无线电信号发射机 本发明涉及无线电信号发射机,尤其涉及在由主站和从站(正向站)形成的无线电基站中使用的无线电信号发射机,用于例如分别在两个或更多个不同的频带内接收无线电信号、多路复用信号以及把这些信号在主站与从站之间发送。
在通过便携式电话或汽车电话进行通信的移动通信中,必须消除诸如地下或隧道内部等无线电基站的无线电波不能到达的盲区。为了解决这个问题,使无线电基站由没有天线功能的主站和仅具有天线功能的多个从站形成。多个从站散布在盲区等内,作为正向站,主站和每个从站通过例如光纤彼此连接。在这种情况下,主站和从站之间的信号发送是通过光发送系统把无线电信号(RF信号)转换成光信号然后再发送进行的。
图13是框图,它示出了在上述无线电基站中使用的传统光发送系统的典型结构,这种光发送系统在主站和从站之间以光的形式发送信号。这种类型的光发送系统在例如“无线电基站的光纤-光发送机”(Sanada等撰写,刊登于1993年8月的国家技术报告第39卷第4期)中有所描述。
参照图13,传统光发送系统包括放大要发送的电信号的放大部分90、对放大部分90的输出信号进行电/光转换的电/光转换部分91以及对发送地光信号进行光/电转换的光/电转换部分92。放大部分90和电/光转换部分91设置在发送端,光/电转换部分92设置在接收端,同时,电/光转换部分91和光/电转换部分92通过光纤93彼此连接。
相对于输入信号的功率,电/光转换部分91具有这样一种指定的线性区域,使输出光信号的强度变化相对于输入信号功率的变化是线性的。即,当把功率超过该区域上限的信号输入到电/光转换部分91时,输出的光信号就会失真。
相对于输入光信号的强度,光/电转换部分92具有这样一种指定的线性区域,使输出信号的功率变化相对于光信号的强度的变化是线性的。即,当把强度超过该区域上限的光信号输入到光/电转换部分92时,输出信号就会失真。
放大部分90具有一个放大系数,它足以使光/电转换部分92的输出功率大于噪声,同时使电/光转换部分91内的输出信号的功率不超过上述指定线性区域的上限,使光/电转换部分92中的输入光信号的强度不超过上述另一指定的线性区域的上限。因此,在接收端,获得了与噪声相比功率足够大且无失真的信号。
如“CDMA蜂窝系统”(Association of Radio Industries and Bueiness(社团法人电波产业集会)ARIB TD-TS3 Version V1.0)中所描述的,相对于移动通信,近年来随着线路数量的快速增长,已经提出使用与传统系统相比线路数量较多的CDMA(码分多址)系统。近来,CDMA系统的移动通信已部分投入实用,预测今后移动通信中的CDMA系统比率将增加。
即,在全面进入CDMA系统之前,目前的系统和CDMA系统将共存一段时期,因此,考虑到抑制设备的成本,最好地利用当前系统中已有的设备成为与CDMA系统竞争的重要方面。
在上述传统光发送系统中,考虑了当前系统中使用的RF信号的光发送和CDMA系统中使用的码分多址信号。在这种情况下,相对于码分多址信号,接收端不能获得功率与噪声相比足够强的信号。这是因为虽然在目前的系统和CDMA系统中,分别把信号的功率设置成标准功率,但是根据标准,参照提供给发送端的输入信号的功率,CDMA系统中使用的码分多址信号的功率小于传统系统中使用的RF信号的功率。
在“数字蜂窝电信系统”(无线电系统研究开发中心,RCR STD-27A)中描述了目前的系统的标准,在“CDMA蜂窝系统”中描述了CDMA系统的标准。在例如日本专利公开No.6-70362(日本专利申请No.4-219894)中揭示了以光的方式发送码分多址信号的装置。
另一方面,相对于码分多址信号,假设放大部分90的放大系数设置得较高,以便获得与噪声相比功率足够大的信号。然而,在这种情况下,预计相对于RF信号,电/光转换部分91中的输入信号的功率会超出上述指定的线性区域的上限,或者光/电转换部分92中的输入光信号的强度将超出上述另一个指定的线性区域的上限,结果,使接收端获得信号失真。
即,当上述传统光发送系统中光学发送上述传统RF信号和码分多址信号时,相对于RF信号和码分多址信号,无论如何设置放大部分90的放大系数,接收端都不能得到与噪声相比功率足够强的且无失真的信号。顺便提一下,上述日本专利公开No.6-70362没有描述光学发送RF信号和码分多址信号的装置。
下面从另一个观点来定量描述与上述相似的问题。
图14是传统无线电信号发射机的结构框图。
参照图14,在传统无线电信号发射器中,主站200和从站300通过光纤201和202彼此连接。光纤201在从主站200向从站300(下文称之为下行系统)发送光信号时使用。光纤202在从从站300向主站200(下文称为上行系统)发送光信号时使用。
从站300包含光/电转换部分301、电/光转换部分303、第一放大部分302、第二放大部分304、循环器305和天线306。
首先,描述下行系统信号发送。
通过光纤201把主站200发送的光信号发送给位于远程点上的从站300。在从站300,光/电转换部分302接收主站200发送的光信号,并把它转换成电信号的无线调制信号。该无线电调制信号在第一放大部分302中放大,然后通过循环器305从天线306辐射。循环器305是具有仅某一端的输入向相邻端以规定方向输出功率的装置,它把第一放大部分302的输入输出到天线306,同时把天线306的输入输出到第二放大部分304(如图14的箭头所示)。该区域内的移动终端(未示出)接收天线306辐射的无线电调制信号。
下面描述上行系统信号发送。
天线306分别接收该区域内的各移动终端发送的频率不同的无线电调制信号,并对它们进行频率多路复用。该频率多路复用的无线电调制信号通过循环器305输入到第二放大部分304。第二放大部分304放大输入的无线电信号,并把它们输出到电/光转换部分303。电/光转换部分303把第二放大部分304输入的无线电调制信号转换成光信号,并输出。把在电/光转换部分303中转换然后输出的光信号通过光纤202发送到位于远程站上的主站200。
