RFID标牌薄膜压纹制造技术.pdf

上传人:1****2 文档编号:1275497 上传时间:2018-04-11 格式:PDF 页数:37 大小:1.65MB
返回 下载 相关 举报
摘要
申请专利号:

CN200680048813.1

申请日:

2006.12.14

公开号:

CN101346735A

公开日:

2009.01.14

当前法律状态:

驳回

有效性:

无权

法律详情:

发明专利申请公布后的驳回IPC(主分类):G06K 19/077申请公布日:20090114|||实质审查的生效|||公开

IPC分类号:

G06K19/077; G01V15/00; H01L23/498; B29C43/00; B29C45/14; B32B37/04; B42D15/10; H01L21/02

主分类号:

G06K19/077

申请人:

艾利丹尼森公司

发明人:

S·W·弗格森; A·梅拉比; R·梅拉比

地址:

美国加利福尼亚州

优先权:

2005.12.21 US 11/314,988

专利代理机构:

北京纪凯知识产权代理有限公司

代理人:

赵蓉民

PDF下载: PDF下载
内容摘要

一种芯片(20)或其它电组件被嵌入在衬底(32)中。所述衬底(32)可以是热塑性材料,其能够在所述芯片周围变形并至少部分包围所述芯片。电磁辐射如近红外辐射可以被用于加热所述衬底。所述衬底可以包括一可压缩层,该可压缩层可以被压缩和/或按压以形成能够插入所述芯片的凹槽。一旦被嵌入,所述芯片或电组件被所述衬底固定并可以被耦合到另一电组件。一种RFID芯片通过加热和/或加压被嵌入到衬底中,天线结构(52)被施加到所述衬底(32)上,且所述RFID芯片(20)和天线结构(52)被耦合在一起。

权利要求书

1: 一种制作电学器件的方法,所述方法包含: 在衬底上放置芯片; 加热所述衬底;以及 当所述衬底处于升高的温度时将所述芯片嵌入到所述衬底内。
2: 如权利要求1所述的方法,其中在衬底上放置芯片包括放置作为 RFID内插器的一部分的芯片,所述RFID内插器包括安装在所述芯片上的 内插器引线。
3: 如权利要求1所述的方法,其中在衬底上放置芯片包括将所述芯片 放置在热塑性材料的衬底上。
4: 如权利要求1所述的方法,其中对所述衬底施加热量包括对所述 芯片和所述衬底中的至少一个施加电磁辐射。
5: 如权利要求4所述的方法,其中所述施加电磁辐射包括施加热辐 射。
6: 如权利要求4所述的方法,其中所述施加电磁辐射包括施加近红 外辐射。
7: 如权利要求1所述的方法,其中所述嵌入包括通过滚筒将所述芯 片按压到所述衬底内。
8: 如权利要求1所述的方法,其中所述嵌入包括通过压力器将所述 芯片按压到所述衬底内。
9: 如权利要求1所述的方法,进一步包含将所述芯片耦合到电组件。
10: 如权利要求9所述的方法,其中将所述芯片耦合到电组件包括将 所述芯片耦合到天线结构。
11: 如权利要求9所述的方法,其中所述耦合包括将包括所述电组件 的卷状物层压到所述衬底上。
12: 如权利要求9所述的方法,其中所述耦合包括将导电材料印刷到 所述衬底上。
13: 如权利要求9所述的方法,其中所述耦合包括将所述芯片耦合到 在所述衬底上预先形成的天线结构。
14: 由权利要求1所述的方法形成的器件。
15: 一种制作电学器件的方法,所述方法包含: 加热芯片; 将所述芯片嵌入到衬底中;以及 将所述芯片耦合到电组件。
16: 如权利要求15所述的方法,其中将所述芯片嵌入到衬底中包括加 热所述衬底的一个区域及所述芯片,所述芯片要被嵌入到所述区域中。
17: 如权利要求16所述的方法,其中所述加热包括传导式加热。
18: 如权利要求15所述的方法,进一步包含将平坦化层层压到所述 芯片或衬底中的至少一个上,所述平坦化层包括所述电组件。
19: 如权利要求18所述的方法,其中所述层压包括将所述平坦化层 和所述芯片或所述衬底中的至少一个按压在一起;且其中所述按压实现 所述嵌入和所述耦合。
20: 如权利要求15所述的方法,其中所述芯片是RFID内插器的一部 分,所述RFID内插器包括附着在RFID芯片上的内插器引线。
21: 如权利要求15所述的方法,其中所述衬底是热塑性材料。
22: 如权利要求15所述的方法,其中加热所述芯片包括向所述芯片 施加电磁辐射。
23: 如权利要求22所述的方法,其中所述施加电磁辐射包括施加热 辐射。
24: 如权利要求23所述的方法,其中所述施加电磁辐射包括施加近 红外辐射。
25: 如权利要求15所述的方法,其中所述嵌入包括通过滚筒将所述 芯片按压到所述衬底内。
26: 如权利要求15所述的方法,其中所述嵌入包括通过压力器将所 述芯片按压到所述衬底内。
27: 如权利要求15所述的方法,其中将所述芯片耦合到电组件包括 将所述芯片耦合到天线结构。
28: 如权利要求15所述的方法,其中所述耦合包括将包括所述电组 件的卷状物层压到所述衬底上。
29: 如权利要求15所述的方法,进一步包含在所述芯片和所述卷状 物之间提供平坦化层,其中所述平坦化层是粘合剂。
30: 如权利要求15所述的方法,其中所述耦合包括将导电材料印刷 到所述衬底上。
31: 如权利要求15所述的方法,其中所述耦合包括将所述芯片耦合 到在所述衬底上预先形成的天线结构。
32: 由权利要求15所述的方法形成的器件。
33: 一种制作RFID发射应答器的方法,所述方法包含: 将具有底面和顶面的芯片放置在热塑性衬底上,其中所述芯片的所 述底面与所述热塑性衬底的顶面接触; 通过热辐射加热所述热塑性衬底或芯片中的至少一个,以此升高所 述热塑性衬底的温度并因此软化所述热塑性衬底; 当所述衬底被加热到升高的温度时,通过对所述芯片施加压力将所 述芯片嵌入到所述热塑性衬底内;以及 将所述芯片耦合到天线结构,其中所述耦合包括: 利用导电性油墨将所述天线结构沉积到所述热塑性衬底上;以 及 将所述天线结构连接到所述RFID内插器的内插器引线。
34: 由权利要求33所述的方法形成的器件。
35: 一种制作RFID发射应答器的方法,所述方法包含: 提供卷式材料,所述卷式材料包括连续导电元件和可压缩衬底层; 通过压缩所述可压缩衬底层在所述卷式材料中形成凹槽,其中形成 所述凹槽分隔开所述导电元件并因此形成至少两个天线部分; 将芯片放置到所述凹槽中;以及 将所述芯片耦合到所述天线部分, 其中形成所述凹槽包括将所述芯片和卷式材料按压在一起,以及 其中所述按压实现所述放置和所述耦合。
36: 如权利要求35所述的方法,其中所述可压缩衬底层是泡沫材料。
37: 如权利要求35所述的方法,其中所述可压缩衬底层是可挤压的。
38: 一种制作RFID发射应答器的方法,所述方法包含: 提供卷式材料,所述卷式材料包括可压缩衬底层和具有第一天线部 分与第二天线部分的天线结构; 通过压缩所述可压缩衬底层在所述第一天线部分和第二天线部分之 间的所述卷式材料中形成凹槽; 将芯片放置到所述凹槽中;以及 耦合所述芯片和所述天线结构的天线部分; 其中形成所述凹槽包括将所述芯片和卷式材料按压在一起,以及 其中所述按压实现所述放置和所述耦合。
39: 如权利要求39所述的方法,其中所述可压缩衬底层是泡沫材料。
40: 如权利要求39所述的方法,其中所述可压缩衬底层是可挤压的。
41: 一种电学器件,其包含: 一芯片;和 一衬底; 其中所述芯片被嵌入到所述衬底中;以及 其中所述芯片至少部分地被所述衬底包围。
42: 如权利要求41所述的器件,进一步包含耦合到所述芯片上的接 合焊盘的电组件。
43: 如权利要求42所述的器件,其中所述电组件是位于平坦化层上 的天线结构,且其中所述接合焊盘延伸穿过所述平坦化层并被耦合到所 述天线结构。
44: 如权利要求42所述的器件,其中所述接合焊盘为柱形凸块。
45: 如权利要求41所述的器件,其中所述衬底为热塑性衬底。

