套管井电测井方法.pdf

上传人:a*** 文档编号:131441 上传时间:2018-01-28 格式:PDF 页数:13 大小:462.97KB
返回 下载 相关 举报
摘要
申请专利号:

CN200980113846.3

申请日:

2009.08.20

公开号:

CN102066983A

公开日:

2011.05.18

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):G01V 3/20申请公布日:20110518|||实质审查的生效IPC(主分类):G01V 3/20申请日:20090820|||公开

IPC分类号:

G01V3/20; E21B47/00

主分类号:

G01V3/20

申请人:

V·措伊

发明人:

N·I·雷赫林斯基; V·措伊; P·A·布罗德斯基; A·S·喀什克; V·M·洛赫马托夫; S·N·利索维斯基

地址:

俄罗斯联邦莫斯科

优先权:

2009.01.26 RU 2009102185

专利代理机构:

永新专利商标代理有限公司 72002

代理人:

陈松涛;夏青

PDF下载: PDF下载
内容摘要

本发明涉及井的地球物理研究领域,可用于测定金属套管井周围岩层的电阻率。按照本发明的套管井的电测方法,采用五个电极的探头,其中三个测量电极沿着井的轴线依次等距离放置,另外两个电流电极在中心测量电极外侧并相对其对称分布,对电极依次供给恒定电流双极性矩形脉冲,每次供给电流后测量中心测量电极的电场电位与外侧测量电极之间一阶电位差分。对所有信号的数字量以相应方法进行处理、滤波,根据这些数字量的处理滤波后的数值,计算套管井周围岩层的电阻率。

权利要求书

1: 一种五电极探头套管井电测井方法, 采用五电极探头套管井电测井方法, 其中三个 测量电极沿着井的轴线依次等距离放置, 而在外侧相对于中心测量电极对称放置两个电流 电极, 向所述两个电流电极依次供给恒定电流双极性矩形脉冲, 每次供给电流变极后经过 一指定时间, 测量中心电场的电位和两个外侧测量电极之间的一阶电位差分 ; 在以上电子 测量信号的基础上, 测量井周围岩层的电阻率 ; 这些电信号是在由于两个电极的和作用, 而 使最终得到的两个外侧测量电极之间的电场电位差分等于零的条件下测得的 ; 其特征在 于: 当向两个电流电极之一供给电流时, 进行附加测量位于任一外侧量电极与中心电极之 间的一阶电位差分 ; 双极性脉冲的频率为 0.25 赫兹或低于 0.25 赫兹 ; 以数字化频率 5 赫兹或高于 5 赫兹 来数字化电位、 及其一阶电位差分和两个电流电极的电流数值, 另外, 对一阶电位差分和电 流进行数字化的开始时间不早于电流变极后的 0.4 秒, 而对电位数字化的开始时间不早于 电流变极后的 0.4 秒 ; 将每个位于某一标号下的电流的双极性脉冲正半周期所有信号量子数值从位于相应 的标号下的负半周期的量子数值中减去 ; 每个获得的下面具有某一标号的电位及其一阶差分数字化的量除以具有相应的标号 的电流无量纲的模 ; 将获得的所有数字化后的电位差分和根据电流值的模规格化后的电位及其一阶差分 值的数值组通过高频滤波器进行滤波, 借此使热噪声、 大地电流和超标严重的量的影响降 为最低 ; 对每一个滤波后的电位值及其一阶电位差分值的数据组和电流值的数据组分别进行 求和后再取平均值, 利用上述的两个平均值根据以下公式计算井周围岩层的电阻率 ρn : 式中 : ΩZ 是探头外侧测量电极 M1 和 M2 之间的井段的电阻率 ; k 是会聚参数, 其确定的条件是探头外侧测量电极间的规格化电位差分的合成后的结 果必须为零, 其计算方程如下 : UN(IA1)、 UN(IA2) 是探头中心测量电极经过数字滤波和求平均值后得到的电位, 它们分 别取决于探头电流电极 A1 和 A2 的电流 ; ΔUM1N(IA1)、 ΔUM2N(IA2) 是由一个测量器测出的位于外侧测量电极 M1 和中心电极 N 之 间的经数字滤波和求平均值后的电场电位差分, 它们分别取决于探头电流电极 A1 和 A2 的 电流 ; ΔUM1M2(IA1)、 ΔUM2M2(IA2) 是由一个测量器测出的位于外侧测量电极 M1 和中心电极 M2 之 间的经数字滤波和求平均值后的电场电位差分, 它们分别取决于探头电流电极 A1 和 A2 的 电流 ; 2 IA1、 IA2 是探头电流电极 A1 和 A2 的电流 ; |IA1|、 |IA2| 是电流 IA1、 IA2 无量纲的模 ; k 是探头的几何参数。
2: 如权利要求 1 所述的套管井电测井方法, 其特征在于 : 通过数学网状模型来计算探 头的几何参数 k。