在从站300的上述结构中,各移动终端与从站300之间距离差导致了天线306接收到的接收功率有明显的差异。因此,传统无线电信号发射机考虑了接收功率这种差异,使用极宽动态范围接收上行系统的信号,并把每个波的光调制系数设置得较高。
在上面提到的Sanada等撰写的“无线电基站的光纤-光发送机”一文中,描述了这种从站300的一个典型的系统设计。在Sanada等撰写的文献中,假设上行系统具有两个载波,上行系统的光调制系数为10.7%<=m<=21.2%。该光调制系数m的下限和上限分别由载波噪声比(CNR)特性和失真特性决定。
图15示出了光调制系数、CNR和失真之间的关系(在这种情况下,失真IM3是三次失真)。
如从图15可理解的,CNR随光调制系数的增大而增加,失真IM3随光调制系数的增大而下降。首先,满足CNR=80dB的值决定了在下限外的光调制系统,光调制系数的当前值为10.7%。另一方面,满足失真IM3=-84dBc决定了在上限处的光调制系数,当前光调制系数为21.2%。假设整个发射机内的失真特性为-80dBc,则IM3=-84dBc的失真是用作光发送器中的光/电转换部分的半导体激光二极管(LD)模块可以接受的失真量。
虽然Sanada等撰写的上述文献对在两个载波的情况下性能作了评价,在在实际的系统中,上行系统的载波是多载波的。在Sanada等撰写的文献中,假设最大载波数达32个。在这一点上,对两个载波作出的失真特性的评价是用多载波作出的。
在多载波发送的情况下,不仅要考虑把每个波的失真IM3作为失真特性,而且也要考虑把复合三次差频(CTB)作为失真特性。多载波发送中的这种失真CTB是由合数给出的,它是相同频率时引起的三次失真和失真IM3的数值。
上述合数与载波数的关系如Junji Namiki等的“微蜂窝移动无线电的送光器基本系统设计”(IEICE TRANS COMMUN,VOL.E76-B No.9,1993年9月第1069至1097页)中所描述的,可以从下式(1)得到:
Nc=M*(N-M+1)/2+((N-3)2-5)-(1-(-1)-N*(-1)N+M …(1)
在上述公式(1)中,N表示载波数,M表示N载波的第M个频带,Nc表示第M个频带中的合数。图16示出用上式(1)计算载波数与合数之间关系获得的结果。
对于同频带中的失真IM3与失真CTB之间的关系,假设D2[dBc]表示发送光调制系数为m2[%]的两个载波时引起的失真IM3,DN[dBc]表示发送同一发送系统的光调制系数为mN[%]的N个载波时引起的失真CTB,DN通过下式(2),用合数Nc来估计:
DN=D2+10*log(Nc)+2*20*log(mN/m2) …(2)
假设mN=10.7%和21.2%以及m2=20%时失真IM3的值D2为-85dBc,则当mN=10.7%和21.2%时失真量DN与合数之间的关系可以通过上式(2)得到。图17示出了该关系。从图17可以得出,合数为-84dBc,它是LD模组的失真特性DN的说明,当mN=10.7%时变成“15”,当mN=21.5时,变成“1”。而且,载波数可以根据图16所示的合数和载波数之间的关系得到,因此,当调制系数为10.7%时,载波数变为“8”个载波,当调制系数为21.2%时,变为“3”个载波。
上述载波数是在最靠近从站300的某一区域中正在发送的移动终端的数量。在该载波数的范围内,载波组合产生的三次失真对与从站300分开最远的地方发送的信号(天线306的接收电平最大)的影响处于可允许的范围内。
然而,如上所述,上述传统无线电信号发射机需要极宽的动态范围来接收上行信号,并且要把每个波的光调制系数设置得较高。因此,当把通信系统用于已有的频带,并且通信系统使用上述传统无线电信号发射机中的另一个频带(例如CDMA通信系统)时,会出现失真特性变坏的问题。
该问题基本上与上述传统光发送系统中产生的问题相似。
即,当在上述传统信号发射机中进行CDMA通信时,对CDMA信号(码分多址信号)进行发送功率控制,把天线306内的接收功率抑制得较小,因此,为了确保在光发送后有足够的CNR,放大部分304的放大系数必须设置得较大。然而,传统无线电调制信号(RF信号)是不经过发送功率控制的,在某些情况下,天线306中的接收功率可能增大,因此,假设如上所述,放大部分304的放大系数被设置得较大,则传统无线电调制信号有可能失真。
而且,上述问题不仅在光学发送RF信号和码分多址信号时产生,而且在发送功率彼此不同的第一无线电信号和第二无线电信号时也会产生(这也并不受限于光发送)。
因此,本发明的目的在于提供一种无线电信号发射,用于由主站和一个或多个从站形成的无线电基站中,例如,它可以发送包括功率彼此不同的第一无线电信号和第二无线电信号的信号,对于第一无线电信号和第二无线电信号,接收端得到的信号的功率与噪声相比足够大,且无失真,尤其提供这样一种无线电信号发射机,它可以光学发送包括RF信号和码分多址信号的信号,对于RF信号和码分多址信号,接收端获得的信号的功率与噪声相比足够大,且无失真。
本发明为解决上述问题,具有下列特征。
本发明的第一方面针对无线电信号发射机,发射包括两个无线电信号的信号,该两信号之一处于第一频带内,未经发送功率限制(下文称为第一无线电信号),另一无线电信号处于与第一频带不同的第二频带,经过发送功率限制(下文称为第二无线电信号),该无线电信号发射机包含:
在发送端,
分离部分,把信号分成第一无线电信号和第二无线电信号,
第一放大部分,以与第一无线电信号的功率相关的放大系数放大第一无线电信号,
第二放大部分,以与第二无线电信号的功率相关的放大系数放大第二无线电信号,以及
组合部分,组合放大的第一无线电信号和放大的第二无线电信号。
如上所述,在第一方面,当发送包括功率彼此不同的第一无线电信号和第二无线电信号时,把信号分成第一无线电信号和第二无线电信号,用与各信号的功率相关的放大系数进行放大和发送,从而可以使接收端获得的第一无线电信号和第二无线电信号的功率与噪声相比都足够大。
根据第二方面,在第一方面,
无线电信号发射机还包含在发送端的电/光转换部分,对组合部分的输出信号进行电/光转换,以及
包含在接收端的光/电转换部分,对电/光转换部分的输出光信号进行光/电转换,以及
发送端和接收端通过光纤彼此连接。
如上所述,在第二方面,对信号进行光学发送。