说明书


RFID标牌薄膜压纹制造技术

    【技术领域】

    【0001】本发明一般地涉及电学器件并涉及电学器件的组装。更具体地,本发明涉及射频识别(RFID)内插器和/或器件的组装。

    背景技术

    【0002】挑选和放置技术常常被用于组装电学器件。挑选和放置技术典型地包括复杂的机器人组件和一次仅处理一个管芯的控制系统。这些技术可以利用操纵器(如机器人臂)来从集成电路(IC)芯片的晶片上移除IC芯片或管芯,并将它们放置在芯片承载器、传送器上或直接放置在衬底上。如果非直接安装,这些芯片随后与诸如天线、电容器、电阻器和电感器的其它电组件一起被安装在衬底上以形成电学器件。

    【0003】可以利用挑选和放置技术进行组装的一类电学器件是射频识别(RFID)发射应答器。RFID嵌体、标牌和标签(在这里统称为“发射应答器”)被广泛用于使物体与识别代码相关联。嵌体(或内嵌发射应答器)是典型地具有基本平的外形的识别发射应答器。内嵌发射应答器的天线可以是沉积在非导电支撑物上的导电迹线的形式。该天线具有适当的形状,诸如扁平线圈或其它几何形状。天线的引线也被沉积,且根据需要插入非导电层。存储及任何控制功能由安装在支撑物上的芯片提供并操作性地通过引线连接到天线。RFID嵌体可以被结合或层压到所选择的标签或标牌材料上,这些材料由薄膜、纸、层压薄膜和纸或者适用于特定最终用途的其它柔性薄片材料制成。然后得到的RFID标签原材或RFID标牌原材可以与文字和/或图片套印,并按具体形状和尺寸冲切成连续标签卷,或单标签或多标签薄片,或标牌卷或薄片。