说明书


套管井电测井方法

    【技术领域】
     本发明属于井的地球物理研究领域, 可用于测定金属套管井周围岩层的电阻率。背景技术 现有的套管井电测井方法是采用对称的双极性五电极探头, 对电场电位及一阶、 二阶电位差分进行测量 (КашикА.С., РыхлинскийН.И. 等, 套管井电 测井方法, 专利号 2176802, 申请日 2001 年 2 月 20 日, 刊登在 2001 年第 34 期公报上 )。在 该方法中, 通过在探头的电流电极中保持恰好能使测量点出现电位极值的电流来消除由于 套管井单位长度的电阻不稳定而出现的测量误差。该方法的缺点是, 当向探头的电流电极 供给电流时, 由于电力电缆从接收电极的电线旁边通过, 从而在接收电路上引起诱导感应, 以至使套管周围岩层的电阻率的测量动态范围大大降低至 25Ω.m, 误差超过 10%。
     使用现有的采用对称的双极性五电极探头的套井管电测井方法 (КашикА. С., РыхлинскийН.И. 等, 套管井电测井方法, 专利号 2229735, 申请日 2003 年 4 月 22 日, 刊登在 2004 年第 15 期公报上 ), 虽然消除了诱导感应。但是, 在使用此种方法 时, 为了保持电位的极值, 需要通过范围为微毫伏特的有效信号对位于钻井仪器上自动模 拟调节器进行控制才能实现。 由于热噪声、 诱导感应、 大地电流、 接触电极电位等原因, 而使 有效信号远远低于干扰信号, 使得自动模拟调节器无法稳定工作, 从而难以达到控制的作 用。因此这种测量方法在实际上无法用于套管井的电测量。
     由此可见, 任何一种套有整体金属套管的井电测方法均是要在毫微伏特有效信号 的工作条件下进行的, 如果不抑制干扰信号, 则有效信号远远低于干扰信号。
     同时还可以看出, 上述所有测量方法都是建立在两组探头测量电极之间的二阶电 位差分的测量基础上, 第一方案是借助于由两个相同的电阻组成的电桥, 另一种方案是对 两组电位差单独测量, 然后将输出端上显示的两组测量读数相减。第二种方案仍然存在着 不足, 因为在技术上很难制造出两个具有相同且稳定的放大倍数的放大器, 该放大器适用 于二阶电位差分的差动测量。
     在两组测量电极间的基线保持恒定的情况下, 采用这些二阶电位差分的测量方法 对套管井进行电测量原则上是可行的。 但是由于套管井的电检测装置的测量电极装置具有 压紧结构, 套管的直径是易变的, 例如 : 由于打孔后的突起, 或者由于轧材的特殊工艺, 当电 极压紧直径改变时, 两组测量电极之间的距离可能会扩大到一厘米。由于套管的电阻率与 周围岩层的电阻率相差 107 倍甚至更多, 则在电位的二阶差分的差动测量中, 测量电极之间 的这些距离变化可能导致超过容许误差许多倍的误差。
     发明内容
     在本发明的方法中, 解决了在有效测量信号中去除这些干扰的问题, 随之将井周 围岩层的实际电阻率测定的动态范围提高 100Ω.m, 测量误差为 5%。
     这一技术效果通过以下方式获得 : 采用五电极探头套管井电测井方法, 其中三个测量电极沿着井的轴线依次等距离放置, 而在外侧相对于中心测量电极对称放置两个电流 电极, 向所述两个电流电极依次供给恒定电流双极性矩形脉冲, 每次供给电流变极后经过 一指定时间, 测量中心电场的电位和两个外侧测量电极之间的一阶电位差分 ; 在以上电子 测量信号的基础上, 测量井周围岩层的电阻率 ; 这些电信号是在由于两个电极的和作用, 而 使最终得到的两个外侧测量电极之间的电场电位差分等于零的条件下测得的。
     根据本发明, 当向两个电流电极之一供给电流时, 进行附加测量位于任一外侧测 量电极与中心电极之间的一阶电位差分 ;
     双极性脉冲的频率为 0.25 赫兹或低于 0.25 赫兹 ; 以数字化频率 5 赫兹或高于 5 赫兹来数字化电位、 及其一阶电位差分和两个电流电极的电流数值, 另外, 对一阶电位差分 和电流进行数字化的开始时间不早于电流变极后的 0.4 秒, 而对电位数字化的开始时间不 早于电流变极后的 1 秒 ;
     将每个位于某一标号下的电流的双极性脉冲正半周期所有信号数字化值从位于 相应的标号下的负半周期的数字化值中减去 ;
     每个获得的下面具有某一标号的电位及其一阶差分数字化的量除以具有相应的 标号的电流无量纲的模。
     将获得的所有数字化后的电位差分和根据电流值的模规格化后的电位及其一阶 差分值的数值组通过高频滤波器进行滤波, 借此使热噪声、 大地电流和超标严重的量的影 响降为最低。
     对滤波后的电位值及其一阶电位差分值的数据组和电流值的数据组电流值分别 进行求和后再取平均值, 利用上述的两个平均值根据以下公式计算井周围岩层的电阻率 ρn :
     式中 :Ωz 是探头外侧测量电极 M1 和 M2 之间的井段的电阻率 ;
     k 是会聚参数, 其确定的条件是探头外侧测量电极间的规格化电位差分的合成后 的话结果必须为零, 其计算方程如下 :
     UN(IA1)、 UN(IA2) 是探头中心测量电极经过数字滤波和求平均值后得到的电位, 它 们分别取决于探头的第一和第二电流电极 A1 和 A2 的电流 ;
     ΔUM1N(IA1)、 ΔUM2N(IA2) 是由一个测量器测出的位于两个外侧测量电极 M1 和中心 电极 N 之间的经数字滤波和求平均值后的电场电位差分, 它们分别取决于探头的第一和第 二电流电极 A1 和 A2 的电流 ;
     ΔUM1M2(IA1)、 ΔUM2M2(IA2) 是由一个测量器测出的位于两个外侧测量电极 M1 和 M2 之 间的经数字滤波和求平均值后的电场电位差分, 它们分别取决于探头电流电极 A1 和 A2 的 电流 ;
     IA1、 IA2 是探头电流电极 A1 和 A2 的电流 ;
     |IA1|、 |IA2| 是电流 IA1、 IA2 无量纲的模 ;
     k 是探头的几何参数。
     在套管井电测井技术中, 根据本发明的内容, 探头的几何参数 k 是通过数学网状 模型计算出的, 从而也获得了技术效果。 附图说明 具体实施方式
     图 1 示出了实现本发明方法的设备的框图, 其中, 1 是套管, 2 是井周围的岩层, 3-M1 和 4-N 是两个电极间一阶电位差分测量传感器电极, 3-M1 和 5-M2 是两个电极间一阶 电位差分测量传感器电极, 6-A1 和 7-A2 是位于测量电极边界外相对于中心测量电极 N 对称 放置的探头电流电极, 8 是一阶电位差分的数字测量器, 其输入端与外侧测量探头测量电极 M1 及 M2 相连接, 9 是一阶电位差分的数字测量器, 其输入端与探头外侧测量电极 M1 及探头 中心测量电极 N 相连接, 10 是探头中心测量电极 N 的电位数字测量器, 也是位于套管 1 最上 端的测量电极 17-Nуд 的测量器, 11 和 13 是探头电流电极 6-A1 和 7-A2 电路上的分流器, 其作用是测量流经这些电极的电流强度, 12 和 14 是流经电极 6A1 和 7-A2 的电流数字测量 器, 15 是由有阳光的地面操控的探头电流电极 6-A1 和 7-A2 的电流换向器, 16 是通过电缆 从数字测量器 8, 9, 10, 12, 14 输出端向地面电子设备 21 远距离输送测量数据的电子钻井设 备, 18 是恒电流双极性矩形脉冲的地面电源, 以大约 5 安培的电流强度向探头电流电极供 电, 19 是地面编程设备, 用于对电流转换器 15 和向电流电极 6-A1 和 7-A2 供给电流进行控 制, 20 是接到地面任意点的返回电流电极 B, 22 是钻井设备控制处理器, 用于处理和滤波所 有测量信号并计算出井周围岩层的电阻率。 