根据第三方面,在第一方面,第二无线电信号是经过码分多址的信号。
如上所述,在第三方面,把码分多址信号用作第二无线电信号。因此,第二无线电信号产生的失真信号有较宽的带宽,其峰值功率极低,因而,当在第一无线电频带内也产生失真时,第一无线电信号不受影响。对于第一无线电信号,可以使用例如RF信号(移动通信的无线电信号,诸如与码分多址信号不同的频分多址信号)。
根据第四方面,在第三方面,无线电信号发射机还包含在发送端的电/光转换部分,对组合部分的输出信号进行电/光转换,以及
包含在接收端的光/电转换部分,对电/光转换部分的输出光信号进行光/电转换,以及
发送端与接收端通过光纤彼此连接。
如上所述,在第四方面,信号被光发送。
根据第五方面,在第四方面,第一放大部分和第二放大部分分别还以这样的放大系数进行放大,即使光/电转换部分中输入光信号的强度不超过光/电转换部分的线性区域的上限。
如上所述,在第五方面,可以使在接收端获得的第一无线电信号和第二无线电信号的功率与噪声相比足够大,并且不会在光/电转换时产生失真。
根据第六方面,在第五方面,光/电转换部分是用光/电转换元件和预先放大光/电转换元件的输出信号的放大器构成的。
如上所述,在第六方面(以及下面的第九、第十二和第十五方面),当光/电转换部分包括具有窄的线性区域的对光/电转换元件的输出进行放大的放大器时,也可以使接收端得到的第一无线电信号和第二无线电信号的功率与噪声相比足够大,并且在光/电转换时不会产生失真。
根据第七方面,在第四方面,第一放大部分和第二放大部分分别还以这样的放大系数进行放大,即使电/光转换部分内的输入信号的功率不超过电/光转换部分的线性区域的上限。
如上所述,在第七方面,可以使接收端得到的第一无线电信号和第二无线电信号的功率比噪声足够大,并且不会在电/光转换时产生失真。
根据第八方面,在第七方面,第一放大部分和第二放大部分分别还以这样的放大系数进行放大,即使光/电转换部分内的输入光信号的强度不超过光/电转换部分的线性区域的上限。
如上所述,在第八方面,可以使接收端获得的第一无线电信号和第二无线电信号的功率与噪声相比足够大,并且在光/电转换和电/光转换时不会产生失真。
根据第九方面,在第八方面,光/电转换部分是由光/电转换元件和预放大光/电转换元件的输出信号的放大器构成的。
本发明的第十方面针对一种无线电信号发射机,用于发射包括两个无线电信号的信号,该两个无线电信号之一处于第一频带内,未经发送功率限制(下文称为第一无线电信号),另一无线电信号处于第二频带内,经过发送功率限制(下文称为第二无线电信号),
发送端和接收端彼此通过光纤连接,该无线电信号发射机包含:
在发送端
分离部分,把信号分离成第一无线电信号和第二无线电信号,
第一放大部分,以与第一无线电信号的功率相关的放大系数放大第一无线电信号,
第二放大部分,以与第二无线电信号的功率相关的放大系数放大第二无线电信号,
第一电/光转换部分,对放大的第一无线电信号进行电/光转换,
第二电/光转换部分,对放大的第二无线电信号进行电/光转换,以及
波分复用部分,对通过第一电/光转换部分转换获得的第一光信号和通过第二电/光转换部分转换获得的第二光信号进行波分复用,以及包含:
在接收端,
波长分割去多路复用部分,把波分复用部分的输出光信号波长分离成第一光信号和第二光信号,
第一光/电转换部分,对第一光信号进行光/电转换,以及
第二光/电转换部分,对第二光信号进行光/电转换。
如上所述,在第十方面,当光学发送包括功率彼此不同的第一无线电信号和第二无线电信号时,把信号分离成第一无线电信号和第二无线电信号,用与各信号功率有关的放大系数进行放大,然后进行光学发送,从而,使接收端接收到的第一无线电信号和第二无线电信号的功率与噪声相比足够大。
根据第十一方面,在第十方面,第二无线电信号是经过码分多址的信号。
如上所述,在第十一方面,把码分多址信号用作第二无线电信号。因此,第二无线电信号产生的失真信号有较宽的带宽,其峰值功率极低,因而,当在第一无线电频带内也产生失真时,第一无线电信号不受影响。对于第一无线电信号,可以使用例如RF信号(移动通信的无线电信号,诸如与码分多址信号不同的频分多址信号)。
根据第十二方面,在第十一方面,第一放大部分还以这样的放大系数进行放大,使第一光/电转换部分中的输入光信号的强度不超过第一光/电转换部分的线性区域的上限,以及
第二放大部分还以这样的放大系数进行放大,使第二光/电转换部分中的输入光信号的强度不超过第二光/电转换部分的线性区域的上限。
如上所述,在第十二方面,可以使接收端上获得的第一无线电信号和第二无线电信号的功率与噪声相比足够大,并且在光/电转换时不会产生失真。
根据第十三方面,在第十二方面,第一光/电转换部分和第二光/电转换部分分别由光/电转换元件和预放大光/电转换元件的输出信号的放大器构成。
根据第十四方面,在第十一方面,
第一放大部分还以这样的放大系数进行放大,即使第一电/光转换部分内的输入信号的功率不超过第一电/光转换部分的线性区域的上限,以及
第二放大部分还以这样的放大系数进行放大,即使第二电/光转换部分内的输入信号的功率不超过第二电/光转换部分的线性区域的上限。
如上所述,在第十四方面,可以使接收端上获得的第一无线电信号和第二无线电信号的功率与噪声相比足够大,且在电/光转换时不会产生失真。
根据第十五方面,在第十四方面,
第一放大部分还以这样的放大系数进行放大,即使第一光/电转换部分内的输入光信号的强度不超过第一光/电转换部分的线性区域的上限,以及
第二放大部分还以这样的放大系数进行放大,即使第二光/电转换部分内的输入光信号的强度不超过第二光/电转换部分的线性区域的上限。
如上所述,在第十五方面,可以使接收端获得的第一无线电信号和第二无线电信号的功率与噪声相比足够大,且,在电/光转换和光/电转换时不会产生失真。
根据第十六方面,在第十五方面,第一光/电转换部分和第二光/电转换部分分别由光/电转换元件和预放大光/电转换元件的输出信号的放大器构成。
本发明的第十七方面针对一种无线电信号发射机,用于发送位于第一频带但未经过发送功率限制的无线电信号(下文称为第一无线电信号)和位于与第一频带不同的第二频带且经过发送功率限制的无线电信号(下文称为第二无线电信号),该无线电信号发射机包含:
在发送端的
第一放大部分,以与第一无线电信号的功率相关的放大系数放大第一无线电信号;
第二放大部分,以与第二无线电信号的功率相关的放大系数放大第二无线电信号;
组合部分,组合放大的第一无线电信号和放大的第二无线电信号。
如上所述,在第十七方面,当发送功率彼此不同的第一无线电信号和第二无线电信号时,以与各信号功率相关的放大系数放大这些信号并发送,从而可以使接收端获得的第一无线电信号和第二无线电信号与噪声相比功率足够大。
本发明的第十八方面针对一种无线电信号发射机,用于发送位于第一频带但未经过发送功率限制的无线电信号(下文称为第一无线电信号)和位于与第一频带不同的第二频带且经过发送功率限制的无线电信号(下文称为第二无线电信号),
发送端和接收端彼此通过光纤连接,该无线电信号发射机包含:
在发送端的
第一放大部分,以与第一无线电信号的功率相关的放大系数放大第一无线电信号;
第二放大部分,以与第二无线电信号的功率相关的放大系数放大第二无线电信号;
第一电/光转换部分,对经放大的第一无线电信号进行电/光转换;
第二电/光转换部分,对经放大的第二无线电信号进行电/光转换;以及
波长分割多路复用部分,以波长分割方式多路复用由第一电/光转换部分转换获得的第一光信号和由第二电/光转换部分转换获得的第二光信号;还包含:
在接收端的
波长分割去多路复用部分,把波长分割多路复用部分的输出光信号以波长的方式分离成第一光信号和第二光信号;
第一光/电转换部分,对第一光信号进行光/电转换;以及
第二光/电转换部分,对第二光信号进行光/电转换。
如上所述,在第十八方面,当以光学方式以彼此不同的功率传送第一无线电信号和第二无线电信号时,这些信号以与各自的信号功率相关的放大系数进行放大,然后光学发送,从而可以使接收端接收到的第一无线电信号和第二无线电信号与噪声相比功率都足够大。
通过下面结合附图对本发明所作的详细描述,本发明的这些和其它一些目的,特征、方面和优点将更明显。
图1是根据本发明第一实施例的光发送系统的结构框图;
图2的示意图示出典型的基站系统图1的系统应用于该基站系统,以用当前系统和CDMA系统进行移动通信;
图3是图1的光/电转换部分15的(和图7的光电转换部分67和68的)内部结构框图(图7的光电转换部分67和68的);
图4是应用了图1的光发送系统的图2的无线电基站的典型结构的框图(在把从站21的信号发送到主站20的情况下);
图5是图1的分离部分10的典型结构框图;
图6是应用了图1的光发送系统的图2的无线电基站的另一个典型结构框图(把主站20的信号发送给从站21的情况);
图7是根据本发明第二实施例的光发送系统的结构框图;
图8是应用了图7的光发送系统的图2的无线电基站的典型结构的框图(把从站21的信号发送给主站20的情况);
图9是应用了图7的光发送系统的图2的无线电基站的典型结构的框图(把主站20的信号发送给从站21的情况);
图10是根据本发明第三实施例的无线电信号发射机的结构框图;
图11是第一天线36a和第二天线36b接收到的信号的频率与接收功率之典型间关系的示意图;
图12是第二频带的载波数与失真CTB之间关系的示意图;
图13是传统光发送系统的典型结构框图,它用于由无天线功能的主站和仅具有天线功率的从站(正向站)构成的无线电基站中,以光学方式在主站与从站之间发送信号;
图14是传统无线电信号发射机的典型结构框图;
图15是光调制系数、CNR和失真之间的关系图;
图16是载波数和合数之间的关系图;
图17是合数与失真量DN之间的关系图。
现在参照附图描述本发明的实施例。
(第一实施例)
图1是根据本发明第一实施例的光发送系统的结构框图。参照图1,光发送系统包含分离部分10、放大部分11和12、组合部分13、电/光转换部分14以及光/电转换部分15。分离部分10、放大部分11和12、组合部分13和电/光转换部分14设置在发送端,光/电转换部分15设置在接收端。
图2是典型无线电基站的示意图,其中应用了图1的系统,利用目前的系统和CDMA系统进行通信。参照图2,无线电基站是由元天线21a的主站20和每个都具有天线21a的一个或多个从站21构成的。这一个或多个从站21散布在盲区等处,作为正向站,主站20和每个从站21通过光纤22彼此连接。
图1的光发送系统应用于图2的无线电基站中,在主站20与每个从站21之间进行信号发送。也就是说,系统把包括RF信号(诸如频分多址信号等的移动通信的无线电信号,与码分多址信号不同;也应用于上述描述中)和CDMA系统中使用的码分多址信号的输入信号转换成光信号,并把它通过光纤22发送。
再参照图1,分离部分10把输入信号分离成RF信号和码分多址信号。放大部分11放大待发送的RF信号。放大部分12放大要发送的码分多址信号。组合部分13把放大的RF信号和放大的码分多址信号进行(频率多路复用)组合。电/光转换部分14对组合部分13的输出信号进行电/光转换。光/电转换部分15对发送的光信号(电/光转换部分14的输出信号)进行光/电转换。
相对于输入信号的功率,电/光转换部分14具有这样一种指定的线性区域,即,输出光信号的强度变化相对于输入信号功率变化是线性的。即,当把功率超出该区域上限的信号输入到电/光转换部分14时,输入光信号就失真。
相对于输入光信号的强度,光/电转换部分15具有另一指定的线性区域,即,输出信号的功率变化相对于输入光信号强度的变化是线性的。即,当把强度超过该区域上限的光信号输入到光/电转换部分15时,输出信号就失真。
放大部分11以这样的放大系数进行放大,使包括在光/电转换部分15的输出信号中的RF信号的功率比噪声的功率足够大。因此,接收端可以获得与噪声相比功率足够大的RF信号(即具有极佳的C/N比)。
最佳地,放大部分11以上述放大系数进行放大,它是这样一种放大系数,电/光转换部分14内的输入信号的功率不超过上述指定线性区域的上限,光/电转换部分15内的输入光信号的强度不超过上述另一指定线性区域的上限。因此,接收端可以获得功率与噪声相比足够大,且没有失真的RF信号。
