《防范无极灯区突水的光催化废水降解反应器扩容方法.pdf》由会员分享,可在线阅读,更多相关《防范无极灯区突水的光催化废水降解反应器扩容方法.pdf(26页珍藏版)》请在专利查询网上搜索。
1、10申请公布号CN103332818A43申请公布日20131002CN103332818ACN103332818A21申请号201310265051222申请日20130617C02F9/0820060171申请人李榕生地址315010浙江省宁波市海曙区联丰路169弄39号604室72发明人李榕生54发明名称防范无极灯区突水的光催化废水降解反应器扩容方法57摘要本发明涉及一种防范无极灯区突水的光催化废水降解反应器扩容方法,属于废水处理技术领域。现有的相关技术中,存在无极灯屏护用石英管管腔突水问题,以及,触媒流失、微波能量浪费、反应器单罐废水处理量偏小、降解终点难辨、触媒团聚无法及时觉察等等问。
2、题,本案针对上述系列问题。本案主要步骤包括在通向该石英管管腔的气路上以旁路方式接入一个用于常态低功耗低流量补充空气的微型隔膜泵;以金属笼收拢微波照射范围;扩展反应器尺寸;用多级过滤器逐级拦截触媒;用臭氧传感器监察反应进程,并用传感电讯号自动控制相关电源开关机构;自检团聚主诱因参数。51INTCL权利要求书2页说明书23页19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书23页10申请公布号CN103332818ACN103332818A1/2页21防范无极灯区突水的光催化废水降解反应器扩容方法,该方法的主要步骤如下A,用金属材质的笼状的微波约束器将位于石英管内的无极紫外灯包藏。
3、起来,使得无极紫外灯处于该笼状的微波约束器的内部,该笼状的微波约束器其整体的结构位置也是在所述石英管的内部,该石英管是用于气液物相隔离、发挥屏护作用的构件,该石英管位于反应器的内部,该笼状的微波约束器是一个笼形金属构件,该笼状的微波约束器其结构中遍布着的孔洞或网眼,该笼状的微波约束器的功能是将微波辐照空域约束在其内部,藉此在笼状的微波约束器的外壁与反应器的内壁之间构建微波弱辐照空域或微波零辐照空域;B,将源自磁控管的波导管探入所述石英管内,并将该波导管的探入石英管的那一端与所述笼状的微波约束器的内腔进行联通,所述联通指的是微波通道意义上的联接与贯通;C,将一个轮廓状似两端贯通的简易喇叭筒的循环。
4、引导器大头朝下地垂直安放在所述石英管的正下方,并使该循环引导器其大头喇叭口处于悬空状态,该循环引导器的功能是聚束来自微孔曝气头的含臭氧空气气泡的升腾路径,并借助因受聚束而强化的升腾的气泡流的拖拽力量来带领反应器内部液体作相对大尺度的循环运动;D,将微孔曝气头移入所述循环引导器其大头喇叭口边沿在反应器内腔底面铅垂投影所圈定的范围之内;E,在三维方向上延展、扩大反应器内部所述微波弱辐照空域或微波零辐照空域的尺寸;F,在反应器的外部架设增压泵,该增压泵用于增压泵送混有催化剂悬浮粒的降解反应之后的水,并将该增压泵的进水端与反应器的内腔进行联接;G,将所述增压泵的出水端与反冲洗式前置预过滤器的进水口进行。
5、联接,该反冲洗式前置预过滤器的滤孔孔径介于5微米与300微米之间;H,将所述反冲洗式前置预过滤器的净水出口经由第一个净水阀与反冲洗式中空纤维膜微滤过滤器的进水口进行联接,该反冲洗式中空纤维膜微滤过滤器的滤孔孔径介于25纳米与1000纳米之间;I,将所述反冲洗式中空纤维膜微滤过滤器的净水出口经由第二个净水阀与反冲洗式中空纤维膜超滤过滤器的进水口进行联接,该反冲洗式中空纤维膜超滤过滤器的滤孔孔径介于15纳米与2纳米之间;J,将所述反冲洗式前置预过滤器的污水出口经由第一个污水阀与触媒浓浆过渡罐的内腔进行联接;K,将所述反冲洗式中空纤维膜微滤过滤器的污水出口经由第二个污水阀与触媒浓浆过渡罐的内腔进行联。
6、接;L,将反冲洗式中空纤维膜超滤过滤器的污水出口经由第三个污水阀与触媒浓浆过渡罐的内腔进行联接;M,在反应器尾气排放口位置架设臭氧传感器;N,将该臭氧传感器的取样管移近反应器尾气排放口或伸入反应器尾气排放口的内部;O,将该臭氧传感器其臭氧感应电讯号输出电路与臭氧含量显示器、臭氧警示器或臭氧含量显示器与臭氧警示器的复合机构进行联接;P,将该臭氧传感器其臭氧感应电讯号输出电路与电源控制器进行联接,该电源控制器是能够根据其所接收的所述电讯号进行电源开关动作的电源控制器;Q,将该电源控制器通过电缆与磁控管进行联接;R,将该电源控制器通过另一条电缆与空气泵进行联接;S,塑造该反应器内腔底面使其呈现由周边。