模拟数字转换器在该实施例中的实际数字化频 率为 5 赫兹, 23 是用于从电位测量器 10 的输入端连接远处电极 Nуд( 套管口 ) 的电缆芯 线, 24 是电缆电流芯线, 25 是用于从电子钻井设备 16 向地面电子装置输送数字测量信号的 电缆芯线。 图 2-a 示出了当外侧电极 M1 和 M2 之间一阶电位差分 ΔU(IA1, IA2) 为零时, 电流 电极 A1 和 A2 间的电流分布图。图 2-б 示出了沿套管由来自电流电极 A1 的工作电流 IA1 产生的电位分布图。图 2-B 示出了沿套管由来自电流电极 A2 的工作电流 IA2 产生的电位分 布图, 该电位分布是在考虑到确定绘制比例的会聚参数 k, 并且是根据在两个外侧测量电极 M1 和 M2 间的一阶电位差分 ΔU(IA1, IA2) 等于零的条件下计算出的。
     通过以上情况可以看出, 任何一种整体金属套管电测井方法都是用于有效信号在 毫微伏特范围内的工作环境, 远远低于以下其他各种干扰 : 由于套管内直径的改变而使得 探测器测量电极间的距离发生改变出现的干扰, 由于以上电极压紧接触杆倾角的改变而产 生的干扰 ; 由于套管单位长度的可变电阻而产生的干扰 ; 由于对探头电流电极供电不稳定 所产生的干扰, 其原因是供给电源无法满足对毫微伏特范围内的工作进行稳定的供给, 或 者是由于电路电阻不稳定 ; 由于探头电流电极供电线路的诱导感应而产生的干扰 ; 由于接 触的电极电位而产生的干扰 ; 热激干扰 ; 大地干扰 ; 随机出现的脉冲干扰。
     为了避免上述干扰, 待测量电位、 一阶电位差分和两电流电极的电流都是根据数 字化频率 5 赫兹或以上而确定的。
     为了成功地从热激干扰、 大地干扰和其他随机的干扰中过滤出有效信号, 需要对
     探头电流电极供给高频率的电流, 但由于诱导电感的影响, 不得超过 0.25 赫兹。为了消除 因电流线路与测量线路重叠而引起的诱导感应的失真影响, 优选的是, 通过符号变更的恒 电流矩形脉冲来实现对探头电流电极的供给, 所述的诱导电感干扰, 在恒电流矩形脉冲变 极后过一段时间会消失。在这种情况下, 必须在与探头电流电极电流变极过程中有关的抽 样信号停止后, 再开始对测量电路上的信号进行测量和数字化 ( 需要指出的是, 数字化频 率为 5 赫兹和交流电符号变更矩形脉冲的频率为 0.25 赫兹时, 在每一个电流矩形脉冲里均 匀分配 10 个数字量 )。电流变极与一阶电位差分测量开始点之间的时间间隔, 如试验研究 所显示那样, 取决于互相重叠的电流线路和测量线路的长度。测量一阶电位差分的间隔不 低于 0.4 秒 ( 相当于两个数字化量的频率不超过 5 赫兹 ), 由于一阶电位差分的电流线路和 测量线路的重叠的距离总共只有几米, 这个距离等于一阶电位差分的测量线路的长度。为 避免诱导电感失真对一阶电位差分测量结果的影响, 不使用来自这两个数字化量的信息。
     在测量电位时, 这一间隔已经不小于 1 秒 ( 与同样的数字化频率为 5 赫兹时的两 个数字量相符合 ), 因为在这种情况下, 电流线路与测量电路在相距几千米的间隔内重叠, 即连接测井仪器与地面设备的测井电缆的总长度。由此, 双极性矩形脉冲的最佳频率为 0.25 赫兹或更低。 为了消除探头电极的接触电位, 需要将电流双极性脉冲的正半周期范围内的具有 某个下标编号的所有信号中的每一个数字量从负半周期范围内的具有相应下标编号的数 字量中减去。
     为了将供给电流电极的电流的不稳定影响降至最低, 需要将每一个所得到的具有 某个下标编号的电位及其一阶和一阶电位差分的数字化数值的差分值除以 ( 规格化 ) 具有 相应下标编号的电流数字化数值的无量纲的模。
     由于高导电率套管对探头的屏蔽作用, 而使二阶电位差分放大器的输入端的二阶 电位差分信号降至毫微伏特, 因此必须设法去掉干扰中最强的一种, 即热激干扰, 对此, 可 以通过对被测量的信号数字量进行高频滤波。
     将所获得的所有的数字化的差分和根据电流模规格化的电位差及其一阶和二阶 电位差分值的数值组借助高频滤波器使热噪声、 大地电流及其他严重超标数值的影响降到 最低。高频滤波的方法如下 : 从每一个频率为 0.25 赫兹的循环中分离出差分的和按照具 有相同下标编号的电流值的模进行规格化的数值, 然后例如通过确定中线的方法进行滤波 (Г.Корн, Т.Корн. 数学参考, 《科学》 , 莫斯科, 1974,545 页 [3])。在经所述的滤 波后, 凡属于同一下标编号的电位及其一阶差分和电流始终按照同一个滤波量, 所述的电 位及其一阶差分和电流不取决于电流矩形脉冲供电循环的数目。
     然后将留下滤波后的电位数值及其一阶电位差电流数值分别地求和, 再求平均 数, 就是将得到的总数的和除以被求和的数值的个数。
     现在研究一下如何去除套管电阻不稳定性的失真影响的原理。
     在解决石油天然气勘探作业电测法中, 把研究的介质近似为沿坐标轴 Z 和 R 两维 变化的实体。同时井并不是一个理想的线性电极, 即沿着坐标轴 Z 的, 外侧测量电极间的线 电阻 ΩZ 是不固定的 (ΩZ ≠ const), 两段之间的线电阻可能相差几倍。
     将电源放入井中的 A 点, 通过该电源向所研究的向介质供给电流 I 来确定电位沿 井的轴线分布。
     在 [1] 中给出,只有的当 Ωr/ΩZ >> 1 时, Jr(z) = U(z)/Ωr (2)
     式中 :
     U(z) 是坐标为 Z 的井内观测点上的电位
     IZ(z) 是流过同一坐标 Z 的井的横截面的电流
     Jr(z) 是从井壁流向周围岩层的单位距离深度上的电流 ( 电流线性密度为 A/M)
     Ωr 电流 Jr(z) 流过的介质所表现出的电阻
     ΩZ( 如上所述那样 ) 是外侧测量电极间的井段轴向的电流电阻, 由于井的几何参 数和其他参数的易变性, 其值是坐标 Z 的函数。
     在 Z 点从井中划分出一段中间观察点的一段高度为 ΔZ 的圆柱体, 该 Z 点是圆柱 的中心, 并且是观测点 ( 中心测量电极 N), 对于这一段圆柱的封闭表面应用电流密度向量 的连续性方程积分的形式,
     即: S 表面由圆柱的底 Sp、 Sq 和其侧面 Sb 的表面组成, 方程式 (3) 左边表示三个通量之和:
     根据方程式 (3), 得出 : IZ(z+Δz/2)-IZ(z-Δz/2)+Jr(z)·Δz = o(Δz) (4) ΔIZ(z)/Δz = -Jr(z)+o(1) 并且在范围 Δz → 0 的条件下 从:将表达式 (1) 对 Z 求导数, 考虑到 Ωz 是套管井体的电阻的函数, 在实际的井中, 该电阻随座标 Z 的改变而变化, 即 ΩZ = ΩZ(z) ≠ const :
     将等式 (2) 和 (5) 代入等式 (6) 中, 获得电源电位沿井的轴线的分布的方程, 在该 方程中含有沿着井的轴线变化的电阻 ΩZ[1]