这里补充说明一下,光/电转换部分15可以是如图3A和3B所示的由单个光/电转换元件30(光电二极管)(图3A)构成,或者由光/电转换元件30和对光/电转换元件30的输出信号进行预放大的放大器(预放大器)31(图3B)构成。通常,光/电转换元件30的线性区域足够宽,而放大器31的线性区域相对较窄。
因此,在前一种情况下,即当光/电转换部分15由单个光/电转换元件30构成时,即使不打算控制放大系数,也很少有可能光/电转换部分15内的输入光信号的强度超过上述另一指定线性区域的的上限。然而,在后一种情况下,即当光/是转换部分15是由光/电转换元件30和放大器31构成时,必须要对放大系数进行控制,以使光/电转换部分15内的输入光信号的强度不超过上述另一指定线性区域的上限。
放大部分12以这样一种放大系数进行放大,使包括在光/电转换部分15内的输出信号的码分多址信号的功率比噪声足够大。因此,接收端可以获得功率与噪声相比足够大的码分多址信号(即,具有极佳的C/N比)。
最佳地,放大部分12以上述放大系数进行放大,其放大系数为这样的放大系数,使电/光转换部分14内的输入信号的功率不超过上述指定线性区域的上限,光/电转换部分15内的输入光信号的强度不超过上述另一指定线性区域的上限。因此,接收端可以获得功率与噪声相比足够大且无失真的码分多址信号。
至于具有上述结构的光发送系统,下面描述把它应用于图2的无线电基站时的工作情况。
首先,描述从从站21向主站20发送信号的操作。
图4是应用了图1的光发送系统的图2的无线电基站的典型结构的框图。图4示出了从从站21向主站20发送信号所必需的元件。参照图4,从站21包含天线21,并设置有图1的分离部分10、放大部分11和12、组合部分13以及电/光转换部分14,主站20设置有光/电转换部分15。
在从站21的通话区,当前系统的移动终端和CDMA系统的移动终端混合使用(未图示)。从这些移动终端一侧,把RF信号和码分多址信号发送给从站21。在从站21,天线21a接收这些RF信号和码分多址信号,然后输入到分离部分10。分离部分10把包括RF信号和码分多址信号的输入信号分离成RF信号和码分多址信号。
分离部分10可以使用例如把输入信号分支成两路信号的分割器和有选择地发送特定频率信号的滤波器。图5示出了分离部分10的典型结构。参照图5,分离部分10包括分割器40和滤波器41和42。滤波器41的特性是其发送频带包括RF信号的频带,但不包括码分多址信号的频带。滤波器42的特性是包括码分多址信号的频带,但不包括RF信号的频带。因此,当RF信号和码分多址信号输入到分割器40时,滤波器41输出RF信号,滤波器42输出码分多址信号。
而且,当在天线21a和分离部分20处设置RF信号的天线和码分多址信号的天线时,可以把输入信号分支成两路信号。即,通过RF信号的天线和码分多址信号的天线,可以提供与上述相似的信号分离功能。
经分离获得的RF信号提供给放大部分11,在那里进行放大。另一方面,把分离获得的码分多址信号提供给放大部分12,在那里进行放大。在组合部分13内把放大部分11的输出信号和放大部分12的信号进行组合,并输入到电/光转换部分14内。电/光转换部分14对输入信号进行电/光转换,并把获得的光信号辐射给光纤22。
以上述方式从从站21输出的光信号在光纤22中传播,到达主站20。在主站20中,光/电转换部分15对从站21的光信号进行光/电转换。对光/电转换部分15的输出信号进行频率分离(分离部分没有图示),获得RF信号和码分多址信号。
在上述操作中,放大部分11以这样的放大系数进行放大,即,使包括在光/电转换部分15的输出信号内的RF信号的功率比噪声足够大,电/光转换部分14内的输入信号的功率不超过电/光转换部分14的线性区域的上限,同时,光/电转换部分15内的输入光信号的强度不超过光/电转换部分15的线性区域的上限,从而使主站获得的RF信号的功率与噪声相比足够大,且没有失真。
而且,放大部分12以这样的放大系数进行放大,即,使包括在光/电转换部分15的输出信号内的码分多址信号与噪声相比足够大,使电/光转换部分14的输入信号的功率不超过电/光转换部分14的线性区域的上限,同时使光/电转换部分15内的输入光信号的强度不超过光/电转换部分15的线性区域的上限,从而使主站获得的码分多址信号的功率与噪声相比足够大,且没有失真。
放大部分11和12的放大系数分别固定在预定值上,或者在发送期间,可以响应于C/N比的变化和失真量进行调节。
现在描述从主站20向从站21发送信号的工作情况。
图6是应用了图1的光发送系统的图2的无线电基站的另一种典型结构框图。图6示出了从主站20向从站21发送信号所必需的元件。参照图6,从站21包含天线21a,且设置有图1的光/电转换部分15,主站20设置有分离部分10、放大部分11和12、组合部分13和电/光转换部分14。
包括RF信号和码分多址信号的信号从中心站(示图示)通过规定的发送路径发送给主站20。在主站20,分离部分10把中心站的信号分离成RF信号和码分多址信号。
把经分离获得的RF信号提供给放大部分11,并在那里进行放大。另一方面,把经分离获得的码分多址信号提供给放大部分12,并在那里进行放大。放大部分11的输出信号和放大部分12的输出信号在组合部分13内进行组合,并输入到电/光转换部分14内。电/光转换部分14对输入信号进行电/光转换,并把获得的光信号辐射线光纤22。
以上述方式从主站20输出的光信号在光纤22中传播,到达从站21。在从站21,光/电转换部分15对输入光信号进行光/电转换。通过对光/电转换部分15的输出信号进行频率分离(为此作用的分离部分未示出),获得RF信号和码分多址信号。把以上述方式获得的RF信号和码分多址信号从从站21通过天线21a发送给正在从站21的通话区域内的每个移动终端。
在上述操作中,放大部分11以这样的放大系数进行放大,即,使包括在光/电转换部分15内的输出信号内的RF信号的功率与噪声相比足够大,使电/光转换部分14内的输入信号的功率不超过电/光转换部分14的线性区域的上限,同时使光/电转换部分15内的输入光信号的强度不超过光/电转换部分15的线性区域的上限,从而使从站21内获得的RF信号其功率与噪声相比足够大,且没有失真。