    【0004】在很多RFID应用中,希望将电组件的尺寸降低到尽可能小。为了互联非常小的芯片和RFID嵌体中的天线,已知使用各种被称为“内插器”、“条带”和“承载器”的结构来便于嵌体制造。内插器包括导电引线或焊盘,这些焊盘被电耦合到芯片的触点焊盘以和天线耦合。这些焊盘一般提供比精确对准以便无需内插器而直接布局的IC更大的有效电接触面积。更大的面积降低了制造过程中IC布局所需的准确度,而仍然提供有效的电连接。IC布局和安装对于高速制造是重要限制。现有技术公开了各种RFID内插器或条带结构,其典型地利用承载内插器的触点焊盘或引线的柔性衬底。

    【0005】如上所述,RFID发射应答器包括集成电路和天线来提供射频识别功能。另一方面,内插器包括集成电路但必须被耦合到天线以形成完整的RFID发射应答器。如本专利申请所使用的,术语“器件”不仅指RFID发射应答器,还指希望被并入到RFID发射应答器中的内插器。

    【0006】RFID器件一般具有天线和模拟和/或数字电子元件的组合,这些电子元件可以包括例如通信电子元件、数据存储器和控制逻辑。例如,RFID标牌与汽车上的安全锁结合使用,用于对建筑物的进入控制并追踪存货和包裹。RFID标牌和标签的一些示例出现在编号为6,107,920、6,206,292和6,262,292的美国专利中,所有这些专利通过引用被整体合并于此。

    【0007】RFID器件可以被贴附在物品上,该物品的存在要被探测和/或监控。RFID器件的存在以及因此该器件所贴附的物品的存在可以由被称为“阅读器”的装置来检查和监控。

    【0008】典型地,RFID器件通过图案化、刻蚀或印刷电介质层上的导体并将该导体耦合到芯片来制造。如上文所提及,挑选和放置技术常常被用于在图案化的导体上定位芯片。作为替代,包含多个芯片的卷状物可以被层压到被印刷导体材料卷上。这种工艺的示例被公开在2004年3月22日提交的编号为10/805,938的共同被转让的美国专利申请中。

    【0009】芯片可以通过多种适当的连接材料和/或方法中的任何一种耦合到导体上,例如通过使用导电性或非导电性粘合剂、通过使用热塑性键合材料、通过使用导电性油墨、通过使用焊接(welding)和/或软钎焊(soldering)或通过电镀等。典型地,用于将芯片机械和/或电耦合到导体的材料需要加热和/或加压以形成最终互联——一种在用粘合剂的情况下被称为固化的工艺。传统的热压键合方法典型地使用某个形式的压力器通过传导或对流来对RFID器件装配件或RFID器件装配件卷直接加压或加热。例如,可以通过以下过程施加压力和热量:将RFID器件装配件或RFID器件装配件卷压在一对加热板之间并依赖于经由包括芯片和天线的各种介质的传导来加热连接材料。作为替换,一个加热板可以装备有引脚,这些引脚用于对某些区域(例如,仅对芯片)选择性施加压力和/或热量,并再次依赖于传导来加热连接材料。作为替代,特别是在利用焊料的情况下,可以使用烤箱,其中整个装配件被保持在升高的温度下,且焊料通过对流而回流。在后一种情况下,可以不对器件施加压力。

    【0010】然而,使用倒装晶片装配件的传统RFID嵌体或内插器制造技术一般不能够以足够快的速率生产器件以满足需求。需要大量的努力来准确对准芯片和天线结构,这常常限制可以生产器件的速率。此外,传统倒装晶片制造方法通过在衬底或其它表面上放置芯片来生产不同厚度的器件。因此,芯片的侧面一般被暴露在外,使得器件更易于损坏。理想的RFID标牌或标签将是非常薄且还具有基本均匀的厚度。传统RFID嵌体和内插器制造技术以及RFID器件本身的问题之一在于芯片厚度大于衬底厚度,通常差较大的倍数。将芯片放置在薄膜或卷式衬底上将会在芯片所处的位置产生凸起。这一凸起给随后可能印刷文字或图片到标签面原材上的印刷设备带来问题。在一般可能在其上进行印刷的RFID标签或其它器件的情况下,器件的不平坦表面会影响印刷过程而造成扭曲和/或印刷错误。

    【0011】因此,需要提供一种制造电学器件的高速方法,其中成品器件具有相对平坦的外形。

    【0012】从前述内容可以看出存在改进RFID发射应答器及其相关制造工艺的空间。

    【发明内容】

    【0013】依照本发明的一个方面,提供一种用于将芯片嵌入衬底中的方法。所述方法包括加热芯片并将芯片挤压到衬底内。在一个实施例中,用热辐射加热的芯片被挤压到热塑性衬底内。被加热的芯片在局部区域加热衬底,以此软化热塑性衬底并允许芯片嵌入其中。

    【0014】依照本发明的一个方面,提供一种制作电学器件的方法,该方法包括以下步骤:在衬底上放置芯片,加热衬底,以及当衬底处于升高的温度时将芯片嵌入到衬底内。

    【0015】依照本发明的另一个方面,提供一种制作电学器件的方法,该方法包括以下步骤:加热芯片,将芯片嵌入到衬底中,以及将芯片耦合到电组件。

    【0016】依照本发明的又一个方面,提供一种制作RFID发射应答器的方法,该方法包含以下步骤:将具有底面和顶面的芯片放置在热塑性衬底上,其中芯片的底面与热塑性衬底的顶面接触,通过热辐射加热热塑性衬底或芯片中的至少一个,以此升高热塑性衬底的温度并因此软化热塑性衬底,当衬底被加热到升高的温度时,通过对芯片施加压力将芯片嵌入到热塑性衬底内,以及将芯片耦合到天线结构。所述耦合包括利用导电性油墨沉积天线结构到热塑性衬底上,以及将天线结构连接到RFID内插器的内插器引线。