     对等式 (7) 分析表明, 测量电位及其二阶导数由于等式中有 dΩZ/dz 项而无法确 定所求的比值 ΩZ/Ωr, dΩZ/dz 强烈地依赖于井体电阻易变性。
     在电测井方法 [1] 中, 单位套管体电阻的不固定性实际上对测量结果不会产生影 响, 该方法的特点是, 由于采用相应技术措施和手段, 使得沿井的轴线线的电位分布曲线在 测量电极区内获得极值 ( 在坐标 Z = ZN 区域 ), 即 dU(ZN)/dz = 0。随之, 从方程式中消除 了包含有不确定大小的成分 dΩZ/dz, 这一方程式在点 Z = ZN 处采用以下的形式 :
     由此求出 :根据方程式 (9), 通过测量外侧测量电极间圆柱体段中的坐标为 ZN 上的电阻, 电 位、 及其二阶导数来计算井周围电阻 Ωr, 所述的坐标为 ZN 的点的 U(ZN) 具有极值。
     为了找到测量电极处电位极值的位置而要对位于中心电极 N( 测量点 ) 相同距离 的两个方向上的电源 A1 和 A2, 选取合适的电流, 使这两个电流值相对于 N 的 2 个对称电极
     M1 和 M2 的电位差为零, 即:
     在测量点 z = zN 处获得极值就意味着消除了井中电流 IZ(zN) 的轴向分量, 在用单 极性电源激发所研究的介质条件下, 这个轴向分量远高于径向分量 Jr(zN)。在实际中, 为了 测量电阻 Ωr, 而使用与该电位的二阶导数成正比的电位有限的二阶差分代替方程式 (9) 中 的二阶电位导数
     这种电测套管井的方法可以在电流会聚在信号的接收点上的条件下, 测量电阻 Ωr, 即如果在探头中心电极 N 点上能保证电场电位 U(z)(dUN/dz = 0) 维持极值的条件下。 根据公式 (9) 和 (10) 在确定套管井周围岩层的电阻率的基础上实现本发明的方根据欧姆定律, 在这一点上, 沿井的轴线线的电流密度的轴向分量为零
     法。
     上述的公式 (11) 必需在保证实现下述条件下才成立 : 保证由这对电流电极在外 侧测量电极 M1 和 M2 之间产生的一阶电位的差分 ΔU(IA1, IA2) 的合成后结果等于零伏特。 2
     式中 UN(zN) 和 Δ UN(zN) 分别是电极 N 的电场电位和外侧测量电极 M1 和 M2 之间 导电圆柱的区段上的电位二阶差分, 所述的电位和所述的电位的二阶差分是在这两个电极 间的合成过的一阶电位差分等于零伏特的条件下测得的。
     k 是探头的几何参数, 米
     在数字存储时, 由于探头电流电极供电电源的不稳定性, 必需考虑将被测信号的 数字量根据供给探头电流电极的相应的数字化量的模进行规格化, 这时需将公式 (11) 变 为:
     k 是会聚参数, 它是在必需保证探头的两个外侧测量电极间电位差的规格化后的 总和等于零的条件下根据方程 (13) 计算出的。
     式中 UN(IA1), UN(IA2) 分别取决于探头第一电流电极 A1 和第二电流电极 A2 的探头 的中心测量电极的电场的电位, 所述的两个电位是在对它们的数值滤波求和并取平均得到 的。
     ΔU(IA1), ΔU(IA2), Δ2U(IA1), Δ2U(IA2) 分别是电场一阶和二阶电位差分, 它们取 决于探头第一电流电极 A1 的电流和第二电流电极 A2 的电流, 是经过对滤波后的数值进行 求和及取平均获得的。
     IA1、 IA2 是探头电流电极 A1、 A2 的电流。
     |IA1|, |IA2| 是电流 IA1 和 IA2 无量纲的模, 是经过对滤波后的数值进行求和及求平 均获得的。
     k 是探头的几何参数。 ΩZ 是在探头的两个外侧测量电极之间测量的井段上的电阻。 探头外侧测量电极之间的井段上的电阻 ΩZ 通常通过公式 (14) 计算出电阻率 ρn 在具体实施中通过公式 (12) 计算出。正如上面已指出的那样, 推导这 一公式的前提条件是 : 流过测量电极 3-M1, 5-M2 之间的高传导率金属套管的总的轴向电流 分量等于零。 因此, 消除了套管电阻不稳定性对测量结果的失真影响, 中央处理器在对信号 进行处理后, 根据公式 (12) 计算岩精确的电阻率, 经数学模拟机的模拟确认无误。
     然而, 正如上面所指出的那样, 当套管周围岩层电阻率与套管的电阻率的比率为 107 或更高时 ( 实际中这样的比例关系总是存在 ), 两个测量电极间的二阶电位差分的差动 测量不论是用由两个具有相同电阻组成的桥 ; 还是用两个单独的测量器单独测量电位差, 然后再将输出端的两个读数相减 ; 这两种方法都不能达到测量所必须的精确度。因此应当 从公式 (12) 中消去包含二阶电位差分的项 Δ2U(IA1), Δ2U(IA2)。为此应利用图 2 和公式 (13), 从中得出 : 借助于参数 k,
     UM1(IA1) = k·UM2(IA2) (15)
     UN(IA1) = k·UN(IA2) (16)
     UM2(IA1) = k·UM1(IA2) (17)
     从公式 (12) 中消去含有二阶电位差分的 Δ2U(IA1), Δ2U(IA2) 的项 ( 为简化分析, 我们将 |IA1|, |IA2| 认定为一个单位 )。根据公式 (10)、 (15-17) 得出 :
     Δ2U(IA1)+k·Δ2U(IA2) =
     UM1(IA1)+UM2(IA1)-UN(IA1)-UN(IA1)+
     k·UM1(IA2)+k·UM2(IA2)-k·UN(IA2)-k·UN(IA2) = (18)
     2{[UM1(IA1)-UN(IA1)]+k·[UM1(IA2)-UN(IA2)]} =
     2[ΔUM1N(IA1) = k·ΔUM1N(IA2)] 为了计算电阻率 ρn, 根据公式 (18) 和 (12) 得到 :公式 (19) 对于测量电阻率 ρn 在参数上与公式 (12) 没有区别, 其本质的不同在 2 2 于: , 在公式 (19) 中差动第二测量电位差 Δ U(IA1), Δ U(IA2) 被替换为由同一测量器完 整测量的在外侧测量电极之一的 M1 和中心电极 N 之间的第一测量电位差分 ΔUM1N(IA1), ΔUM1N(IA2)。因此, 使电阻率 ρn 测量结果的准确性大大提高。在使用稳定性较高的探头电 流电极供给电源的条件下, 当 IA1 = IA2 = const 时, 将公式 (19) 简化为 :
     在 本 发 明 的 方 法 中, 探 头 几 何 参 数 k、 电 阻 率 ρn 和 依 本 方 法 生 产 的 设 备 的 读 数 之 间 的 线 性 区 域 的 计 算 是 借 助 网 状 数 学 模 型 完 成 的 (B.Друскин, Л.Книжнерман, 恒流电测井与电勘探方法, 苏联科学院简报, 《地球物理》 系列, ρn、 IA1、 IA2 1987 年第 4 期, 63-71 页 )[4], 将已知的 ΩZ、
     代入公式 (19) 中, 就可以计算出电位数值 UN(IA1), UN(IA2) 和电位差分 ΔUM1N(IA1), ΔUM1N(IA2), ΔUM1M2(IA1), ΔUM1M2(IA2)。
     按照本发明的方法制造的设备现已经过了井中试验, 在套管井电测井时电阻率 ρn 的误差不超过 5%。
    

