以太网与准同步数字体系融合的适配方法 本发明涉及以太网/快速以太网/千兆以太网的数据传送领域,包括公用网和专用网,它是一种用于以太网与准同步数字体系(英文缩写PDH)融合的适配方法,主要用于具有以太网/快速以太网/千兆以太网接口的核心交换路由器和边缘交换路由器,高低端以太网交换机,以太网/快速以太网/千兆以太网接入设备,用户端综合接入设备和与英特网有关的互连互通设备等。
查阅有关资料,到目前为止还没有用于以太网与准同步数字体系融合的符合标准的适配方法,但若采用“点对点协议”(英文缩写PPP)加上“高级数据链路规程”(英文缩写HDLC)。在英特网工程任务组(英文缩写IETF),把它规定为(代号)RFC1619(RFC是请求评论,英文RequestFor Comments)。但若把“点对点协议”(英文缩写PPP)加上“高级数据链路规程”(英文缩写HDLC)用于以太网/快速以太网/千兆以太网与同步数字体系(英文缩写SDH)的融合适配上,就存在一些不足和缺陷。主要表现在:
(1)整个应用方案没有统一的国际标准支持,导致不同厂家的设备在公用网或专用网上互联时无法统一;
(2)对于每秒2.5G千兆比特及其以上速率,开发设备时硬件转发部分开销太大,用于“英特网协议(英文缩写IP)直接在波分复用光缆网(英文缩写IP over WDM)”上运行时,更是如此,因为RFC1619规定:推荐使用“链路控制协议(英文缩写LCP)”和魔数(英文表述为Magic Number)。这两项比较复杂;
(3)采用RFC1619时,因为PPP是需要建立连接的,重发定时器的默认值在PPP中定为3秒。对于高速链路,这种方法过于迟钝。对于具体工程应用,应要求支持从每秒2兆比特到每秒10000兆比特的速率范围全部(约差4032倍)。所以重发定时器的值应根据线路往返的时延确定。这些在RFC 1619中都没有作出规定,从而在不同厂家的设备互连时会出现不确定性;
本发明的目的是,针对现有技术存在的不足和缺陷加以改进,并提出和设计出适用于各种情况的以太网与准同步数字体系融合的适配方法。本发明的构想是在以太网协议和准同步数字体系(英文缩写PDH)之间只保留面向字节的PDH链路接入规程(英文缩写LAPP),用多服务访问点代替地址字段,实现多协议封装,可以支持从低阶虚容器到高阶虚容器(包括级联)的全部速率范围,也特别适合用到光地包交换接口,没有任何协议的不确定性。
本项发明的技术解决方案是,通过定义以太网与准同步数字体系(英文缩写PDH)融合的物理层的基本参数,准同步数字体系(英文缩写PDH)链路接入规程(英文缩写LAPP)向介质访问控制子层(英文缩写MAC)提供服务原语和参数,同步的面向比特的组帧方法,不确认式信息传送服务模式(UITS),并用PDH链路接入规程(LAPP),来解决以太网和准同步数字体系(PDH)之间的融合及适配,这一构想可以支持以太网(IEEE802.3)、快速以太网(IEEE802.3u)和千兆以太网(IEEE802.3z)系列组网应用。
其特征在于,以太网与准同步数字体系(PDH)融合的物理层的基本参数,其中,准同步数字体系的各类速率等级的参数为:
E1 其速率为2048千比特/秒 编码为HDB3
E3 其速率为34368千比特/秒 编码为HDB3
E1 其速率为139264千比特/秒 编码为CMI
T1 其速率为1544千比特/秒 编码为AMI或B8ZS
T2 其速率为6312千比特/秒 编码为AMI或B6ZS或B8ZS
T3 其速率为44736千比特/秒 编码为B3ZS
其特征在于,准同步数字体系(PDH)链路接入规程(LAPP)向介质访问控制子层(MAC)提供服务原语和参数,它们分别是:
DL-UNACK-DATA请求(用户数据)