    【0017】在本发明的一个实施例中,RFID芯片被放置在衬底上,其中芯片的触点背离衬底,且在芯片和/或衬底被加热的同时施加压力,以此将芯片嵌入到衬底内。加热或固化可以通过各种方式来实现,包括对芯片和/或卷状物施加例如红外、近红外或紫外辐射的电磁辐射。芯片触点可以同时与电元件耦合,该电元件例如是可以预成形在第二衬底上的导电引线或天线结构,该第二衬底可以被层压到第一衬底上。例如,包括电元件的第二衬底可以被放置在芯片触点上,因此电元件背离芯片触点。在嵌入和层压工艺过程中,芯片触点穿透第二衬底而与电元件接触。第二衬底可以是热塑性的、可压缩的或可固化的。第二衬底上的电元件可以通过印刷导电性油墨来形成。对第二衬底施加电磁辐射可以进一步固化这种油墨并增强其导电性。

    【0018】依照本发明的再一个方面,提供一种制作RFID发射应答器的方法,该方法包含:提供卷式材料(web material),该卷式材料包括连续导电元件和可压缩衬底层,通过压缩可压缩衬底层在卷式材料中形成凹槽,其中凹槽的形成分隔开导电元件并因此形成至少两个天线部分,将芯片放置到凹槽中,以及将芯片耦合到天线部分。形成凹槽包括将芯片和卷式材料按压在一起并实现芯片的放置和耦合。

    【0019】依照本发明的又一个方面,提供一种制作RFID发射应答器的方法,该方法包含:提供卷式材料,该卷式材料包括可压缩衬底层和具有第一天线部分与第二天线部分的天线结构,通过压缩可压缩衬底层在第一和第二天线部分之间的卷式材料中形成凹槽,将芯片放置到凹槽中,以及将芯片耦合到天线结构的天线部分。形成凹槽包括将芯片和卷式材料按压在一起,且该按压实现芯片的放置和耦合。

    【0020】在一个实施例中,芯片可以被用作成形工具来同时在衬底中形成凹槽并将芯片嵌入到凹槽中,因此不需要单独在衬底中形成凹槽然后在芯片插入其中之前使芯片与凹槽对准的额外步骤。

    【0021】依照本发明的再一个方面,提供一种包含芯片和衬底的电学器件。芯片被嵌入到衬底中并至少局部被衬底包围。在一个实施例中,该器件包括在平坦化层上的电元件,如天线结构。芯片上的结合焊盘延伸穿过平坦化层并被电耦合到天线结构。该衬底可以是热塑性材料。

    【0022】为实现上述及相关目标,本发明包含在下文充分描述并在权利要求书中特别指出的特征。以下说明及附图详细描述了本发明的某些示例性实施例。然而,这些实施例是示例性的,本发明的原理可以以一些不同的方式被利用。通过本发明的以下详细说明并结合附图考虑,本发明的其它目标、优点和新特征将变得明显。

    【附图说明】

    【0023】在不必按比例的附图中:

    【0024】图1是描述本发明的一种方法的流程图;

    【0025】图2是本发明的电学器件的侧视图;

    【0026】图3是本发明的电学器件的斜视图;

    【0027】图4是依照本发明用于施加热压的器件中的电学器件的侧视图;

    【0028】图5A是本发明的电学器件的侧视图;

    【0029】图5B是本发明的电学器件的侧视图;

    【0030】图6是本发明的层压器件的斜视图;

    【0031】图7A是本发明的一种系统的侧视图;

    【0032】图7B是本发明的一种系统的侧视图;

    【0033】图8是依照本发明用于施加热压的器件中的电学器件的侧视图;

    【0034】图9是依照本发明用于施加热压的器件中的电学器件的侧视图;

    【0035】图10A是依照本发明用于施加热压的器件中的电学器件的侧视图;

    【0036】图10B是可以用于本发明的各种示例性材料的相对NIR辐射吸收率的图表;

    【0037】图11是依照本发明的方法可以使用的卷式衬底(web substrate)的俯视图;

    【0038】图12是依照本发明的方法可以使用的另一个卷式衬底的俯视图;

    【0039】图13是图11的卷式衬底的截面视图;

    【0040】图14是图11的卷式衬底在将芯片嵌入其中的过程中的截面视图;

    【0041】图15是图12的卷式衬底的截面视图;

    【0042】图16是图12的卷式衬底在将芯片嵌入其中的过程中的截面视图;

    【0043】图17是依照本发明的方法用于将芯片嵌入衬底的装置的侧视图;

    【0044】图18是依照本发明的方法用于将芯片嵌入衬底的装置的侧视图;

    【0045】图19是依照本发明的电学器件的组件的截面视图;

    【0046】图20是利用图19的组件形成的组装电学器件的截面视图;

    【0047】图21是其中嵌入了芯片的衬底和其上具有天线元件部分的卷状物的截面视图;

    【0048】图22是依照本发明利用图21的衬底和卷状物形成的组装电学器件的截面视图;

    【0049】图23是依照本发明的电学器件的组件的截面视图;