7、向中心区域逐渐洼陷的形貌,所述洼陷其坡度介于5度与35度之间;T,在该反应器内腔底面其洼陷最深处所对应的那部分反应器底壁的外侧面位置或内侧面位置安装一组超声波换能器,该一组超声波换能器至少含有一个超声波换能器个体;U,将该一组超声波换能器通过高频振荡电讯号传输电缆与高频振荡电讯号发生器进行联接;V,将PH探头透过反应器的顶部伸入反应器内腔,并用经粉末冶金工艺制成的笔帽状的微孔不锈钢套筒对该PH探头其伸入到反应器内腔的部分进行套装围护;W,将该PH探头与PH分析仪进行联接;X,将该PH分析仪与警报器进行联接,该警报器是用于对PH值超限状况发出警报;Y,在该笔帽权利要求书CN103332818A2。
8、/2页3状的微孔不锈钢套筒其敞口端与反应器顶部之间的接合部位楔入氟橡胶或硅橡胶材质的缓冲隔离垫;Z,将两对干簧式浮球液位控制器透过反应器的顶部伸入到反应器的内腔,将其中的一对干簧式浮球液位控制器通过一个继电器与向反应器内腔灌注废水的水泵其电源线缆进行联接,将其中的另一对干簧式浮球液位控制器通过另一个继电器与所述增压泵其电源线缆进行联接;AA,在该触媒浓浆过渡罐其内腔底部位置开凿触媒浓浆回流口,还将该触媒浓浆回流口经由管道并透过触媒浓浆回流阀与反应器的内腔进行联接,该触媒浓浆回流阀是用于开关控制该触媒回流通道的阀体,该触媒浓浆过渡罐是一个中空的罐体,该触媒浓浆过渡罐用于暂时存放所述过滤器其反冲洗。
9、程序所排放的触媒浓度比较高的水体;BB,用透波气密隔断板对该波导管其深入该反应器内腔的那部分进行气密性横断分隔,该透波气密隔断板是石英玻璃板、聚四氟乙烯板或致密烧结而成的陶瓷板,该透波气密隔断板其板平面与该波导管该横断分隔处的中轴线相互垂直;CC,在该空气泵与该石英管管腔之间的联接气路上以旁路方式接入一个微型隔膜泵,该微型隔膜泵其功率介于5瓦与50瓦之间,该微型隔膜泵其出气口工作压强介于1米水柱与5米水柱之间,该微型隔膜泵其出气量在每分钟1升与每分钟80升之间。2根据权利要求1所述的防范无极灯区突水的光催化废水降解反应器扩容方法,其特征在于,该笼状的微波约束器其材质是经过镜面抛光处理的不锈钢,。
10、以及,该笼状的微波约束器其孔洞或网眼的口径介于05厘米与30厘米之间。3根据权利要求2所述的防范无极灯区突水的光催化废水降解反应器扩容方法,其特征在于,该笼状的微波约束器是由镜面抛光不锈钢丝编织制成。4根据权利要求2所述的防范无极灯区突水的光催化废水降解反应器扩容方法,其特征在于,该笼状的微波约束器是由镜面抛光冲孔不锈钢板经模压、焊接或拼接工艺制成。5根据权利要求1所述的防范无极灯区突水的光催化废水降解反应器扩容方法,其特征在于,该笼状的微波约束器其外壁与所述石英管内壁相互紧贴或相互间距小于50厘米。6根据权利要求5所述的防范无极灯区突水的光催化废水降解反应器扩容方法,其特征在于,该笼状的微波。
11、约束器其外壁与所述石英管内壁相互紧贴。7根据权利要求1所述的防范无极灯区突水的光催化废水降解反应器扩容方法,其特征在于,该轮廓状似两端贯通的简易喇叭筒的循环引导器其材质是不锈钢。8根据权利要求1所述的防范无极灯区突水的光催化废水降解反应器扩容方法,其特征在于,该反冲洗式中空纤维膜超滤过滤器是由数量在一个以上的反冲洗式中空纤维膜超滤过滤器单体相互并联联接组成。9根据权利要求1所述的防范无极灯区突水的光催化废水降解反应器扩容方法,其特征在于,该反冲洗式中空纤维膜微滤过滤器是由数量在一个以上的反冲洗式中空纤维膜微滤过滤器单体相互并联联接组成。10根据权利要求1所述的防范无极灯区突水的光催化废水降解反。
12、应器扩容方法,其特征在于,该方法还包括以下步骤在所述反冲洗式中空纤维膜微滤过滤器其净水出口与所述反冲洗式中空纤维膜超滤过滤器的进水口的联接管路上,串接入第二个增压泵,该第二个增压泵用于增补水压以满足所述反冲洗式中空纤维膜超滤过滤器的进水压力需求。权利要求书CN103332818A1/23页4防范无极灯区突水的光催化废水降解反应器扩容方法技术领域0001本发明涉及一种防范无极灯区突水的光催化废水降解反应器扩容方法,属于C02F废水处理技术领域。背景技术0002微波光催化降解处理技术,作为一种有效的针对含有机污染物工业废水的无害化处理技术,近年来颇受关注。0003关于微波光催化降解技术,作为一例,。
