判断,如果从商用电源55获得的商用电力被施加到输入端口50,且输入端口50中的继电器被开通,判断为充电控制在进行。如果控制装置60判断为充电控制并非在进行(步骤S10中的否),控制装置60终止该过程而不执行一系列的后续过程,该过程返回到主程序。
如果在步骤S10中判断为充电控制在进行(步骤S10中的是),基于来自温度传感器70的温度T,控制装置60判断蓄电装置B的温度是否高于表示蓄电装置B的温度上升的预设阈值T1(步骤S20)。如果控制装置60判断为蓄电装置B的温度等于或低于阈值T1(步骤S20中的否),控制装置60终止该过程而不执行一系列的后续过程,该过程返回到主程序。
相反,如果判断为蓄电装置B的温度高于阈值T1(步骤S20中的是),控制装置60产生信号PWM3并将之输出到变换器40,并对与用于空气调节器的压缩机MC对应的变换器40进行驱动(步骤S30)。另外,控制装置60撤销信号SE——其已在蓄电装置B的充电控制开始时激活——以关断系统主继电器5(步骤S40)。注意,控制装置60也在此时停止升压转换器10。系统主继电器5被关断,升压转换器10被停止,使得通过输入端口50的所有电力输入被供到用于空气调节器的压缩机MC,电动空气调节器对蓄电装置B进行冷却。
在电动空气调节器对蓄电装置B进行冷却时,基于来自温度传感器70的温度T,控制装置60判断蓄电装置B的温度是否降到低于表示蓄电装置B被充分冷却下来的预设阈值T2(<T1)。
如果控制装置60判断为蓄电装置B的温度下降到低于阈值T2(步骤S50中的是),控制装置60激活信号SE,并开通系统主继电器5(步骤S60)。注意,控制装置60还在这时开始驱动升压转换器10。另外,控制装置60停止向变换器40输出信号PWM3并停止变换器40(步骤S70)。因此,除了变换器20与30以及升压转换器10中的开关损耗量以外,所有通过输入端口50输入的电力被供到蓄电装置B,使得蓄电装置B被充电。
图4示出了混合动力车100中通过输入端口50输入的商用电力的使用状态。参照图4,横坐标轴表示时间,纵坐标轴表示通过输入端口50输入的商用电力。混合动力车100可使用的电力量受到在与电力公司的契约下设置的电力的限制。
在图4中,基于蓄电装置B的温度,输入的商用电力在时刻t0-t1和t2-t3用于对蓄电装置B进行冷却,而输入的商用电力在时刻t1-t2和t3-t4用于对蓄电装置B进行充电。
为了比较,图5示出了在假设蓄电装置B的充电和冷却同时进行的情况下商用电力的使用状态。参照图5,在高温环境下,例如在夏天的烈日下,所输入的商用电力的较大量被分配用于对蓄电装置B进行冷却,如图所示。特别地,电动空气调节器具有较高的冷却能力,但消耗较大量的电力。因此,尽管蓄电装置B总是被充电,仅少量充电电力被输入到蓄电装置B中。另外,开关损耗在变换器20与30以及升压转换器10中发生,因此,由于开关损耗,应当输入到蓄电装置B中的充电电力可为零。
相反,在第一实施例中,如上所述,蓄电装置B的冷却和充电以分时方式进行。因此,即使用于对蓄电装置B进行充电的时间帧被缩短,在用于充电的时间帧中(图3中的时刻t1-t2和t3-t4)保证了充足的充电电力,故将被输入到蓄电装置B的充电电力不会由于变换器20与30以及升压转换器10中的开关损耗变为零。
在上文中,当用商用电源55进行的蓄电装置B的充电受到控制时,通过输入端口50输入的商用电力用于对用于空气调节器的压缩机MC进行驱动。然而,代替通过输入端口50输入的商用电力的是,存储在蓄电装置B的电力可用于对用于空气调节器的压缩机MC进行驱动。在这种情况下,如果蓄电装置B的充电状态(SOC)通过使用存储在蓄电装置B中的电力来驱动用于空气调节器的压缩机MC而显著降低,可以提供切换,使得通过输入端口50输入的电力被如上所述地提供给用于空气调节器的压缩机MC。
如上所述,根据第一实施例,蓄电装置B的充电和冷却以分时方式进行,因此,能够可靠地确保用于蓄电装置B的充电电力。结果,可以可靠地对蓄电装置B进行充电,同时,保证蓄电装置B的冷却状态。另外,可以对蓄电装置B进行充电,而不增大在契约下设置的商用电力量。
[第二实施例]
在第二实施例中,示出了能够对多台电动车进行充电的充电系统的构造。