    【0050】图24是利用图23的组件形成的组装电学器件的截面视图;

    【0051】图25是依照本发明的电学器件的俯视图;以及

    【0052】图26是图25的电学器件的俯视图,其中芯片被电连接到天线元件部分。

    【具体实施方式】

    【0053】提供一种制造电学器件的方法,其中芯片或其它电学组件被嵌入到衬底中。该衬底可以是热塑性材料,这种材料在衬底被施加热量和/或压力时能够围绕芯片发生变形。该衬底可以包括可压缩层,该可压缩层能够被压缩以形成芯片可以插入其中的凹槽。一旦被嵌入,芯片或电组件被固定到卷状物并可以被耦合到另一电组件。还提供一种制造RFID器件的方法,其中利用热量和/压力将RFID芯片嵌入到衬底中,天线结构被施加到衬底上,且RFID芯片和天线结构被耦合在一起。

    【0054】参考图1,将描述制造卷状物形式的电学器件的方法5。应该认识到这些电学器件可以是不同于RFID器件的器件。类似地,依照本发明可以使用天线结构以外的其他电组件。但是,因为这一方法很好地适用于RFID器件的高速制造,因此将在RFID器件的制造工艺的背景下进行描述。

    【0055】图1所示的方法5开始于工艺步骤号10,其中芯片被放置在卷式衬底上。如上所述,应该认识到该芯片可以是内插器结构的一部分。在工艺步骤12,通过对芯片和/或卷状物施加热量和/或压力将芯片嵌入到卷式衬底内。一旦芯片被适当地嵌入到卷式衬底中,在工艺步骤14中芯片和/或卷状物被冷却。应该认识到冷却芯片和/或卷状物的步骤可以简单地通过停止对其施加热量和/或压力来实现。在工艺步骤16中,芯片被耦合到天线结构。如本文将更详细描述的,天线结构可以在芯片被嵌入到卷状物内之前、过程中或之后被施加或形成于卷状物上。

    【0056】参考示例性实施例,现在更详细地描述上述工艺步骤。转向图2和图3,芯片20被放置在具有衬背36的卷式衬底32上。芯片20可以包括用于耦合芯片20和天线或其它电组件的凸块22。具有大体矩形截面的芯片20具有顶面24、底面25和侧面26a、26b、26c、26d。在该图中,凸块22位于芯片20的顶面24上,从而当芯片20被嵌入到卷式衬底32中时凸块22仍然可用于耦合到电组件。

    【0057】在图4中,热压器件40被放置在芯片20之上并被配置为沿箭头A的方向抵靠卷状物32压芯片20。衬背36可以是刚性的或半刚性的,以便在压的过程中为卷式衬底32提供足够支撑。热压器件40包括用于接合芯片20的压力器。在这一实施例中,热压器件40可以是能够施加热量和压力的任何适当热压器件。适当热压器件的示例被公开在2004年7月18日提交的编号为10/872,235的共同被转让的美国专利申请中。用于固化粘合剂和/或焊料的传统热压器件也可以被使用。用于加热芯片20和/或卷式衬底32的热能可以通过热压器件40的压力器42经由传导而施加。热压器件40可以被配置为将芯片20和/或卷式衬底32预热到预定温度,以此确保在对芯片20施加压力之前卷式衬底32被充分软化。预热芯片20和/或卷式衬底32可以在芯片20抵靠卷式衬底32被压时防止损坏芯片20。

    【0058】可用于提供热能的传导加热元件的示例是居里点(Curie Ponit)自调节的加热元件。这一加热元件被公开在编号为5,182,427的美国专利中,并在由加利福尼亚门罗帕克(Menlo Park)的Metcal当前制造的技术中被具体化。这种加热元件典型地包含具有磁化镍金属合金涂层的中心铜核。高频电流被感生于加热元件中并且由于趋肤效应而倾向于在镍金属合金涂层中流动。相对高电阻的镍金属合金中的焦耳热导致涂层温度升高。一旦镍金属合金涂层的温度达到其特征居里点,电流就不再在镍金属合金涂层中流动而是流动通过低阻中心铜核。本质上居里点温度被维持在这一点上。因此,当高频电流被接通时,加热元件快速加热到居里点温度且然后在这一温度下自行调节。居里点自调节加热元件是有利的,因为它们体积小、高效且温度自调节,并允许单独的加热元件被赋予每个所需的热-压点。应该认识到其它加热元件如标准电阻加热元件等也可以被使用。

    【0059】再参考图4和图5A,卷式衬底32被热压器件40加热并变得越来越柔软,从而当芯片20被热压器件40压向卷式衬底32时,卷式衬底32围绕芯片20发生变形。卷式衬底32围绕芯片20的变形被图示说明于图5A。图5A中的芯片20被嵌入在卷式衬底32,其中芯片20的上表面24与卷式衬底32基本同高(例如,齐平)。本质上芯片20的侧面26a、26b、26c、26d(未图示)被包围在卷式衬底32内。因此,芯片20的外形被重叠在卷式衬底的外形内,以此生成均匀的外形并因此生成基本平坦的结构。芯片20上的凸块22可轻微延伸到卷式衬底32的上表面之上以使芯片20能够与天线结构或其它电组件耦合。芯片20的上表面24可以被卷式衬底32轻微吞没,以此降低凸块22和卷式衬底32的表面之间的高度差以便于印刷引线到凸块22上。