套管井电测井方法.pdf_第1页
第1页 / 共13页
套管井电测井方法.pdf_第2页
第2页 / 共13页
套管井电测井方法.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《套管井电测井方法.pdf》由会员分享,可在线阅读,更多相关《套管井电测井方法.pdf(13页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN102066983A43申请公布日20110518CN102066983ACN102066983A21申请号200980113846322申请日20090820200910218520090126RUG01V3/20200601E21B47/0020060171申请人V措伊地址俄罗斯联邦莫斯科72发明人NI雷赫林斯基V措伊PA布罗德斯基AS喀什克VM洛赫马托夫SN利索维斯基74专利代理机构永新专利商标代理有限公司72002代理人陈松涛夏青54发明名称套管井电测井方法57摘要本发明涉及井的地球物理研究领域,可用于测定金属套管井周围岩层的电阻率。按照本发明的套管井的电测方法,采用。

2、五个电极的探头,其中三个测量电极沿着井的轴线依次等距离放置,另外两个电流电极在中心测量电极外侧并相对其对称分布,对电极依次供给恒定电流双极性矩形脉冲,每次供给电流后测量中心测量电极的电场电位与外侧测量电极之间一阶电位差分。对所有信号的数字量以相应方法进行处理、滤波,根据这些数字量的处理滤波后的数值,计算套管井周围岩层的电阻率。30优先权数据85PCT申请进入国家阶段日2010101986PCT申请的申请数据PCT/RU2009/0004212009082087PCT申请的公布数据WO2010/085170RU2010072951INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求。

3、书2页说明书8页附图2页CN102066993A1/2页21一种五电极探头套管井电测井方法,采用五电极探头套管井电测井方法,其中三个测量电极沿着井的轴线依次等距离放置,而在外侧相对于中心测量电极对称放置两个电流电极,向所述两个电流电极依次供给恒定电流双极性矩形脉冲,每次供给电流变极后经过一指定时间,测量中心电场的电位和两个外侧测量电极之间的一阶电位差分;在以上电子测量信号的基础上,测量井周围岩层的电阻率;这些电信号是在由于两个电极的和作用,而使最终得到的两个外侧测量电极之间的电场电位差分等于零的条件下测得的;其特征在于当向两个电流电极之一供给电流时,进行附加测量位于任一外侧量电极与中心电极之间。

4、的一阶电位差分;双极性脉冲的频率为025赫兹或低于025赫兹;以数字化频率5赫兹或高于5赫兹来数字化电位、及其一阶电位差分和两个电流电极的电流数值,另外,对一阶电位差分和电流进行数字化的开始时间不早于电流变极后的04秒,而对电位数字化的开始时间不早于电流变极后的04秒;将每个位于某一标号下的电流的双极性脉冲正半周期所有信号量子数值从位于相应的标号下的负半周期的量子数值中减去;每个获得的下面具有某一标号的电位及其一阶差分数字化的量除以具有相应的标号的电流无量纲的模;将获得的所有数字化后的电位差分和根据电流值的模规格化后的电位及其一阶差分值的数值组通过高频滤波器进行滤波,借此使热噪声、大地电流和超。

5、标严重的量的影响降为最低;对每一个滤波后的电位值及其一阶电位差分值的数据组和电流值的数据组分别进行求和后再取平均值,利用上述的两个平均值根据以下公式计算井周围岩层的电阻率N式中Z是探头外侧测量电极M1和M2之间的井段的电阻率;K是会聚参数,其确定的条件是探头外侧测量电极间的规格化电位差分的合成后的结果必须为零,其计算方程如下UNIA1、UNIA2是探头中心测量电极经过数字滤波和求平均值后得到的电位,它们分别取决于探头电流电极A1和A2的电流;UM1NIA1、UM2NIA2是由一个测量器测出的位于外侧测量电极M1和中心电极N之间的经数字滤波和求平均值后的电场电位差分,它们分别取决于探头电流电极A。

6、1和A2的电流;UM1M2IA1、UM2M2IA2是由一个测量器测出的位于外侧测量电极M1和中心电极M2之间的经数字滤波和求平均值后的电场电位差分,它们分别取决于探头电流电极A1和A2的电流;权利要求书CN102066983ACN102066993A2/2页3IA1、IA2是探头电流电极A1和A2的电流;|IA1|、|IA2|是电流IA1、IA2无量纲的模;K是探头的几何参数。2如权利要求1所述的套管井电测井方法,其特征在于通过数学网状模型来计算探头的几何参数K。权利要求书CN102066983ACN102066993A1/8页4套管井电测井方法技术领域0001本发明属于井的地球物理研究领域,。