13、可以参见公开号为CN102260003A的中国专利申请案。0004该公开号为CN102260003A的中国专利申请案,是以微波作为激发源,激发无极紫外灯发射紫外线,于液体内部照射掺有光催化剂二氧化钛的悬浮液,该无极紫外灯被石英管所笼罩保护着,有空气泵向该石英管内腔持续注入空气,由石英腔溢出的空气经由管道与位于反应器底部的微孔曝气头联通,该反应器内部的下方区域为曝气区,该反应器内部的上方区域是微波光催化反应区,该方案还以反应器内置的膜分离组件,来提析净化后的水,并以该膜分离组件实现光催化剂二氧化钛微粒的截留再用;该方案还在无极紫外光源与膜分离组件之间架设隔板,用于防止紫外线对有机质的膜分离组件的。
14、辐射损伤;通入反应器内部的空气,部分直接参与依托光催化剂二氧化钛的光催化降解反应,还有一部分空气,在紫外光的直接照射下,生成一定量的臭氧,该生成的臭氧当然也发挥着针对有机污染物的直接的氧化降解作用。0005该公开号为CN102260003A的中国专利申请案毫无疑问为微波光催化废水降解技术的进步起到了不可忽视的推动作用,其研发人员在该领域所展开的工作令人敬佩。0006基于由衷的敬佩之意,以及,共同的努力方向,我们下面要谈的是问题。0007以下将要谈到的问题,共有十六个;该十六个问题是并列的十六个问题;其排序的先后仅仅是出于论述便捷的考虑。0008问题之一0009该公开号为CN102260003A。
15、的中国专利申请案,其用于拦截催化剂二氧化钛微粒的膜分离组件是安置于反应器内腔,浸没在处理对象液体之中,并且依靠升腾的含臭氧气泡来冲刷膜分离组件,藉此除去其表面所吸附、滞留的催化剂微粒,达成催化剂微粒的回收、再利用目的,同时,膜分离组件也是依靠这个方式自洁并保持其分离能力,那么,基于该结构,只能选用商业用帘式中空纤维膜组件或平板膜组件,并且,该膜分离组件是需要浸泡在有臭氧气泡升腾的强氧化性的周遭环境中,因此,对膜分离组件的氧化耐受力必然有要求,普通材质的有机膜分离组件不能耐受这样的使用环境,故只能选用PVDF材质的膜分离组件,这一点已在该案公开文本第0009段文字以及权项3中清楚地表明;该种需要。
16、特殊的氧化耐受力的滤膜其材质成本较高,其市售价格当然也高于无氧化耐受力要求的普通有机微滤膜组件;换句话说,该案的结构方式,导致膜分离组件的材质被局限于较昂贵的PVDF材质。再有,装置内可能的紫外光泄露,可能触及有机膜组件,这也要求装置内的有机膜组说明书CN103332818A2/23页5件材质能够抵抗紫外光辐照,从这一点看,基于该装置的结构方案,有机膜分离组件的材质也只能被局限在较昂贵的PVDF材质。0010有机膜组件相较于陶制过滤组件,有其显而易见的优势;关于这一点,对于过滤技术专业的人士来说,是公知的,在这里不展开赘述。0011那么,在使用有机材质膜组件的前提之下,能否撇开这种PVDF滤膜。
17、材质局限呢这是一个需要解决的问题,此为问题之一。0012问题之二0013鉴于所述升腾气泡的冲刷力、清洁能力比较弱,因此,与该清洁方式配合使用的膜分离组件其孔径只能选用比较大的微滤级别的滤孔孔径,该微滤级别的滤孔孔径为0102微米,关于这一点,同样在该案公开文本第0009段文字以及权项3中有清楚的限定,该种滤孔孔径限定,从该案这样的膜分离组件的选型、内置且浸泡使用方式、升腾气泡自洁方法来看,是必然的,只能限定其滤孔孔径在微滤级别。换句话说,这种以升腾气泡冲刷的方式其冲刷力、清洁力太弱,以至于根本无法应对更小孔径的滤膜,所以说,在该案装置中,滤膜孔径限定在01微米02微米之间,是没有商量余地的必然。
18、选择。0014所谓0102微米的滤孔孔径,如果换一个计量单位,对应的就是100200纳米的滤孔孔径;那是什么概念呢以其下限的100纳米滤孔孔径来说,它所能拦截的催化剂微粒其尺寸必须是在100纳米以上,而小于100纳米的催化剂微粒是无法被拦截的;换句话说,小于100纳米的催化剂微粒将直接穿透、通过膜组件的滤孔,混入降解反应器所输出的所谓的净水之中。0015现在需要来谈谈紫外光催化降解反应所涉光催化剂的粒径以及光催化剂剂型选择。0016从事光催化降解研究的专业人士都知道,以紫外光激励的光化学降解反应,其催化剂多选用二氧化钛微粒催化剂;目前,在实验室水平上已经研发出品种繁多的基于二氧化钛光催化特性的。
19、光降解用微粒催化剂,当然,这些不同制备方式形成的光降解用催化剂,其粒径也是多样的;不同制备方法制成的光催化剂其粒径小至20纳米,大至100000纳米也即100微米,都有,其中不乏性能优异的光催化剂品种;但是,由于性能长期稳定性评价、制备成本以及市场拓展等等方面因素的制约,绝大多数的所述光催化剂其供应能力仅局限于实验室水平,而没有能够形成大规模市售的生产水平;目前周知的能够大量购买到的市售的能够实际大量使用的用于紫外光波段的光催化剂是著名的气相二氧化钛P25;气相二氧化钛P25其具体技术含义,业内人士都知道,在这里不展开赘述;气相二氧化钛P25的平均粒径是21纳米;气相二氧化钛P25性能不算最优。