DL-UNACK-DATA指示(用户数据)其中DL-UNACK-DATA表示“数据链路-不确认-数据”原语,它有请求(Request)和指示(Indication)两类;用户数据对应于一个参数,即MAC帧作为一个整体,在发送时作为原语的参数映射到第LAPP链路层;在第LAPP链路层,把映射下来的MAC帧作为LAPP的用户数据或信息字段,其中,用户数据最大值为1600八位组,在LAPP组帧时保持其原来的顺序和值不变。
其特征在于,同步的面向比特的组帧方法,其中,每一个帧均以0x7e起始和终止,发送端的链路实体在发送期间应检查起始和终止标志之间的内容,包括地址字段,控制字段,信息字段和FCS字段,具体方式如下,所有的LAPP帧均以二进制码“01111110”起始和终止,直接位于地址字段之前的标志是起始标志,紧跟在帧校验序列(FCS)之后的标志为终止标志,在某些应用中,终止标志也可以作为下一帧的起始标志,所有的收端应能够接收一个或多个连续的标志,在帧与帧之间以标志填充;地址字段由一个八位组组成,比特排列的顺序为最低位在最右边,即比特1,最高位在最左边,即比特8,地址字段作为服务访问点标识符(SAPI)使用,完成LAPP对所有上层协议的封装,在接收端,根据这个字段的值来确定是哪一种协议,十六进制数“1c”表示对基于以太网/快速以太网/千兆以太网业务的封装,“255”作为广播地址,其它还有251个值留作将来使用;控制字段由一个八位组组成,其值为0x03,所有的帧均作为命令帧使用,探寻/终止比特设为0,其它值保留将来功能扩充时使用;信息字段即用户数据,紧跟在控制字段之后,由整数倍的八位组组成,当MAC子层有MAC帧要发送时,首先调用“DL-UNACK-DATA请求(用户数据)”原语,把随该原语映射下来的“整个MAC帧”作为LAPP的“信息字段”,在接收端,MAC子层利用“DL-UNACK-DATA指示(用户数据)”原语接收LAPP转来的“信息字段”作为MAC子层的帧;每个帧的尾部包含一个32比特的帧校验序列,用来检查帧通过链路传输时可能产生的错误,FCS由发送方产生,其基本思想是通过对完全随机的待发送的比特流计算产生32比特的冗余码(即FCS),附于帧的尾部,使得帧和FCS之间具有相关性,在接收端通过识别这种相关性是否被破坏,来检测出帧在传输过程中是否出现了差错,FCS生成多项式为:
G(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1计算范围从一个帧的开始标志之后的第一个比特起,到FCS之前的最后一个比特止,总比特数为m,作为数据多项式Q(x),其中需还原因透明性传输引起的转换(不应包括因透明性的需要而插入八位组),FCS是一个32比特的序列,它的值是下列两个余数的模2和的反码,
----xm×(x31+x30+......+x2+x+1)/G(x)的余数
----x32×Q(x)/G(x)的余数将上述过程产生的FCS加Q(x)之后发送出去,在接收端,把两个标志之间的全部比特序列称M(x),按下式计算,[x(m+32)×(x31+x30+......+x2+x+1)+x32*×M(x)]/G(x),其中m+32为M(x)序列的长度,如果M(x)=Q(x)+FCS,则传输无差错,否则,就认为传输有差错;在帧结构中,每一八位组的比特排列顺序为水平显示,比特排列的顺序为最低位在最右边(即比特1),最高位在最左边(即比特8),多个八位组沿垂直方向排列,最上面的八位组编号为”1”,依次递增为“2”...“N”,在这一结构中,某一比特可以以(o,b)标识,o表示八位组的顺序编号,b表示在一个八位组内比特的顺序编号,在一个八位组内比特8最先发送,而在一个帧结构中,八位组的发送顺序为1,2...N(从小到大递增),不过,FCS的4个字节是一个例外,具体说就是,FCS的第1个八位组的编号为1的比特是FCS长字的最高位,FCS的第4个八位组的编号为8的比特是FCS长字的最低位;LAPP的无效帧有以下几种:
1)由两个标志产生的不妥当的定界的帧,
2)两个标志的帧长小于6个八位组的帧,
3)包含有FCS错误的帧,
4)服务访问点标识符(SAPI)不匹配或收端不支持的帧,