7、可用于测定金属套管井周围岩层的电阻率。背景技术0002现有的套管井电测井方法是采用对称的双极性五电极探头,对电场电位及一阶、二阶电位差分进行测量,等,套管井电测井方法,专利号2176802,申请日2001年2月20日,刊登在2001年第34期公报上。在该方法中,通过在探头的电流电极中保持恰好能使测量点出现电位极值的电流来消除由于套管井单位长度的电阻不稳定而出现的测量误差。该方法的缺点是,当向探头的电流电极供给电流时,由于电力电缆从接收电极的电线旁边通过,从而在接收电路上引起诱导感应,以至使套管周围岩层的电阻率的测量动态范围大大降低至25M,误差超过10。0003使用现有的采用对称的双极性五电极。

8、探头的套井管电测井方法,等,套管井电测井方法,专利号2229735,申请日2003年4月22日,刊登在2004年第15期公报上,虽然消除了诱导感应。但是,在使用此种方法时,为了保持电位的极值,需要通过范围为微毫伏特的有效信号对位于钻井仪器上自动模拟调节器进行控制才能实现。由于热噪声、诱导感应、大地电流、接触电极电位等原因,而使有效信号远远低于干扰信号,使得自动模拟调节器无法稳定工作,从而难以达到控制的作用。因此这种测量方法在实际上无法用于套管井的电测量。0004由此可见,任何一种套有整体金属套管的井电测方法均是要在毫微伏特有效信号的工作条件下进行的,如果不抑制干扰信号,则有效信号远远低于干扰信。

9、号。0005同时还可以看出,上述所有测量方法都是建立在两组探头测量电极之间的二阶电位差分的测量基础上,第一方案是借助于由两个相同的电阻组成的电桥,另一种方案是对两组电位差单独测量,然后将输出端上显示的两组测量读数相减。第二种方案仍然存在着不足,因为在技术上很难制造出两个具有相同且稳定的放大倍数的放大器,该放大器适用于二阶电位差分的差动测量。0006在两组测量电极间的基线保持恒定的情况下,采用这些二阶电位差分的测量方法对套管井进行电测量原则上是可行的。但是由于套管井的电检测装置的测量电极装置具有压紧结构,套管的直径是易变的,例如由于打孔后的突起,或者由于轧材的特殊工艺,当电极压紧直径改变时,两组。

10、测量电极之间的距离可能会扩大到一厘米。由于套管的电阻率与周围岩层的电阻率相差107倍甚至更多,则在电位的二阶差分的差动测量中,测量电极之间的这些距离变化可能导致超过容许误差许多倍的误差。发明内容0007在本发明的方法中,解决了在有效测量信号中去除这些干扰的问题,随之将井周围岩层的实际电阻率测定的动态范围提高100M,测量误差为5。0008这一技术效果通过以下方式获得采用五电极探头套管井电测井方法,其中三个说明书CN102066983ACN102066993A2/8页5测量电极沿着井的轴线依次等距离放置,而在外侧相对于中心测量电极对称放置两个电流电极,向所述两个电流电极依次供给恒定电流双极性矩形。

11、脉冲,每次供给电流变极后经过一指定时间,测量中心电场的电位和两个外侧测量电极之间的一阶电位差分;在以上电子测量信号的基础上,测量井周围岩层的电阻率;这些电信号是在由于两个电极的和作用,而使最终得到的两个外侧测量电极之间的电场电位差分等于零的条件下测得的。0009根据本发明,当向两个电流电极之一供给电流时,进行附加测量位于任一外侧测量电极与中心电极之间的一阶电位差分;0010双极性脉冲的频率为025赫兹或低于025赫兹;以数字化频率5赫兹或高于5赫兹来数字化电位、及其一阶电位差分和两个电流电极的电流数值,另外,对一阶电位差分和电流进行数字化的开始时间不早于电流变极后的04秒,而对电位数字化的开始。

12、时间不早于电流变极后的1秒;0011将每个位于某一标号下的电流的双极性脉冲正半周期所有信号数字化值从位于相应的标号下的负半周期的数字化值中减去;0012每个获得的下面具有某一标号的电位及其一阶差分数字化的量除以具有相应的标号的电流无量纲的模。0013将获得的所有数字化后的电位差分和根据电流值的模规格化后的电位及其一阶差分值的数值组通过高频滤波器进行滤波,借此使热噪声、大地电流和超标严重的量的影响降为最低。0014对滤波后的电位值及其一阶电位差分值的数据组和电流值的数据组电流值分别进行求和后再取平均值,利用上述的两个平均值根据以下公式计算井周围岩层的电阻率N0015式中0016Z是探头外侧测量电。

13、极M1和M2之间的井段的电阻率;0017K是会聚参数,其确定的条件是探头外侧测量电极间的规格化电位差分的合成后的话结果必须为零,其计算方程如下00180019UNIA1、UNIA2是探头中心测量电极经过数字滤波和求平均值后得到的电位,它们分别取决于探头的第一和第二电流电极A1和A2的电流;0020UM1NIA1、UM2NIA2是由一个测量器测出的位于两个外侧测量电极M1和中心电极N之间的经数字滤波和求平均值后的电场电位差分,它们分别取决于探头的第一和第二电流电极A1和A2的电流;0021UM1M2IA1、UM2M2IA2是由一个测量器测出的位于两个外侧测量电极M1和M2之间的经数字滤波和求平均。

14、值后的电场电位差分,它们分别取决于探头电流电极A1和A2的电流;0022IA1、IA2是探头电流电极A1和A2的电流;0023|IA1|、|IA2|是电流IA1、IA2无量纲的模;说明书CN102066983ACN102066993A3/8页60024K是探头的几何参数。0025在套管井电测井技术中,根据本发明的内容,探头的几何参数K是通过数学网状模型计算出的,从而也获得了技术效果。附图说明具体实施方式0026图1示出了实现本发明方法的设备的框图,其中,1是套管,2是井周围的岩层,3M1和4N是两个电极间一阶电位差分测量传感器电极,3M1和5M2是两个电极间一阶电位差分测量传感器电极,6A1和。

15、7A2是位于测量电极边界外相对于中心测量电极N对称放置的探头电流电极,8是一阶电位差分的数字测量器,其输入端与外侧测量探头测量电极M1及M2相连接,9是一阶电位差分的数字测量器,其输入端与探头外侧测量电极M1及探头中心测量电极N相连接,10是探头中心测量电极N的电位数字测量器,也是位于套管1最上端的测量电极17N的测量器,11和13是探头电流电极6A1和7A2电路上的分流器,其作用是测量流经这些电极的电流强度,12和14是流经电极6A1和7A2的电流数字测量器,15是由有阳光的地面操控的探头电流电极6A1和7A2的电流换向器,16是通过电缆从数字测量器8,9,10,12,14输出端向地面电子设。