20、,但是,其性能稳定,关键是可以在市场上大量购买得到,并可以在工业规模上大量使用,因此,光催化专业实验室里也常常用P25催化剂来作为衡量各种自制光催化剂催化性能的参照指针或对比指针,事实上,鉴于紫外光催化降解反应的特点,分散度越高的光催化剂,越是适合该型反应的需要,也就是说,平均粒径在21纳米左右的光催化剂其所能够提供的触媒界面面积、抗沉降能力、催化性能长期稳定性等等方面,综合而言,是最理想的。简单地讲,目前,价廉物美,能够实际大量购买、使用的现成的市售的商品级的紫外光波段的光催化剂,就是平均粒径为21纳米的气相二氧化钛P25催化剂;在工业规模的应用层面,这种平均粒径为21纳米的光催化剂是事实上。
21、的首选。说明书CN103332818A3/23页60017上文已述及,该公开号为CN102260003A的中国专利申请案,其用于拦截光催化剂的膜组件,是以升腾气泡的冲刷来剥离膜组件表面所吸附、沉积的催化剂微粒,然而,该种以升腾气泡冲刷的方式其冲刷力、清洁力太弱,以至于根本无法应对更小孔径的滤膜,因此,在该案装置中,滤膜孔径被限定在01微米02微米之间微滤滤孔级别,换个计量单位来说,在该案装置中,滤膜孔径被限定在100纳米200纳米之间的微滤滤孔级别,这是没有商量余地的必然选择;该案无可选择的100纳米200纳米之间的微滤滤孔当然无法拦截如上所述的平均粒径为21纳米的气相二氧化钛P25颗粒;那么。
22、,如果使用P25光催化剂,该催化剂将完全无法拦截,并流入所谓的净水中,形成二次污染,当然也造成催化剂的严重损失和无法再用;即便是使用其它品种的为此而特制的大粒径的二氧化钛光催化剂,其使用过程中因相互碰撞或与器壁碰撞,必然也会产生大量小粒径碎片,其中粒径小于100纳米的碎片,同样不能被100纳米200纳米之间的微滤滤孔所拦截,这些小碎片也会透过其膜组件进入所谓的净水之中,形成二次污染。0018可见,该公开号为CN102260003A的中国专利申请案,其针对光催化剂微粒的拦截结构方案以及相关膜组件的清洁方案都不理想。0019因此,如何在兼收并蓄该案优点的前提之下,达成针对光催化剂微粒的精细的拦截和。
23、回收再用,是一个很值得深思的重要课题,此为问题之二。0020问题之三0021我们知道,液态水体其本身也能够吸收微波的能量,并导致被处理的液态水体其本身的温升效应,而这种伴随废水处理过程而出现的温升效应,却不是我们所期待的情形,换句话说,来自磁控管的微波能量没有完全被用于激发无极紫外灯,而有相当一部分本应只用于激发无极紫外灯的微波能量被耗散于所述的温升效应,该种不受待见的温升效应造成了不必要的微波能量浪费,鉴于上述公开号为CN102260003A的中国专利申请案所展示的装置结构方案,其合理的途径,只能是通过减少微波光催化反应器的体积或者说减少单罐处理容量来来达成弱化微波多余耗散的目的,关于这一点。
24、,在该CN102260003A申请案其具体实施方式中清晰表达了关于该装置结构整体的适宜尺寸,其所表达的优选尺寸对应的就是一个外形很小的装置,那么,如此一来,反应器内壁与微波辐射源的距离小了,与微波接触的废水量小了,废水所吸收的微波能量相对也小了,与之相对应地,单罐的废水处理量因此也小了,更具体地说,其实施例中所表达的装置适宜尺寸所对应的内部容积是40升,也即单罐废水处理量是40升,即004立方,换句话说,其一次全套、全程操作只解决了004立方的工业废水,那么,就需要进行很多次的由首至尾的全套操作的重复,其处理量的累加才具有工业规模的意义,打个比方说,只是个大致的比方,该案其优选结构尺寸大致对应。
25、的单罐004立方这样的废水处理量,需要重复1000次的由首至尾的全套、全程操作,其累加量,才能达到40立方这样一个具有工业水平的的废水处理量,如此过度繁琐的重复操作将导致人力、物力的严重浪费,可见,该种由CN102260003A所展示的方案其实际的废水降解处理效率可能不能尽如人意。因此,如何在不造成更多微波能量浪费或减少微波能量浪费的前提下,增加单罐废水处理量,减少该间歇式废水处理装置的不必要的太多的由首至尾的重复操作次数,提高其废水处理效率,是一个有意义的值得关注的技术问题,此为问题之三。0022问题之四说明书CN103332818A4/23页70023该种由CN102260003A所展示的。