而且,放大部分12以这样的放大系数进行放大,即,使包括在光/电转换部分15内的输出信号内的码分多址信号的功率与噪声相比足够大,使电/光转换部分14内的输入信号的功率不超过电/光转换部分14的线性区域的上限,同时使光/电转换部分15内的输入光信号的强度不超过光/电转换部分15的线性区域的上限,从而使从站21内获得的码分多址信号其功率与噪声相比足够大,且没有失真。
放大部分11和12的放大系数可以分别固定到预定值上,或者在把信号从从站21向主站20发送的情况下,可以在发送期间响应于C/N比的变化和失真量进行调节。
根据第一实施例,如上所述,当发送包括RF信号和码分多址信号的信号时,把信号分离成RF信号和码分多址信号,以适于各功率的放大系数进行放大并发送,从而使接收端获得的RF信号和码分多址信号的功率与噪声相比都足够大,且没有失真。
(第二实施例)
图7是根据本发明第二实施例的光发送系统的结构框。参照图7,光发送系统包含分离部分60、放大部分61和62、电/光转换部分63和64、波长分割多路复用部分65、波长分割去多路复用部分66和光/电转换部分67和68。分离部分60、放大部分61和62、电/光转换部分63和64以及波长分割多路复用部分65设置在发送端,波长分割去多路复用部分66和光/电转换部分67和68设置在接收端。
图7的系统应用于与图2所示的相似的无线电基站(参照第一实施例)。图7的光发送系统应用于图2的无线电基站,以便在从站20与从站21之间进行信号发送。即,系统把包括当前系统中使用的RF信号和CDMA系统中使用的码分多址信号的输入信号转换成光信号,并把它发送通过光纤22。
再参照图7,分离部分60把输入信号分离成RF信号和码分多址信号。放大部分61放大要发送的RF信号。放大部分62放大要发送的码分多址信号。电/光转换部分63对放大的RF信号进行电/光转换。电/光转换部分64对放大的码分多址信号进行电/光转换。波长分割多路复用部分65多路复用对应于RF信号的光信号(电/光转换部分63的输出信号)和对应于码分多址信号的光信号(电/光转换部分64的输出信号)。波长分割去多路复用部分66把发送的光信号(波长分割多路复用部分65的输出信号)分离成对应于RF信号的光信号和对应于码分多址信号的光信号。光/电转换部分67对对应于RF信号的光信号进行光/电转换。光/电转换部分68对对应于码分多址信号的光信号进行光/电转换。
相对于输入信号的功率,电/光转换部分63具有输入光信号的强度变化与输入信号的功率变化是线性的指定线性区域。即,当把功率超过该区域的上限的信号输入到电/光转换部分63内时,输出光信号就失真。
相对于输入信号的功率,电/光转换部分64具有输入光信号的强度变化与输入信号功率的变化是线性的另一指定线性区域。即当把功率超过该区域的信号输入到电/光转换部分64内时,输出光信号就失真。
相对于输入光信号的强度,光/电转换部分67具有输出信号的功率变化与输入光信号强度的变化是线性的再一指定线性区域。即,当把强度超过该区域的上限的光信号输入到光/电转换部分67时,输出信号就失真。
相对于输入光信号的强度,光/电转换部分68具有输出信号的功率变化与输入光信号强度的变化是线性的再一指定线性区域。即,当把强度超过该区域的上限的光信号输入到光/电转换部分68时,输出信号就失真。
放大部分61以这样的放大系数进行放大,即,使包括在光/电转换部分67内的输出信号的RF信号的功率与噪声相比足够大。因此,接收端可以获得功率与噪声相比足够大的RF信号(即,具有极佳的C/N比)。
最佳地,放大部分61以上述放大系数进行放大,该放大系数使电/光转换部分63的输入信号的功率不超过上述指定线性区域的上限,使光/电转换部分67内的输入光信号的强度不超过上述另一指定线性区域的上限。因此,接收端可以获得功率与噪声相比足够大,且无失真的RF信号。
放大部分62以这样的放大系数进行放大,即,使包括在光/电转换部分68内的输出信号的码分多址信号的功率与噪声相比足够大。因此,接收端可以获得功率与噪声相比足够大的码分多址信号(即,具有极佳的C/N比)。
最佳地,放大部分62以上述放大系数进行放大,该放大系数使电/光转换部分64的输入信号的功率不超过上述另一指定线性区域的上限,使光/电转换部分68内的输入光信号的强度不超过上述再一指定线性区域的上限。因此,接收端可以获得功率与噪声相比足够大,且无失真的码分多址信号。
如果光/电转换部分(67和68)具有足够宽的线性区域,则波长分割去多路复用部分66可以省去,以便在光/电转换部分内集中接收RF信号和码分多址信号。
这里要提一下的是,光/电转换部分67或68可以与图1的光/电转换部分15相似,如图3A和3B所示由单个光/电转换元件30构成,也可以由光/电转换元件30与对光/电转换元件30的输出信号进行预放大的放大器(预放大器)31构成。通常,光/电转换元件30具有足够宽的线性区域,而放大器31的线性区域较窄。
因此,在前一种情况下,即,当光/电转换部分67或68由单个光/电转换元件30构成时,放大系数可以不作调节,这是因为光/电转换部分67或68中的输入光信号强度超过上述另一指定线性区域的上限的可能性极少。然而,在后一种情况下,即,当光/电转换部分67或68由光/电转换元件30和放大器31构成时,必须调节放大系数,以使光/电转换部分67或68内的输入光信号的强度不超过上述再一指定线性区域的上限。
至于上述结构的光发送系统,现在描述应用于图2的无线电基站时的工作情况。
首先,描述从从站21向主站20发送信号的工作情况。
图8是应用了图7的光发送系统的图2无线电基站的典型结构的框图。图8示出了从从站21向主站20发送信号所必需的元件。参照图8,从站21包含天线21a,并设置有图7的分离部分60、放大部分61和62、电/光转换部分63和64以及波长分割多路复用部分65,主站20设置有波长分割去多路复用部分66和光/电转换部分67和68。
在从站21的通话区域,当前系统的移动终端和CDMA系统的移动终端混合使用(未示出)。RF信号和码分多址信号从这些移动终端发送给从站21。在从站21,天线21a接收这些RF信号和码分多址信号,并输入到分离部分60中。分离部分60把包括RF信号和码分多址信号的输入信号分离成RF信号和码分多址信号。