16、备21远距离输送测量数据的电子钻井设备,18是恒电流双极性矩形脉冲的地面电源,以大约5安培的电流强度向探头电流电极供电,19是地面编程设备,用于对电流转换器15和向电流电极6A1和7A2供给电流进行控制,20是接到地面任意点的返回电流电极B,22是钻井设备控制处理器,用于处理和滤波所有测量信号并计算出井周围岩层的电阻率。模拟数字转换器在该实施例中的实际数字化频率为5赫兹,23是用于从电位测量器10的输入端连接远处电极N套管口的电缆芯线,24是电缆电流芯线,25是用于从电子钻井设备16向地面电子装置输送数字测量信号的电缆芯线。0027图2A示出了当外侧电极M1和M2之间一阶电位差分UIA1,IA。

17、2为零时,电流电极A1和A2间的电流分布图。图2示出了沿套管由来自电流电极A1的工作电流IA1产生的电位分布图。图2B示出了沿套管由来自电流电极A2的工作电流IA2产生的电位分布图,该电位分布是在考虑到确定绘制比例的会聚参数K,并且是根据在两个外侧测量电极M1和M2间的一阶电位差分UIA1,IA2等于零的条件下计算出的。0028通过以上情况可以看出,任何一种整体金属套管电测井方法都是用于有效信号在毫微伏特范围内的工作环境,远远低于以下其他各种干扰由于套管内直径的改变而使得探测器测量电极间的距离发生改变出现的干扰,由于以上电极压紧接触杆倾角的改变而产生的干扰;由于套管单位长度的可变电阻而产生的干。

18、扰;由于对探头电流电极供电不稳定所产生的干扰,其原因是供给电源无法满足对毫微伏特范围内的工作进行稳定的供给,或者是由于电路电阻不稳定;由于探头电流电极供电线路的诱导感应而产生的干扰;由于接触的电极电位而产生的干扰;热激干扰;大地干扰;随机出现的脉冲干扰。0029为了避免上述干扰,待测量电位、一阶电位差分和两电流电极的电流都是根据数字化频率5赫兹或以上而确定的。0030为了成功地从热激干扰、大地干扰和其他随机的干扰中过滤出有效信号,需要对说明书CN102066983ACN102066993A4/8页7探头电流电极供给高频率的电流,但由于诱导电感的影响,不得超过025赫兹。为了消除因电流线路与测量。

19、线路重叠而引起的诱导感应的失真影响,优选的是,通过符号变更的恒电流矩形脉冲来实现对探头电流电极的供给,所述的诱导电感干扰,在恒电流矩形脉冲变极后过一段时间会消失。在这种情况下,必须在与探头电流电极电流变极过程中有关的抽样信号停止后,再开始对测量电路上的信号进行测量和数字化需要指出的是,数字化频率为5赫兹和交流电符号变更矩形脉冲的频率为025赫兹时,在每一个电流矩形脉冲里均匀分配10个数字量。电流变极与一阶电位差分测量开始点之间的时间间隔,如试验研究所显示那样,取决于互相重叠的电流线路和测量线路的长度。测量一阶电位差分的间隔不低于04秒相当于两个数字化量的频率不超过5赫兹,由于一阶电位差分的电流。

20、线路和测量线路的重叠的距离总共只有几米,这个距离等于一阶电位差分的测量线路的长度。为避免诱导电感失真对一阶电位差分测量结果的影响,不使用来自这两个数字化量的信息。0031在测量电位时,这一间隔已经不小于1秒与同样的数字化频率为5赫兹时的两个数字量相符合,因为在这种情况下,电流线路与测量电路在相距几千米的间隔内重叠,即连接测井仪器与地面设备的测井电缆的总长度。由此,双极性矩形脉冲的最佳频率为025赫兹或更低。0032为了消除探头电极的接触电位,需要将电流双极性脉冲的正半周期范围内的具有某个下标编号的所有信号中的每一个数字量从负半周期范围内的具有相应下标编号的数字量中减去。0033为了将供给电流电。

21、极的电流的不稳定影响降至最低,需要将每一个所得到的具有某个下标编号的电位及其一阶和一阶电位差分的数字化数值的差分值除以规格化具有相应下标编号的电流数字化数值的无量纲的模。0034由于高导电率套管对探头的屏蔽作用,而使二阶电位差分放大器的输入端的二阶电位差分信号降至毫微伏特,因此必须设法去掉干扰中最强的一种,即热激干扰,对此,可以通过对被测量的信号数字量进行高频滤波。0035将所获得的所有的数字化的差分和根据电流模规格化的电位差及其一阶和二阶电位差分值的数值组借助高频滤波器使热噪声、大地电流及其他严重超标数值的影响降到最低。高频滤波的方法如下从每一个频率为025赫兹的循环中分离出差分的和按照具有。

22、相同下标编号的电流值的模进行规格化的数值,然后例如通过确定中线的方法进行滤波,数学参考,科学,莫斯科,1974,545页3。在经所述的滤波后,凡属于同一下标编号的电位及其一阶差分和电流始终按照同一个滤波量,所述的电位及其一阶差分和电流不取决于电流矩形脉冲供电循环的数目。0036然后将留下滤波后的电位数值及其一阶电位差电流数值分别地求和,再求平均数,就是将得到的总数的和除以被求和的数值的个数。0037现在研究一下如何去除套管电阻不稳定性的失真影响的原理。0038在解决石油天然气勘探作业电测法中,把研究的介质近似为沿坐标轴Z和R两维变化的实体。同时井并不是一个理想的线性电极,即沿着坐标轴Z的,外侧。

23、测量电极间的线电阻Z是不固定的ZCONST,两段之间的线电阻可能相差几倍。0039将电源放入井中的A点,通过该电源向所研究的向介质供给电流I来确定电位沿井的轴线分布。说明书CN102066983ACN102066993A5/8页80040在1中给出,0041只有的当R/Z1时,JRZUZ/R20042式中0043UZ是坐标为Z的井内观测点上的电位0044IZZ是流过同一坐标Z的井的横截面的电流0045JRZ是从井壁流向周围岩层的单位距离深度上的电流电流线性密度为A/M0046R电流JRZ流过的介质所表现出的电阻0047Z如上所述那样是外侧测量电极间的井段轴向的电流电阻,由于井的几何参数和其他参。

24、数的易变性,其值是坐标Z的函数。0048在Z点从井中划分出一段中间观察点的一段高度为Z的圆柱体,该Z点是圆柱的中心,并且是观测点中心测量电极N,对于这一段圆柱的封闭表面应用电流密度向量的连续性方程积分的形式,0049即0050S表面由圆柱的底SP、SQ和其侧面SB的表面组成,方程式3左边表示三个通量之和0051005200530054根据方程式3,得出0055IZZZ/2IZZZ/2JRZZOZ40056IZZ/ZJRZO1并且在范围Z0的条件下0057从0058将表达式1对Z求导数,考虑到Z是套管井体的电阻的函数,在实际的井中,该电阻随座标Z的改变而变化,即ZZZCONST00590060将。