26、方案,其反应罐内部漫布升腾的气泡,对于推动反应罐内部液体的相对大尺度的循环运动,贡献稍显不足;当然,该不足之处,对于CN102260003A方案如其具体实施方式中清晰表达的事实上对应的小尺寸、小容量装置来说,几乎没有什么可观测的影响。从工业规模的应用需求来看,小尺寸的不能扩张处理量的装置当然没有多大的吸引力;那么,作为一种可能性,倘若有某种方式能够实现处理量的大幅扩张,此情形下,反应罐内部液体的相对大尺度的循环运动其重要性就会自然地凸显出来;设想一下这种处理量大幅扩张的可能性,那么,如何强化反应罐内部液体的相对大尺度的循环运动,当然就是个问题,此为问题之四。0024问题之五0025对于紫外光波。
27、段的光化学催化氧化反应来说,有以下这么几个要素会影响到该种氧化反应的效率,其一是紫外光波长、强度,其二是光催化剂的粒径、单位体积反应液中光催化剂的使用量、光催化剂其自身的催化性能等等,其三是被氧化对象即水体中有机物的浓度、有机物分子结构其自身所决定的氧化难易程度等等,其四是氧气气氛的充足程度,在其它条件相同的情况下,氧气气氛的充足程度,就会成为影响光化学催化氧化降解能力的一个举足轻重的要素。0026如CN102260003A所展示的方案,其安置于反应器内腔下部的众多微孔曝气头漫布在底部,并借由其所称的布水板,使得这种微孔曝气头漫布安排的效果变得更甚,当然,这对于使用相对容易沉降的大颗粒的微米级。
28、的光催化剂的情形而言,的确存在其有利的一面,但是,从另一面来看,这种微孔曝气头漫布安排的方式,氧气气氛的供给过于分散,而实际上最需要强化供氧的区域的是光化学催化氧化的最有效区域,由于短波紫外线在液态水体中的有效穿透深度只有20厘米左右,因此,最需要强化供氧以促进光化学催化氧化进程的有效区域实际上就是在石英管周边约20厘米距离之内的区域,换句话说,石英管周边约20厘米距离之内的区域是真正需要强化氧气气氛供给保障的区域,这个区域氧气气氛供给越强,氧化反应也就进行得越快;尤其特别地,以微波激励方式来产生无极紫外发射,其特点就是可以做到大功率、高强度,这是无极紫外灯这种灯型的强项,然而,正因为其紫外辐。
29、射的高功率、高强度,就更需要以强大的氧气气氛供给能力进行匹配,否则的话,那个强大的紫外辐射能力就真的是大部分被浪费了。上文已经述及,如CN102260003A所展示的方案,诸多因素限制了它的反应器尺寸,限制了它的实际处理容量,就如其具体实施例中清楚地表明的那样,那只能是一个单罐单次处理量只有40升左右的小反应器,在这样的小反应器、小内腔的情况下,因为尺寸本身就很小,那么,它在光化学催化氧化有效区域供氧集中度方面的欠缺,就不会那么明显,甚至可以忽略不计,更甚至完全可以看做是一个根本不存在的问题,面对那样的小尺寸的小反应器,关于供氧集中度方面的欠缺问题,根本就不可能浮上脑际;但是,设想一下,倘若能。
30、够克服所述诸多限制因素,倘若能够有办法实际构建一个大型、大处理量的反应器,那么上述石英管周边20厘米距离之内有效区域供氧强化问题就会凸现出来,尤其对于使用无极紫外灯作为紫外辐射源的情况,上述石英管周边20厘米距离之内有效区域供氧强化问题更加不容藐视,因此,如何在可能的大型无极紫外光催化氧化降解反应器的构建之中,增强所述有效区域的供氧集中度、提高废水降解设备的效能,就是个需要盯住的问题,此为问题之五。0027问题之六说明书CN103332818A5/23页80028该CN102260003A方案将空气泵入内含无极紫外灯的石英管之内,达成无极紫外灯的通风降温、冷却的目的,而那些流动经过石英管的空气。
31、,因受紫外线的照射,有一部分空气会转变为臭氧,因此,从石英管中流出的空气当然就是含有一些臭氧的空气,该方案将该含臭氧空气传输到位于反应器下方微孔曝气头,并从微孔曝气头释出,在这些含臭氧气泡自下而上的升腾过程中,其中所含的臭氧会与路程之中遇到的有机分子遭遇并发生氧化还原反应,这一氧化还原反应当然会消耗一部分臭氧,这是没有疑问的,但是,上文已经述及,如CN102260003A所展示的方案,必然存在的无法忽视的诸多的因素限制了它的反应器尺寸,限制了它的实际处理容量,就如其具体实施例中清楚地表明的那样,那只能是一个单罐单次处理量只有40升左右的小反应器,在这样的小反应器、小内腔的情况下,因为总体尺寸本。