    【0060】典型的芯片厚度范围为约75微米(3密耳)至150微米(6密耳)或更大。卷式处理中所用的典型卷式衬底或薄膜可以在40微米(1.5密耳)至200微米(8密耳)或更大范围内。将芯片嵌入到衬底内降低了所得到的RFID器件的整体厚度并产生相对平的RFID器件。理想地,卷式衬底将具有等于或稍微大于芯片厚度的厚度。因此,芯片可以被嵌入到卷式衬底中,从而实际上不存在表面凸块,因此生成具有平坦外形的内插器或器件。

    【0061】一旦芯片20被嵌入在卷式衬底32中,热压器件40就脱离芯片20且卷式衬底32被允许冷却。随着卷式衬底32冷却,它变得不太柔软并稍微收缩,以此将芯片20固定在卷式衬底32内。应该认识到现在芯片20至少被局部包围在卷式衬底32内,并被卷式衬底32本身机械地固定在该卷式衬底自身内。

    【0062】卷式衬底32可以是能够通过对材料加热而变软且通过冷却而变硬的热塑性材料。因此,卷式衬底32可以是塑料薄膜、聚合物薄膜或任何其它热塑性材料。卷式衬底32也可以是热固性材料。在一些应用中,卷式衬底32是用紫外光可固化的。

    【0063】应该认识到多个芯片20可以在一个或多于一个通道中以预定间隔被嵌入到卷式衬底32中。作为替代,多个芯片20可以在预定位置被嵌入到一片衬底材料中。一旦芯片20被嵌入到卷式衬底32中,芯片20就可以与天线结构或其它电组件相耦合。天线结构或其它电组件可以在嵌入芯片20之前、之中或之后被转移到卷式或片状衬底32上或形成于卷式或片状衬底32上。卷式衬底32之上或之中的预成型天线结构可以被提供,从而当芯片20被嵌入到卷式衬底32中时,该芯片被电耦合(例如,直接耦合)到天线结构并机械耦合到卷式衬底32。此外,芯片20可以被嵌入到邻近成型天线结构的卷式衬底32内,并通过后续工艺比如从芯片凸块到天线结构印刷导电性油墨引线而被电耦合到天线。

    【0064】例如,在图5B中芯片20被嵌入在具有衬背36和成型天线元件52的衬底32中。可以为衬底32提供硬度的衬背36一般不是已完成器件的一部分。然而,在一些示例中器件可以包括衬背36。成型天线元件52被置于邻近芯片20上的凸块22或触点。应该认识到芯片20可以被嵌入在卷式衬底32中要被耦合到成型天线元件52的位置中。例如,耦合可以通过印刷导电材料以直接连接天线元件52和芯片20上的凸块22来实现。此外,芯片20的凸块22可以以某个方式被嵌入在卷式衬底32中,使得凸块22直接接触天线元件52(例如,芯片20处于凸块朝下的方位),以此将芯片20耦合到天线元件52。

    【0065】在图6中,示出了具有多个嵌入的芯片20的卷式衬底32。在该图中,芯片20被嵌入在单行或单通道的卷式衬底32中。具有嵌入的芯片20的卷式衬底32被层压到承载天线结构52的衬底50上。芯片20和天线结构52可以以任何适当的方式被编址(indexed)并耦合到天线结构52。典型地,各个卷状物上的元件间的间距将是相同的,从而只需要初始的编址。一旦芯片20的卷式衬底32和包含天线结构52的天线结构衬底52被层压在一起,各个RFID器件可以从完成的卷状物60上被单个化。

    【0066】应该认识到形成天线结构的其它方法是可能的。例如,箔片冲压、导电性油墨印刷、金属电镀、金属溅射或蒸发或任何其它形式的导电性图案化可以被用于在卷式衬底32上形成天线或其它电组件。触点或凸块22与天线结构50或其它电组件的电耦合可以通过直接接触来实现。作为替代,导电性环氧树脂、各向同性的导电粘合剂、各向异性的导电粘合剂、焊料或任何其它适当手段可以被用于实现电耦合。天线结构50可以在形成的时候和芯片20电耦合。作为替代,天线结构50可以在后续时间通过导电性油墨印刷或其它适当工艺被形成或另外施加到衬底32上并与芯片20耦合。

    【0067】现在转向图7A,将描述用于依照本发明的方法5(图1)制作RFID器件的系统100。具有可选(非必要)的衬背34的卷式衬底32从左侧进入系统100并向右侧前进。芯片放置装置110利用喷嘴112以预定的间隔将芯片20放置到卷式衬底32上。当芯片20被放置到卷式衬底32上后,芯片20被热压器件40嵌入到卷式衬底32中。随着芯片20进入热压器件40中,热量被施加到芯片20和/或卷式衬底32从而加热卷式衬底32。一旦卷式衬底32达到预定温度,热压器件40的压力器42就迫使芯片20与卷式衬底32压缩接合。当芯片20前进通过热压器件40后,芯片的顶面24与卷式衬底32基本齐平。在这一实施例中,芯片20包括稍微突出于卷式衬底32的表面之上的凸块22。接下来卷式衬底32和嵌入的芯片20进入层压装置55,其中天线结构卷52被编址并层压于此。然后卷状物60上的RFID器件62可以从卷式衬底32上被单个化。