5)包含有不确定的控制字段的帧,
6)以多于6个“1”结束的帧,无效帧将被丢弃,不通知发送方,也不产生任何动作。
其特征在于,不确认式信息传送服务模式(UITS),在第2层只有一个要素LAPP,没有流量控制,也不进行任何确认式操作。
其特征在于,这一构想可以支持以太网(IEEE802.3)、快速以太网(IEEE802.3u)和千兆以太网(IEEE802.3z)系列组网应用,具体说,采用这一方法时把PDH传输作为一个桥,可以连接相距很远的两个10M/100M/1000M以太网交换机(2层或3层),本方案既可以支持各类以太网“带充突检测的载波侦听多路防问(CSMA/CD)”的半双工方式,又可以支持各类以太网的全双工方式。
本发明的优点,相对于RFC1619,具有以下创新:
(1)目前国外个别厂商按照英特网工程任务组(英文缩写IETF)提出的PPP over SONET/SDH(即RFC 1619,SONET是指北美的同步光网络)开发,就RFC 1619本身而言,链路层有PPP(点对点协议)和HDLC(高级数据链路规程)两种协议,比较复杂,把它用于每秒2.5千兆比特以上速率时硬件开销太大,相比之下本发明只采用一个LAPP要素,其难易程度与HDLC相当,省去了PPP中的复杂的“链路控制协议(英文缩写LCP)”和魔数(英文表述为Magic Number)机制,所用的协议适配之开销大大减小;
(2)把RFC 1619用于以太网与PDH的融合,目前尚无标准支持,导致把这一现有方案用与公用网和专用网时,不同厂家的设备难以互通互联;
(3)采用RFC1619时,因为PPP是需要建立连接的,重发定时器的默认值在PPP中定为3秒。对于高速链路,过于迟钝,对于具体工程应用,应要求从每秒2兆比特到每秒10000兆比特的速率范围全部支持,所以重发定时器的值应根据线路往返的时延确定,这些在RFC 1619中都没有作出规定,从而在不同厂家的设备互连时可能会出现不确定性,相比之下本发明采用不确认式信息传送服务方式,不需要建立连接,也不需要使用重发定时器,不会出现任何对等实体之间通信的不确定性,从每秒2兆比特到每秒10000兆比特的速率范围的应用全部支持;
通俗地说,本发明是以非常简炼的,快捷的和廉价的方式解决以太网到PDH的协议适配,用PDH链路接入规程一项要素代替“点对点协议(英文缩写PPP)和高级数据链规程(英文缩写HDLC)两项要素,支持以太网/快速以太网/千兆以太网的各类应用。
图1,本发明所提出的构想示意图
图2,本发明用于准同步传递模式传递以太网MAC帧的协议栈结构示意图
图3,本发明组网的协议栈配置举例示意图
图4,本发明所提出的用于千兆位介质独立接口(GMII)和介质独立接口(MII)的调解(Reconciliation)子层与SDH链路接入规程(LAPP)及SDH物理层之间的关系图
图5,本发明所提出的千兆位以太网与SDH适配的功能要素组成图
图6,本发明所提出的介质访问控制子层、LAPP链路层和物理层之间的原语关系图
图7,本发明所提出的以太网帧在PDH上运行的专用网举例
图8,本发明所提出的以太网帧在PDH上运行的公用网举例
图9,本发明所提出的以太网帧在PDH上运行的远端接入以太网交换机举例
下面,根据附图描述本发明的实施例。
本发明所提出的设想主要用于具有以太网/快速以太网/千兆以太网接口的核心交换路由器,边缘交换路由器,基于包交换的高低以太网端交换机,用户端以太网综合接入设备和与以太网有关的互连互通设备等。本发明的应用框架见图1,即本发明所提出的构想示意图,其中IEEE802.3/802.3u/802.3z分别表示以太网/快速以太网/千兆以太网,MAC表示介质访问控制,在MAC子层与PDH之间采用PDH链路接入规程(英文缩写LAPP),物理层采用准同步数字体系(PDH),主要包括各类高阶和低阶虚容器。在这个框架中,LAPP链路层向MAC子层提供的服务访问点只有一个,供以太网/快速以太网/千兆以太网的MAC帧使用。