25、等式2和5代入等式6中,获得电源电位沿井的轴线的分布的方程,在该方程中含有沿着井的轴线变化的电阻Z10061说明书CN102066983ACN102066993A6/8页90062对等式7分析表明,测量电位及其二阶导数由于等式中有DZ/DZ项而无法确定所求的比值Z/R,DZ/DZ强烈地依赖于井体电阻易变性。0063在电测井方法1中,单位套管体电阻的不固定性实际上对测量结果不会产生影响,该方法的特点是,由于采用相应技术措施和手段,使得沿井的轴线线的电位分布曲线在测量电极区内获得极值在坐标ZZN区域,即DUZN/DZ0。随之,从方程式中消除了包含有不确定大小的成分DZ/DZ,这一方程式在点ZZN处。

26、采用以下的形式00640065由此求出00660067根据方程式9,通过测量外侧测量电极间圆柱体段中的坐标为ZN上的电阻,电位、及其二阶导数来计算井周围电阻R,所述的坐标为ZN的点的UZN具有极值。0068为了找到测量电极处电位极值的位置而要对位于中心电极N测量点相同距离的两个方向上的电源A1和A2,选取合适的电流,使这两个电流值相对于N的2个对称电极M1和M2的电位差为零,即0069在测量点ZZN处获得极值就意味着消除了井中电流IZZN的轴向分量,在用单极性电源激发所研究的介质条件下,这个轴向分量远高于径向分量JRZN。在实际中,为了测量电阻R,而使用与该电位的二阶导数成正比的电位有限的二阶。

27、差分代替方程式9中的二阶电位导数00700071这种电测套管井的方法可以在电流会聚在信号的接收点上的条件下,测量电阻R,即如果在探头中心电极N点上能保证电场电位UZDUN/DZ0维持极值的条件下。根据欧姆定律,在这一点上,沿井的轴线线的电流密度的轴向分量为零0072根据公式9和10在确定套管井周围岩层的电阻率的基础上实现本发明的方法。00730074上述的公式11必需在保证实现下述条件下才成立保证由这对电流电极在外侧测量电极M1和M2之间产生的一阶电位的差分UIA1,IA2的合成后结果等于零伏特。0075式中UNZN和2UNZN分别是电极N的电场电位和外侧测量电极M1和M2之间导电圆柱的区段上。

28、的电位二阶差分,所述的电位和所述的电位的二阶差分是在这两个电极间的合成过的一阶电位差分等于零伏特的条件下测得的。0076K是探头的几何参数,米0077在数字存储时,由于探头电流电极供电电源的不稳定性,必需考虑将被测信号的数字量根据供给探头电流电极的相应的数字化量的模进行规格化,这时需将公式11变为说明书CN102066983ACN102066993A7/8页1000780079K是会聚参数,它是在必需保证探头的两个外侧测量电极间电位差的规格化后的总和等于零的条件下根据方程13计算出的。00800081式中UNIA1,UNIA2分别取决于探头第一电流电极A1和第二电流电极A2的探头的中心测量电极。

29、的电场的电位,所述的两个电位是在对它们的数值滤波求和并取平均得到的。0082UIA1,UIA2,2UIA1,2UIA2分别是电场一阶和二阶电位差分,它们取决于探头第一电流电极A1的电流和第二电流电极A2的电流,是经过对滤波后的数值进行求和及取平均获得的。0083IA1、IA2是探头电流电极A1、A2的电流。0084|IA1|,|IA2|是电流IA1和IA2无量纲的模,是经过对滤波后的数值进行求和及求平均获得的。0085K是探头的几何参数。0086Z是在探头的两个外侧测量电极之间测量的井段上的电阻。0087探头外侧测量电极之间的井段上的电阻Z通常通过公式14计算出00880089电阻率N在具体实。

30、施中通过公式12计算出。正如上面已指出的那样,推导这一公式的前提条件是流过测量电极3M1,5M2之间的高传导率金属套管的总的轴向电流分量等于零。因此,消除了套管电阻不稳定性对测量结果的失真影响,中央处理器在对信号进行处理后,根据公式12计算岩精确的电阻率,经数学模拟机的模拟确认无误。0090然而,正如上面所指出的那样,当套管周围岩层电阻率与套管的电阻率的比率为107或更高时实际中这样的比例关系总是存在,两个测量电极间的二阶电位差分的差动测量不论是用由两个具有相同电阻组成的桥;还是用两个单独的测量器单独测量电位差,然后再将输出端的两个读数相减;这两种方法都不能达到测量所必须的精确度。因此应当从公。

31、式12中消去包含二阶电位差分的项2UIA1,2UIA2。为此应利用图2和公式13,从中得出借助于参数K,0091UM1IA1KUM2IA2150092UNIA1KUNIA2160093UM2IA1KUM1IA2170094从公式12中消去含有二阶电位差分的2UIA1,2UIA2的项为简化分析,我们将|IA1|,|IA2|认定为一个单位。根据公式10、1517得出00952UIA1K2UIA20096UM1IA1UM2IA1UNIA1UNIA10097KUM1IA2KUM2IA2KUNIA2KUNIA21800982UM1IA1UNIA1KUM1IA2UNIA2说明书CN102066983ACN。

32、102066993A8/8页1100992UM1NIA1KUM1NIA20100为了计算电阻率N,根据公式18和12得到01010102公式19对于测量电阻率N在参数上与公式12没有区别,其本质的不同在于,在公式19中差动第二测量电位差2UIA1,2UIA2被替换为由同一测量器完整测量的在外侧测量电极之一的M1和中心电极N之间的第一测量电位差分UM1NIA1,UM1NIA2。因此,使电阻率N测量结果的准确性大大提高。在使用稳定性较高的探头电流电极供给电源的条件下,当IA1IA2CONST时,将公式19简化为01030104在本发明的方法中,探头几何参数K、电阻率N和依本方法生产的设备的读数之间的线性区域的计算是借助网状数学模型完成的B,恒流电测井与电勘探方法,苏联科学院简报,地球物理系列,1987年第4期,6371页4,将已知的Z、N、IA1、IA20105代入公式19中,就可以计算出电位数值UNIA1,UNIA2和电位差分UM1NIA1,UM1NIA2,UM1M2IA1,UM1M2IA2。0106按照本发明的方法制造的设备现已经过了井中试验,在套管井电测井时电阻率N的误差不超过5。说明书CN102066983ACN102066993A1/2页12图1说明书附图CN102066983ACN102066993A2/2页13图2说明书附图CN102066983A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 测量;测试


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1