图6为总体框图,其原理性地示出了根据本发明第二实施例的充电系统。尽管图6示出了作为示例性实例的两台电动车被充电的情况,也可对多于两台的电动车进行充电。
参照图6,充电系统200包含混合动力车100A与100B、充电站80、商用电源55。每个混合动力车100A、100B经由输入端口50A连接到充电站80,并经由电力输入线ACL1与ACL2从充电站80接收供自商用电源55的商用电力。另外,混合动力车100A与100B各自计算安装于其上的蓄电装置的SOC,并经由信号线SGL将计算得到的SOC输出到充电站80。
充电站80接收来自商用电力55的商用电力,并将所接收的商用电力供给混合动力车100A、100B。充电站80包含电力ECU(电子控制单元)82。电力ECU 82经由信号线SGL从各混合动力车100A、100B接收安装在车辆上的蓄电装置的SOC。电力ECU 82控制将从充电站80输出到混合动力车100A、100B的电力,使得安装在具有较低SOC的车辆上的蓄电装置被优先充电。
图7为图6所示的混合动力车100A、100B的整体框图。注意,混合动力车100B与混合动力车100A具有同样的构造,因此,不对混合动力车100A进行介绍。
参照图7,在根据图1所示第一实施例的混合动力车100的构造中,混合动力车100A还包含信号线SGL,并包含分别代替输入端口50以及控制装置60的输入端口50A以及控制装置60A。
信号线SGL布置在控制装置60A与输入端口50A之间。控制装置60A计算蓄电装置B的SOC,并将计算得到的SOC输出到信号线SGL。对于计算蓄电装置B的SOC的方法,可以通过使用蓄电装置B的端子电压、充电/放电电流、温度等使用已知的方法。
输入端口50A向未示出的充电站80输出蓄电装置B的SOC,其经由信号线SGL从控制装置60A接收到。注意,输入端口50A的其它构造与图1所示输入端口50的相同。
注意,混合动力车100A的其它构造与图1所示混合动力车100的相同。
图8为一过程的流程图,该过程与图6所示充电站80中的电力ECU 82的电力控制有关。注意,每当过去某个时间或满足规定条件时,此流程图所示的过程由主程序调用并执行。
参照图8,电力ECU 82经由信号线SGL从连接到充电站80的各混合动力车100A、100B获得安装在车辆上的蓄电装置B的SOC(步骤S110)。
接下来,电力ECU 82计算从车辆获得的SOC之间的差(绝对值),并判断计算得到的SOC差是否低于表示混合动力车100A、100B的SOC近似达到同一水平的预设阈值ΔSOC(步骤S120)。
如果电力ECU 82判断为计算得到的SOC差(绝对值)等于或大于阈值ΔSOC(步骤S120中的否),电力ECU 82控制输出自充电站80的电力,使得商用电力从充电站80被优先提供给具有较低SOC的车辆(步骤S130)。
相反,如果在步骤S120中判断为计算得到的SOC差(绝对值)低于阈值ΔSOC(步骤S120中的是),电力ECU 82控制输出自充电站80的电力,使得商用电力从充电站80近似均等地供到两个混合动力车100A、100B(步骤S140)。
图9示出了从图6所示充电站80供到混合动力车100A、100B的商用电力的使用状态。参照图9,横坐标轴表示时间,纵坐标轴表示从充电站80供到混合动力车100A和/或100B的商用电力。“冷却(A)”表示供自充电站80的商用电力用于对安装在混合动力车100A上的蓄电装置B进行冷却,而“冷却(B)”表示商用电力用于对安装在混合动力车100B上的蓄电装置B进行冷却。另外,“充电(A)”表示供自充电站80的商用电力用于对安装在混合动力车100A上的蓄电装置B进行充电,而“充电(B)”表示商用电力用于对安装在混合动力车100B上的蓄电装置B进行充电。能从充电站80供到混合动力车100A和/或100B的电力量受到在与电力公司的契约下设置的电力的限制。