32、身就很小,那么,其反应器内腔的纵向尺寸或者满打满算地视作盛液深度也只能是一个很小的尺寸,这个尺寸如其具体实施方式之中所清楚地表明的,只有大约40厘米,满打满算盛液深度也就只有40厘米,实际上盛液深度当然要小于这个数,就以40厘米的盛液深度来分析,那么,这个40厘米的盛液深度是个什么概念呢那就是说,含臭氧空气升腾通过废水的路径只有短短的40厘米,这个路径太短了,含臭氧空气气泡飞快地穿越仅仅只有40厘米深的水体,与水体接触时间太短了,气泡中所含的臭氧,只能有很小的一部分被用于氧化降解有机物,而大部分的臭氧实际上只是简单地路过液体,从液面上逸出并经尾气排放口排空,简单地说,这些臭氧的氧化作用潜力大部。
33、分被浪费了,并且,逸出的、被浪费的臭氧实际上会造成不必要的空气污染;本案主要发明人曾以普通家用臭氧机经由微孔曝气头向一米深的储水池中打入含臭氧空气,在水深深度达一米的情况下,仍然能够在水面附近明显嗅到臭氧的气味,可见,那种40厘米深的盛液深度,显然是不足以完全利用臭氧;可见,对于无极紫外光化学催化废水降解反应器这种类型的设备来说,臭氧利用不完全的问题也需要关注,显然,人们更期待的是臭氧利用更完全、污染性尾气排放更少的无极紫外废水降解反应器,此为问题之六。0029问题之七0030废水催化降解反应器其运作,需要消耗能量,因此,操作人员一定会希望,当废水降解反应进行到终点时,能够不偏不倚地、不过早也。
34、不过晚地即时地停止向反应器内部继续注入能量;停止注入能量的时刻倘若过早,则废水降解不完全;而如果早已达到反应终点,却仍然继续地向反应器内部注入能量,那毫无疑问是在浪费宝贵的能源。作为本案技术背景的CN102260003A方案其结构不能对废水降解反应终点时刻给出任何的即时的信息,那么,就只能靠经验来估计废水降解反应的终点;而靠经验来估计废水降解反应的终点,那显然不能令人满意;那么,如何针对废水降解反应终点时刻作出既不提前也无延迟的即时的信息输出,并在恰到好处的时刻即时地关闭对反应器的能量输入,就是一个不可藐视的技术门槛,此为问题之七。0031问题之八0032接受微波光催化降解处理的所述工业废水,。
35、其中难免夹杂一些缘自机械系统磨耗过程的金属微粒以及碳粒之类的物质,即便数量微小,其存在几乎难以避免,该公开号为CN102260003A的中国专利申请案中的所述有机质膜分离组件装设于微波光催化反应区,其中的装设在石英管与膜分离组件之间的用于阻隔紫外线的隔板当然阻挡不了微波,如此,微波的实际作用区域必然覆盖该方案中所述有机质膜分离组件所装设区域,基于膜分说明书CN103332818A6/23页9离组件的工作机制,如上所述的金属微粒以及碳粒之类的微粒其在膜分离组件有机质表层的积淀过程难以避免,而此类所述金属微粒以及碳粒之类的微粒,恰恰是微波能量的良好吸收介质,吸收了微波能量的积淀态的所述金属微粒以及。
36、碳粒之类的微粒,自然会对其紧贴的有机质膜分离组件的表层产生基于热透蚀机制的持续的洞穿破坏,如上所述,由于该CN102260003A申请案其装置的结构决定了只能选用聚偏氟乙烯膜材,该聚偏氟乙烯膜材耐温约140摄氏度,比一般膜材耐温确实高不少,然而,吸收了微波能量的积淀态的所述金属微粒以及碳粒之类的微粒其点状洞穿式的热透蚀作用十分容易突破该聚偏氟乙烯膜材的耐温温限,由于上述原因,可想而知,该CN102260003A申请案其装置中的PVDF膜材其实际使用寿命将大大低于所期待的理想的使用寿命,该CN102260003A申请案其装置的结构,决定了在该结构框架下,上述点状洞穿式的热透蚀破坏问题无法回避;因。
37、此,如何绕开该点状洞穿式的热透蚀破坏问题,亦需思量,此为问题之八。0033问题之九0034该公开号为CN102260003A的中国专利申请案,其说明书公开文本正文第0008段文字及权利要求第二项,对于其装置所能适用的催化剂粒径范围,有一个限定,该粒径范围限定为20纳米至100微米。我们知道,在某些PH值预先调节不到位、PH值不恰当的情况下,二氧化钛微粒容易发生团聚,进而影响其有效工作界面面积,影响其光催化效能;尤其对于该粒径范围之中的那些相对较小粒径的区段,更是容易出现因PH值预调不到位、PH值不恰当而导致的团聚问题;对于这种催化剂微粒团聚的情况,是必须即时地采取有效措施,进行针对团聚体的解聚。