分离部分60可以使用例如把输入信号分支成两路信号的分割器和有选择地发送特定频率信号的滤波器(参照图5)。
把经分离获得的RF信号提供给放大部分61,并在那里放大。另一方面,把经分离获得的码分多址信号提供给放大部分62,并在那里放大。电/光转换部分63对放大的RF信号进行电/光转换。电/光转换部分64对放大的码分多址信号进行电/光转换。在波长分割多路复用部分65把电/光转换部分63的输出信号与电/光转换部分64的输出信号混合,并辐射到光纤22中。
从站21以上述方式输出的光信号在光纤22中传播,到达主站20。在主站20,波长分割去多路复用部分66把从站21的光信号分离成对应于RF信号的光信号和对应于码分多址信号的光信号。
波长分割去多路复用部分66可以用例如把输入信号分支成两路信号的分割器和有选择地发送特定波长的光信号的滤波器来实现。
把对应于RF信号的光信号在光/电转换部分67内进行光/电转换。把对应于码分多址信号的光信号在光/电转换部分68内进行光/电转换。因此,获得RF信号和码分多址信号。
在上述操作中,放大部分61以这样的放大系数进行放大,即,使光/电转换部分67的输出信号(RF信号)的功率与噪声相比足够大,使电/光转换部分63内的输入信号的功率不超过电/光转换部分63的线性区域的上限,同时使光/电转换部分67内的输入光信号的强度不超过光/电转换部分67的线性区域的上限,从而使主站20中获得的RF信号的功率与噪声相比足够大,且没有失真。
另外,放大部分62以这样的放大系数进行放大,即,使光/电转换部分68的输出信号(码分多址信号)的功率与噪声相比足够大,使电/光转换部分64内的输入信号的功率不超过电/光转换部分64的线性区域的上限,同时使光/电转换部分68内的输入光信号的强度不超过光/电转换部分68的线性区域的上限,从而使主站20中获得的码分多址信号的功率与噪声相比足够大,且没有失真。
放大部分61和62的放大系数可以分别固定在预定值上,也可以在发送期间响应于C/N比和失真量的变化进行调节。
现在描述从主站20向从站21发送信号的工作情况。
图9是应用了图7的光发送系统的图2的无线电基站的另一种典型结构的框图。图9示出了从主站20向从站21发送信号所必需的元件。参照图9,从站21包含一对天线21a,并设置有图7的波长分割去多路复用部分66和光/电转换部分67和68,主站20设置有分离部分60、放大部分61和62、电/光转换部分63和64以及波长分割多路复用部分65。
把包括RF信号和码分多址信号的信号中心站(未图示)通过指定的发送路径发送给主站20。在主站20,分离部分60把中心站的信号分离成RF信号和码分多址信号。
把经分离获得的RF信号提供给放大部分61,并在那里放大。另一方面,把经分离获得的码分多址信号提供给放大部分62,并在那里放大。电/光转换部分63对放大的RF信号进行电/光转换。电/光转换部分64对放大的码分多址信号进行电/光转换。在波长分割多路复用部分65中把电/光转换部分63的输出信号和电/光转换部分64的输出信号进行混合,并辐射至光纤22中。
以上述方式从主站20输出的光信号在光纤22中传播,到达从站21。在从站21中,波长分割去多路复用部分66把主站20的光信号分离成对应于RF信号的光信号和对应于码分多址信号的光信号。把对应于RF信号的光信号在光/电转换部分67中进行光/电转换。把对应于码分多址信号的光信号在光/电转换部分68中进行光/电转换。因此,获得RF信号和码分多址信号。把以上述方式获得的RF信号和码分多址信号从从站21通达一对天线21a向从站21的通话区域中的每个移动终端发送。
在上述操作中,放大部分61以这样的放大系数进行放大,即,使光/电转换部分67输出的RF信号的功率与噪声相比足够大,使电/光转换部分63的输入信号的功率不超过电/光转换部分63的线性区域的上限,同时使光/电转换部分67的输入光信号的强度不超过光/电转换部分67的线性区域的上限,从而使从站21中获得的RF信号的功率与噪声相比足够大,且没有失真。
此外,放大部分62以这样的放大系数进行放大,即,使光/电转换部分68输出的码分多址信号的功率与噪声相比足够大,使电/光转换部分64的输入信号的功率不超过电/光转换部分64的线性区域的上限,同时使光/电转换部分68的输入光信号的强度不超过光/电转换部分68的线性区域的上限,从而使从站2 1中获得的码分多址信号的功率与噪声相比足够大,且没有失真。
放大部分61和62的放大系数可以分别固定到预定值上,也可以与从从站21向主站20发送信号的情况一样,在发送期站响应于C/N比和失真量的变化进行调节。
根据第二实施例,如上所述,当在发送包括RF信号和码分多堤信号的信号时,把信号分离成RF信号和码分多址信号,以适于各功率的放大系数进行放大,然后再发送,从而使接收端获得的RF信号和码分多址信号的功率与噪声相比足够大,且没有失真。
在第一实施例中,经分离获得的RF信号和码分多址信号都在电/光转换部分14和光/电转换部分15中进行转换,而在第二实施例中分离获得的RF信号在电/光转换部分63和光/电转换部分67中进行转换,而分离获得的码分多址信号在电/光转换部分64和光/电转换部分68中进行转换。因此,与第一实施例相比,第二实施例在结构上稍复杂。然而,要获得大约相同程度的C/N比和失真特性时,第二实施例的电/光转换部分的线性区域和光/电转换部分的上限比第一实施例要低。这是因为电/光转换部分63的输入信号的功率和电/光转换部分64内的输入信号的功率分别比电/光转换部分14的输入信号的功率小,光/电转换部分67中的输入光信号的强度和光/转换部分68内的输入光信号的强度分别比光/电转换部分15中的输入光信号的强度小。
(第三实施例)
图10是根据本发明第三实施例的无线电信号发射机的结构框图。参照图10,在该无线电信号发射机中,主站110和从站130通过光纤121和122连接。
从站130包含光/电转换部分131、电/光转换部分133、第一放大部分132、第二放大部分134a、第三放大部分134b、第一循环器135a、第二循环器135b、组合器137、第一天线136a和第二天线136b。