它们的服务访问点标识符(SAPI)是十进制数“28”。在MAC子层的整个MAC帧,在发送时作为原语的参数映射到LAPP链路层。在LAPP链路层,把映射下来的MAC帧作为LAPP的信息字段,其原来的大小和顺序不变;LAPP链路层采用不确认式信息传送服务(UITS),它与PDH物理层也通过相应的服务访问点用原语和参数交互。图2是本发明用于准同步数字体系传递以太网MAC帧的协议栈结构示意图,其中在LAPP以下,有两种放入虚容器的方法,一种是把LAPP帧放入PDH低阶通道,把低阶虚容器以比特间插的方式按PDH的码型复用进高阶通道,再按照光电传输段的顺序进行传送,在接收端则按相反的顺序提取出LAPP帧;另一种是把LAPP帧放入直接映设进高阶通道,再按照光电传输段的顺序进行传送,在接收端则按相反的顺序提取出LAPP帧。图3本发明组网的协议栈配置举例示意图,它表示以太网接口通过PDH接入另外一个以太网的进端和出端网关的协议栈配置,其中LLC表示逻辑链路控制子层,MAC表示介质访问控制子层,PDH表示准同步数字体系,LAN表示局域网,TCP表示传输控制协议,UDP表示用户数据报协议,IPX表示Novell网网络协议,“Ethernet Frameover PDH”表示以太网协议与准同步数字体系的融合,在网关处,同时配有PDH和MAC两类物理接口,而网络层仍然是Ipv4/Ipv6/IPX不变。图4是本发明所提出的用于千兆位介质独立接口(GMII)和介质独立接口(MID的调解(Reconciliation)子层与PDH链路接入规程(LAPP)及PDH物理层之间的关系图,其中,PDH表示准同步数字体系,AUI表示连接绑定单元接口,MDI表示介质独立接口,MII表示介质独立接口,GMII表示千兆位介质独立接口,PLS表示物理层信令,PCS表示物理编码子层,PMA表示,PMD表示物理介质依赖性(接口),在这一关系图中,MAC功能子层以下可以分别配置以太网/快速以太网/千兆以太网三类物理接口系列,而对于PDH侧,则通过LAPP对MAC子层和SDH物理层进行适配。图5描述的是本发明所提出的千兆位以太网与PDH适配的功能要素组成图,在其中,对于PDH侧,通过LAPP对MAC子层和PDH物理层进行适配,对于千兆位以太网,可采用双线或四线制电缆接口、单模光纤接口、多模光纤接口和非屏蔽双绞线接口。图6是本发明所提出的介质访问控制子层、LAPP链路层和物理层之间的原语关系图,LAPP提供一个服务访问点,其标识符值(SAPI)等于十进制数”28”供以太网/快速以太网/千兆以太网用,从MAC子层发送MAC帧到LAPP链路层,使用“DL-UNACK-DATA请求”原语,从LAPP链路层接收数据包到MAC子层,使用“DL-UNACK-DATA指示”原语;在LAPP链路层和物理层之间,从LAPP到物理层,使用“PH-DATA请求”原语建链,使用“PH-DATA指示”原语则表示由物理层向LAPP链路层发建链指示,从LAPP链路层发数据包到物理层,使用“PH-DATA请求”原语,从物理层接收数据包到LAPP链路层,使用“PH-DATA指示”原语。图7是本发明所提出的以太网帧在SDH上运行的专用网举例,其中ADM表示SDH传输设备的分插复用器,利用这一SDH环中的PDH通道,可以把两个10M/100M以太网2层交换机联接起来,一般说来,所选用的虚容器速率最好是不大于实际连接的以太网接口速率。图8是本发明所提出的以太网帧在SDH上运行的公用网举例,其中ADM表示SDH传输设备的分插复用器,利用这一SDH环中的PDH通道,可以把两个100M/1000M以太网3层交换机联接起来,一般说来,所选用的PDH通道的速率最好是大于实际连接的以太网接口速率。图9是本发明所提出的以太网帧在PDH上运行的远端接入以太网交换机举例,实际应用中,可把这一远端接入单元做在传输设备上,实现远端接入以太网交换机,其中ADM表示SDH传输设备的分插复用器。