38、运作;然而,我们在该CN102260003A方案之中,没有看到任何的有助于即时地化解这一问题的结构或能够即时地化解该问题的方案提示。对于如CN102260003A方案那般因诸多因素限制而只能是小尺寸结构的反应器,尚可以人工直接提起反应器,进行倾倒并在反应器外部检视、处理上述团聚情况,那么,倘若有可能扩张其容量,只是打个比方说,倘若是数个立方到数十个立方的大型反应器或巨型反应器,那显然不是手工倾倒其操作所能够对付的问题了,那么,对于这种催化剂微粒相互团聚的情况,如何实现即时原位处置,就是一个技术问题,此为问题之九。0035问题之十0036在该公开号为CN102260003A的中国专利申请案所表达。
39、的装置结构中,用于屏护无极紫外灯的石英管,其外壁,指的是石英管的外壁,经长时间的与被处理工业废水的接触,难免逐渐积垢,垢积的物质当然主要是不易被光催化反应所触动的无机类杂质,因该机制形成的积垢现象,在设备长时间运行之后很容易被观察到;附着于所述石英管外壁的垢积层,虽然只是薄薄的一层,也足以对无极紫外灯的紫外光辐射造成显著的阻挡,这将导致该微波光催化反应处理装置的实际处理效力大幅减小;其反应器内漫布升腾的气泡因过于分散,冲刷力量较弱,倘若仅依靠该比较分散的气泡来维持石英管表面的光洁,着实是勉为其难,换句话说,该比较分散的气泡,其较弱的冲刷力量尚不足以完全阻挡该石英管表面的积垢进程;在实验室尺度的。
40、使用过程中,上述积垢问题不易觉察,但是,在工业应用尺度上,该积垢问题毫无疑问将凸显出来;因此,如何在不拆机的前提下,即时、有效地清除该石英管外壁上的垢积层,维持该微波光催化处理装置的持续的高效率,该问题亦不可忽视,此为问题之十。0037问题之十一说明书CN103332818A7/23页100038此问题为上文述及的问题之九其所衍生的问题。前面谈到,在某些PH值预先调节不到位、PH值不恰当的情况下,二氧化钛微粒容易发生团聚,进而影响其有效工作界面面积,影响其光催化效能;尤其对于该CN102260003A方案论及的其所适用催化剂粒径范围之中的那些相对较小粒径的区段,更是容易出现因PH值预调不到位、。
41、PH值不恰当而导致的团聚问题;对于这种催化剂微粒团聚的情况,是必须即时地采取有效措施,进行针对团聚体的解聚运作;基于该CN102260003A方案其架构,操作人员无法即时觉察反应器内部发生所述团聚的情况,因而也无法作出即时的处置,由此,该受诸多因素限制而只能是小尺寸结构的反应器其有限的效能会进一步降低;因此,在反应器的应用运作之中,特别是,比方说,在可能的大型反应器或巨型反应器的应用运作之中,如何即时地觉知反应器内部催化剂微粒团聚的主要诱因参数,是一个关键问题,此为问题之十一。0039问题之十二0040基于该CN102260003A方案其架构,由于已经述及的诸多因素的限制,其反应器只能是小尺寸。
42、的处理量比较小的反应器,反应器内腔的可用尺寸当然也比较小,反应器内腔其结构之中能够用于安置帘式膜组件的空间高度大约也只是在30厘米左右,这样一来,即便只是采用很小幅面的帘式膜组件,也几乎只能上下两头顶着塞在反应器里面,由于反应器的小处理量、小尺寸,那么,在其降解反应完成之后,在由内向外排除液体的状况下,其帘式膜组件难免暴露在空气中,虽然每次暴露的时间可以不长,但是,经常倒腾的累加结果,就是使得该帘式膜组件过多地与空气接触,帘式膜组件其正常使用要求,是要在完全浸没状态下使用,也就是说,必须是湿态使用,倘若帘式膜组件过多地与空气接触,会使其比较快速地老化、性能比较快速地衰减,而这种帘式膜组件过多地。
43、与空气接触的情况,在该CN102260003A方案其架构之下,无法避免;因此,如何保护用于拦截催化剂的膜组件,使其能够在正常工况下使用,使其能够避免与空气的过多的接触,以维护其正常使用性能,确保其正常使用寿命,就是一个需要正视的问题,此为问题之十二。0041问题之十三0042基于该CN102260003A方案其架构,其运作之中,被帘式膜组件拦截的催化剂颗粒,一部分在帘式膜组件表面淀积,另一部分则滞留在液态物相之中,由此导致液态物相中催化剂颗粒浓度随着液相体积的逐步减小而逐步升高,这对后续的膜分离而言,其膜分离负荷也会随之逐渐升高,这种膜分离负荷前后差异过大的问题需要解决,此为问题之十三。004。
44、3问题之十四0044基于该CN102260003A方案其架构,其运作之中,向反应器内腔加注废水的水泵,其本身无法判别反应器内部水位高低,操作人员只能依靠经验或目测来及时关闭该加注废水的水泵电机,倘若经验失误或目测响应不够及时,很容易出现因废水加注过量而溢出反应器的情形,由此造成不必要的麻烦;另一方面,在降解反应结束之后,需要由内部经由帘式膜组件向外抽水,在未能知晓反应器内部水位的情况之下,完全就只能根据经验或目测来判定关停水泵的时机,而这样运作,明显不可靠,极易因经验失误或目测响应不及时,导致该抽水用水泵无法及时关机,而这种干抽、空转很容易造成该抽水水泵电机烧毁,该问题不能被忽视,此为问题之十。