    【0068】在图7B中,示出了用于依照本发明的方法5(图1)制作RFID器件的另一个系统120。系统120与图7A的系统100在每个方面都相似,除了在这一实施例中芯片20在其穿过压缩滚筒44和46之间时被嵌入到卷式衬底32中。应该认识到卷式衬底32可以在进入压缩滚筒44和46之前被加热。作为替代,压缩滚筒44和46可以通过传导对芯片20和/或卷式衬底32施加热量。应该认识到可以使用各种方法来施加压力以将芯片嵌入到衬底中。

    【0069】在上面描述且由图7A和图7B中的虚线轮廓示出的实施例变体中,天线卷52可以以支撑卷状物53的形式被提供,多个例如冲切或激光切割的天线50的内表面被可释放的粘合剂粘着到支撑卷状物53,且其中天线的引线部分和本体部分的外表面分别覆盖有非固化的导电性和非导电性粘合剂,比如提交于____、序号为____的共同待审的美国专利申请中所述的粘合剂。在这一替代性变体中,各个天线被同时从支撑卷状物上剥下并通过层压装置55被层压到卷式衬底32上,其中各天线的引线被对准并电耦合到各自芯片20上的凸块22,而且天线数量减少的支撑卷状物被缠绕到拉紧卷轴(未图示)上。

    【0070】现在转向图8-10A,将描述本发明的一种方法,该方法利用红外热压器件来将芯片嵌入到卷式衬底中。在图8中,压缩器件230被配置为抵靠具有衬背224的卷式衬底222压缩芯片220。红外能量源240被配置为向卷式衬底222和/或芯片220提供热能。应该认识到与卷式衬底222相比衬背224可以是对辐射相对透明的,所以红外辐射可以穿过衬背224并被卷式衬底222吸收,由此加热卷式衬底222。但是,红外辐射也可以被引导到相对吸收辐射的衬背224,由此加热衬背224并进而通过传导加热卷式衬底222。还应该认识到卷式衬底222和衬背224可以是对辐射相对透明的。在这种情况下芯片220将是相对吸收辐射的,从而来自红外能量源240的红外辐射加热芯片220,芯片220又加热卷式衬底222。

    【0071】在图9中,红外热源240已经被激活,由此加热卷式衬底222并导致卷式衬底222软化。红外热压器件230抵靠卷式衬底222压缩芯片220,由此将芯片220嵌入到卷式衬底222中。在该图中,芯片220被部分嵌入到卷式衬底222中。

    【0072】现在参考图10A,芯片220被完全嵌入到卷式衬底222中。一旦芯片220被完全嵌入到卷式衬底222中,红外热压器件230就脱离芯片220,红外热源240被去激活,且芯片220、卷式衬底222和衬背224被允许冷却。随着卷式衬底222冷却,它变得不太柔软并稍微收缩,由此以局部包围的方式将芯片220固定在卷式衬底222内。应该认识到现在芯片220至少被局部包围在卷式衬底222内,并被卷式衬底222本身机械地固定在卷式衬底222内。

    【0073】在本发明的方法中使用电磁辐射作为热源提供了各种优点。与传导式和对流式热传递相比,辐射能量热传递能够实现明显更高的热通量。由于光的高速度以及可能对受热材料直接施加热量,辐射能量可以提供极快的加热。受控辐射加热可以实现各种工艺优势,如降低系统的冷却需求并通过局部热量和压力之间的协调提高精度。

    【0074】如上所述,辐射加热可以被直接施加到受热材料上。精确地直接施加热量到受热区域上的能力是有利的,因为与传导式或对流式加热方法相比需要更少的整体热能。此外,因为更少的整体热能被施加,所以一旦嵌入过程结束,材料更快地冷却,允许随后对卷式衬底的处理更快地开始。

    【0075】辐射能量加热可以与其它形式的热传递例如传导加热相结合以实现有利的效果。如上面提到的,电磁辐射热传递可以被用于加热系统的结构(特别是芯片或衬背材料),这些结构又可以通过传导向卷式衬底传递热量。因此,电磁辐射不需要被直接施加到受热材料上,而是从相邻结构如芯片或衬背通过热传导而间接施加。

    【0076】如上面提到的,辐射能量可以在碰到相对吸收辐射的材料并被其吸收之前穿过一个或多于一个对辐射相对透明的材料。如本文所用,对辐射相对透明的材料(也被称为“透明材料”)指的是与相对吸收辐射的材料(也被称为“吸收材料”)相比,对辐射能量吸收更少的材料。应该认识到材料的相对透明或吸收是辐射波长的函数。此外,每个辐射源可以具有独特的功率频谱,该功率频谱确定作为辐射波长的函数,发射多少能量。因此,辐射能量源可以被选择或调节以便实现材料的所需透射或吸收效果。