在图9中,在时刻t0-t4,安装在混合动力车100B上的蓄电装置B的SOC低于安装在混合动力车100A上的蓄电装置B的SOC,因此,安装在混合动力车100B上的蓄电装置B优先于安装在混合动力车100A上的蓄电装置B受到充电。注意,基于安装在混合动力车100B上的蓄电装置B的温度,输入的商用电力在时刻t0-t1和t2-t3用于对安装在混合动力车100B上的蓄电装置B进行冷却,并在时刻t1-t2和t3-t4用于对蓄电装置B进行充电。
当时刻t4上安装在混合动力车100B上的蓄电装置B的SOC变得近似等于安装在混合动力车100A上的蓄电装置B的SOC时,于是,在契约下设置的电力的范围内,电力近似均等地供到混合动力车100A、100B。
图9示出了这样的情况:在时刻t4-t8上,安装在混合动力车100A、100B上的蓄电装置B的冷却和充电之间切换的定时在混合动力车100A、100B中为同样的定时。然而,在混合动力车100A、100B中,蓄电装置B的冷却与充电之间切换的定时不必相同,并根据安装在各车辆上的蓄电装置B的温度确定。
如上所述,根据第二实施例,在把将被使用的商用电力量保持在与电力公司的契约下设置的电力量之内的同时,可以分别对混合动力车100A、100B中的蓄电装置进行充电和冷却。另外,具有较低SOC的蓄电装置的车辆被优先充电,因此,可以高效率地对多台车辆进行充电。
在上面介绍的第一与第二实施例中,包含用于空气调节器的压缩机MC的电动空气调节器被用作用于对蓄电装置B进行冷却的冷却装置。然而,可单独设置冷却风扇等等以代替电动空气调节器。
在上文中,混合动力车被示为根据本发明的电动车的实例。然而,本发明的应用范围不限于混合动力车,还包括电气车辆、装有燃料电池以及能用商用电力充电的蓄电装置的燃料电池车辆以及其他车辆。
尽管在上文中商用电力从电动发电机MG1、MG2的中性点N1、N2输入,可单独提供AC/DC转换器以输入来自商用电源55的商用电力。注意,根据上面介绍的、商用电力被输入到电动发电机MG1与MG2的中性点N1与N2的第一与第二实施例,不需要单独提供AC/DC转换器,因此,这可有助于车辆重量和成本的降低。
尽管在上文中提供了升压转换器10,本发明也适用于不包含升压转换器10的电动车。
注意,在上文中,输入端口50(50A)和电力输入线ACL1、ACL2构成本发明的“电力输入单元”。变换器20、30、升压转换器10、系统主继电器5、控制装置60(60A)构成了本发明的“充电控制单元”。用于空气调节器的压缩机MC和变换器40对应于本发明的“冷却装置”,控制装置60(60A)对应于本发明的“控制单元”。另外,系统主继电器5对应于本发明的“继电器装置”,电动发电机MG2对应于本发明的“电动机”。
另外,充电站80对应于本发明的“充电设备”,电力ECU 82对应于本发明的“电力控制单元”。另外,控制装置60A对应于本发明的“状态量计算单元”,输入端口50A对应于本发明的“输出单元”。另外,发动机4对应于本发明的“内燃机”,电动发电机MG1对应于本发明的“另一电动机”。
应当明了,这里公开的实施例在所有方面是示例性而不是限定性的。本发明的范围由权利要求书的范围而不是由上面对实施例的说明限定,且旨在包括属于权利要求书的范围和等同含义的任何变型。

充电装置、电动车和充电系统.pdf_第1页
第1页 / 共27页
充电装置、电动车和充电系统.pdf_第2页
第2页 / 共27页
充电装置、电动车和充电系统.pdf_第3页
第3页 / 共27页
点击查看更多>>
资源描述

《充电装置、电动车和充电系统.pdf》由会员分享,可在线阅读,更多相关《充电装置、电动车和充电系统.pdf(27页珍藏版)》请在专利查询网上搜索。

在由商用电源(55)对蓄电装置(B)进行充电的控制中,蓄电装置(B)的充电和冷却分时进行。也就是说,当蓄电装置(B)的温度上升时,控制装置(60)关断系统主继电器(5),停止升压转换器(10),驱动变换器(40)以运行用于空气调节器的压缩机(MC)。当蓄电装置(B)冷却下来时,控制装置(60)重新开通系统主继电器(5),驱动升压转换器(10),并停止变换器(40)。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般车辆


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1