45、四。0045问题之十五0046基于该CN102260003A方案其架构,其运作之中,向石英管腔泵入的空气,受紫外说明书CN103332818A108/23页11线照射,其中一部分会转化为臭氧,如此形成的含臭氧空气,大部分会被压送至微孔曝气头处进行释放,但是,我们知道,磁控管结构本身不具有真空气密性,并且,波导管与磁控管的连接处一般也不具有真空气密性,因此,具有相对正压力的所述含臭氧空气必然有一小部分会顺势地逆向窜入磁控管所在结构区域,而磁控管其结构构件材料包括其壳体材料一般而言也不具备抵御臭氧腐蚀的能力,那么,如此一来,逆向窜入磁控管结构区域的含臭氧空气必然形成对磁控管构件的腐蚀作用,该腐蚀作。
46、用的威力在实验室尺度的短时间内可能不易觉察,然而,时间稍长,定然显现,该含臭氧空气逆向窜流并腐蚀磁控管构件的问题,不能被回避,此为问题之十五。0047问题之十六0048基于该CN102260003A方案其架构,无极紫外灯是安置在石英管的管腔之内,为了确保该无极紫外灯的正常发光工作,该石英管其内壁必须保持洁净以维持对紫外光的通透性能,并且,基于类似的光通透性方面的要求,所涉无极紫外灯其自身的灯壁外侧面也必须保持洁净;但是,该CN102260003A方案其架构很难避免该石英管管腔区域发生突水问题;本案所称突水,指的是反应器内的水不受待见地突入到该石英管的管腔区域;造成该突水状况的原因大致上有以下这。
47、么两个其一是石英管管腔区域空气热胀冷缩导致石英管管腔区域欠压,其二是石英管管腔区域空气逃逸而致石英管管腔区域欠压,如此,在周围水体的相对正压力的推动之下,反应器内的水逐步突入该石英管的管腔区域,形成突水状况;在空气泵断电且石英管外侧面部分被水浸没或大部被水浸没的情况下,尤其容易发生所述突水状况;具体地讲,该突水问题最容易发生的时段,是以下两个时段,第一个时段是向反应器内加注待处理废水而空气泵尚未启动之时,第二个时段是空气泵关闭之后而净水提取程序尚未完成之时;当所述突水状况出现时,突入该石英管管腔的夹杂着许多无机杂质的水很容易污染该石英管管腔内壁以及无极紫外灯其自身的灯壁外侧面,导致相关透光结构。
48、部位其紫外光透过率大幅降低,进而影响相关废水降解反应器的总体的废水光降解处理效能,因此,该突水问题不宜回避,此为问题之十六。发明内容0049本发明所要解决的技术问题是,以CN102260003A方案为技术背景,针对上文述及的该技术背景方案其所存在的问题之一、二、三、四、五、六、七、八、九、十、十一、十二、十三、十四、十五、十六,研发一种能够一揽子地解决该系列问题的新方法。0050本发明通过如下方案解决所述技术问题,该方案提供一种防范无极灯区突水的光催化废水降解反应器扩容方法,该方法的主要步骤如下A,用金属材质的笼状的微波约束器将位于石英管内的无极紫外灯包藏起来,使得无极紫外灯处于该笼状的微波约。
49、束器的内部,该笼状的微波约束器其整体的结构位置也是在所述石英管的内部,该石英管是用于气液物相隔离、发挥屏护作用的构件,该石英管位于反应器的内部,该笼状的微波约束器是一个笼形金属构件,该笼状的微波约束器其结构中遍布着的孔洞或网眼,该笼状的微波约束器的功能是将微波辐照空域约束在其内部,藉此在笼状的微波约束器的外壁与反应器的内壁之间构建微波弱辐照空域或微波零辐照空域;B,将源自磁控管的波导管探入所述石英管内,并将该波导管的探入石英管的那一端与所述笼状的微波约束器的内腔进行联通,所述联通指的是微波通道意义上的联接与贯通;C,将一个轮廓状似两端贯通的简易喇叭筒的循说明书CN103332818A119/2。
50、3页12环引导器大头朝下地垂直安放在所述石英管的正下方,并使该循环引导器其大头喇叭口处于悬空状态,该循环引导器的功能是聚束来自微孔曝气头的含臭氧空气气泡的升腾路径,并借助因受聚束而强化的升腾的气泡流的拖拽力量来带领反应器内部液体作相对大尺度的循环运动;D,将微孔曝气头移入所述循环引导器其大头喇叭口边沿在反应器内腔底面铅垂投影所圈定的范围之内;E,在三维方向上延展、扩大反应器内部所述微波弱辐照空域或微波零辐照空域的尺寸;F,在反应器的外部架设增压泵,该增压泵用于增压泵送混有催化剂悬浮粒的降解反应之后的水,并将该增压泵的进水端与反应器的内腔进行联接;G,将所述增压泵的出水端与反冲洗式前置预过滤器的。