第二放大部分134a、第一循环器135a和第一天线136对第一频带(传统无线电通信服务中使用的频带)的信号进行处理。当从第一移动终端发送时,第一频带的信号不经过功率控制。
另一方面,第三放大部分134b、第二循环器135b和第二天线136b处理第二频带(用于新的无线电通信服务的频带)的信号。第二频带的信号在从第二移动终端发送时经过功率控制。该第二频带可以简单地与第一频带不同,在配置上没有特殊的限制。
图11示出了频率与第一天线136a和第二天线136b接收到的信号的功率之间的典型关系。
首先描述下行系统信号发送。
主站110发送的光信号通过光纤121发送给位于远程点的从站130。在从站130中,光/电转换部分131接收主站110发送的光信号,并把它转换成无线电调制信号(是电信号)。第一放大部分132放大该无线电调制信号并输出。如果它是具有第一频带的无线电调制信号(下文称为第一无线电调制信号),经放大的无线电调制信号通过循环器135a从天线136a向外辐射,或者如果它是第二频带的无线电调制2信号(下文称为第二无线电调制信号),通过循环器136b从天线136b向外辐射。在该区域中的相应第一和第二移动终端(未图示)分别接收天线136a和136b辐射的第一和第二无线电调制信号。
现在描述上行系统信号发送。
第一天线136a接收该区域内每个第一移动终端发送的第一无线电调制信号,并在后面进行频率多路复用。如上所述,第一无线电调制信号在从第一移动终端发送时未经功率控制,因此,每个第一移动终端与从站130之间的距离的差异会使接收功率分散。
频率多路复用的第一无线电调制信号通过循环器135a输入到第二放大部分134a中。第二放大部分134a放大输入的第一无线电调制信号,并把它输出到组合器137。
另一方面,第二天线136b接收该区域内每个第二移动终端发送的第二无线电调制信号,并在后面进行频率多路复用。如上所述,第二无线电调制信号在从第二移动终端发送时经功率控制,因此,从站130的接收功率的电平的恒定的,与每个第二移动终端与从站130之间的距离无关。
频率多路复用的第二无线电调制信号通过循环器135输入到第三放大部分134b中。第三放大部分134b放大输入的第二无线电调制信号,并把它输出到组合器137。此时,第三放大部分134b进行放大,使放大的第二无线电调制信号的电平比第二放大部分134a放大后的第一无线电调制信号的电平低,
组合器137多路复用第二放大部分134a输出的第一无线电调制信号和第三放大部分134b输出的第二无线电调制信号,并把它们输出到电/光转换部分133。电/光转换部分133接收经多路复用的无线电调制信号,把它们转换成光信号并输出。在电/光转换部分133中转换后输出的光信号通过光纤122发送给位于远处的主站110。
因此,当共用使用已有频带的通信系统与另一频带的通信系统之间的现存无线电信号发射机时,把发送功率经控制的信号用作另一频带的通信系统中使用的信号。当进行信号的发送功率控制时,与传统的不进行发送功率控制的情况相比,减小了动态范围。因此,与不进行发送功率控制的情况相比,可以把进行发送功率控制的情况下的光调制系数设置得较小,并且即使使用两个通信系统,整个通信系统的发送特性与传统一个通信系统的情况相比,基本上没有变化,而发送载波数可以得到增加。
上面的结论可以通过使用结合上述已有技术描述的公式(1)和公式(2)得到验证。
传统的无发送功率控制的无线电信号发射机需要较宽的动态范围,可达60dB。在进行新服务的信号情况下,控制每个移动终端(第二移动终端)的发送功率,因此,不必使动态范围达到60dB。假设新服务的动态范围为例如20dB,则与动态范围为60dB的情况相比,信号电平可以减少40dB,此时的光调制系数与未进行发送功率控制的情况相比变成1/100。
假设,载波数N为“8”,该数是能同时从接近传统无线电信号发射机中的从站300的地方进行通话的移动终端的数目,计算对第二频带的信号进行新频率多路复用情况下的失真特性。图12示出了这种计算结果。
从图12可以看出,即使在第一频带的信号上频率多路复用第二频带的信号,也不会使失真特性变差,能发送第二频带信号的载波数达到700。
如上所述,根据本发明第三实施例的无线电信号发射机,两个通信系统的发送特性可以基本上与仅有一个传统通信系统的发送特性相同,仅是从130有稍微的变化。因此,在显著减少引入新通信系统所需要的费用的同时,可以增加发送的载波数。
当例如把经CDMA(码分多址)系统码分多址处理的信号用作上述第二移动终端发送的信号时,还可得到下列效果:
经码分多址处理的信号具有这样的特性,即频带宽,而峰值功率低,因此,第二无线电调制信号产生的失真信号也宽,且其峰值功率极低。因此,即使第一无线电调制信号的频带中产生失真,则这不会对第一无线电调制信号造成影响。因此,当使用经码分多址处理的信号时,可以进一步减小把第二无线电调制信号频率多路复用到第一无线电调制信号上对第一无线电调制信号的影响。
(第四实施例)
除了除去了分离部分10之外,根据本发明第四实施例的光发送系统的结构与根据第一实施例(参照图1)的光发送系统相同。
除了如下几点之外,根据第四实施例的光发送系统的工作情况与根据第一实施例的光发送系统相同。
对于根据第四实施例的光发送系统,分别独立输入RF信号和码分多址信号,即,在两路信号预先彼此分离的状态。然后根据第四实施列的光发送系统以与各信号的功率相关的放大系数放大RF信号和码分多址信号,然后发送。
(第五实施例)
除了除去了分离部分60之外,根据本发明的第五实施例的光发送系统的结构与根据第二实施例(参照图7)的光发送系统相同。
除了如下几点之外,根据第五实施例的光发送系统的工作情况与根据第二实施例的光发送系统相同。
对于根据第五实施例的光发送系统,分别独立输入RF信号和码分多址信号,即,在两路信号预先彼此分离的状态。然后根据第五实施列的光发送系统以与各信号的功率相关的放大系数放大RF信号和码分多址信号,然后发送。
虽然已详细描述了本发明,但上述的描述是对各方面的图示描述,而不是限制。应当理解,不脱离本发明的范围可以有多种其它的改动和变化。