    【0077】例如,在图10B中,比较了在3200K下发射的近红外(NIR)黑体源与本发明可用的各种示例性材料的相对吸收频谱。图10B所示的图表用于示例性的目的,且所示的材料仅是依照本发明可用的示例性材料。这些材料根本不被认为要限制可用于实践本发明的材料。从该图表可以看出,对于大部分波长频谱,该系统可用的示例性材料(纯硅酮、聚砜、PMMA(聚甲基丙烯酸甲酯))以比可组成芯片的抛光硅低得多的比率吸收NIR辐射。抛光硅材料对NIR辐射的较高吸收率允许芯片被NIR辐射快速加热而衬底材料仍然相对较凉。应该认识到很多聚合物如PEEK(聚醚醚酮)或PEN(聚萘二甲酸乙二醇酯)可用作柔性压板材料,因为大部分聚合物通常是NIR透明的。通过使用相对辐射透明的材料作为衬背且使用相对吸收辐射的材料作为卷式衬底和/或芯片,适当的电磁辐射能量可以在该实施例中被用于加热。例如,通过将位于热塑性卷式衬底上的相对吸收辐射的芯片暴露于近红外(NIR)热辐射,芯片被加热,由此该芯片可以加热卷式衬底以充分软化卷式衬底,从而该芯片可以被嵌入其中。其它的电磁辐射波长也可以被用于本发明中的其它材料。例如,对于一些应用,紫外(UV)或微波能量可以是适当的能量形式。总体上,所用的电磁辐射形式将由器件的组成材料对于具体电磁辐射形式的吸收或非吸收特性吸收光谱来确定。

    【0078】一系列适当的商业可用的高能NIR系统由德国Bruckmühl-Heufeld的AdPhos AG提供(AdPhos)。AdPhos红外加热系统提供持久的高能加热系统;且AdPhos灯几乎充当工作于约3200K的黑体发射器。提供适当热能的其它辐射加热器和发射器可以从各个主要灯具厂商(包括Phillips、Ushio、General Electric、Sylvania和Glenro)获得。例如,这些厂商生产半导体产业所用的外延反应堆(reactor)的发射器。所有这些发射器都具有超过3000K的温度。但是,更广泛地,适当的NIR源可以是温度超过大约2000K的发射器。AdPhos系统的优点在于尽管大多数这种高能NIR灯具有小于2000小时的额定寿命,但AdPhosNIR系统被设计为4000至5000小时的服务寿命。AdPhos NIR灯的辐射能量发射将其绝大部分能量聚集在0.4微米至2微米的波长范围内,其中峰值能量在800nm附近提供,该峰值能量被移到比短波和中波红外源更低的波长,提供更高的能量输出和吸收电磁辐射方面的其它优点。

    【0079】现在转向图11-18,将描述依照本发明制造电学器件的另一个方法。应该认识到,尽管在图11-16中在单个器件的背景下进行显示和描述,但该方法很好地适用于卷到卷的操作来处理衬底材料卷状物以形成多个器件。在图11-14中,衬底304包括可选的天线衬底层308,该天线衬底层具有通过任何适当工艺(例如,图案化、刻蚀、导电性油墨印刷等)形成或沉积于其上的天线元件312。所示的示例性天线元件312是在芯片附连区318的相对侧上具有第一和第二电极部分314和316的简单双极结构。包括单个连续天线的其它天线结构可以被提供。在示例性实施例中,天线元件312在芯片附连区318中的两个电极部分314和316之间是不连续的,其以传统的方式分叉以定义可以附连芯片(或作为替代,内插器)的一对固定天线引线。在图11的实施例中,如图所示,天线元件312包括芯片附连区318中的渐缩形(tapered-down)颈部部分322,其中颈部322的宽度等于或小于将附连于其上的芯片的宽度。在图12的实施例中,颈缩形(necked-down)导体结构被置于内插器323之上,且天线引线部分314和316被终止于比在图11的实施例中间隔更远的较宽钝端处。

    【0080】重要的是,衬底304进一步包括附连天线衬底308的可压缩衬底层326。可压缩衬底层326可以选自于很多不同的材料。一种这样的材料是开孔聚合泡沫材料。这种泡沫的密度、厚度、柔性等可以容易地被工艺控制,以此达到合适的泡沫特性,如在至少两个轴上的柔性、施加合理水平的压力和/或热量时的高可压缩率和压缩后小的或没有反冲(spring-back)或回弹(resiliency)等。可压扁材料也可以被使用。可压扁材料一般被视为在施加充分压力后永久变形。一旦被压扁,可压扁材料一般保持被压扁状态并因此不倾向于回到其初始形态(例如,不像一些可压缩材料,如弹性泡沫,其在压力撤消后将倾向于回到其初始形态)。很多不同的其它材料可被用于可压缩衬底层326,包括某些类型的包含空气捕获袋的浆纸(pulped paper)。

    【0081】本领域技术人员应该认识到,依赖于当前的具体应用,使用包含泡沫聚合物如开孔泡沫聚氨酯或聚乙烯材料的可压缩衬底326材料可以具有附加的性能优点。这些材料的单元充满了空气,其具有比相同厚度的典型固态聚合衬底材料更低的介电常数,而这一特性可以被使用,以有利于提供具有自补偿天线的RFID器件的优势,例如如提交于2005年11月3日、序号为10/700,596的共同待审的美国专利申请中所述的。

    【0082】图13-16图示说明利用图11和图12的示例性可压缩衬底304形成RFID嵌体的方法的两种可替代示例性实施例,其中RFID发射应答器芯片364被用作成形工具,借此其被按压进入衬底304以形成凹槽344并因此同时也被嵌入到所形成的凹槽344中。这一工艺不需要附加步骤来单独在衬底304中形成凹槽344以及随后在插入凹槽之前精确对准芯片364和凹槽,由此形成具有基本平的上表面和下表面的RFID器件。嵌入操作可以由热压器件如上述的NIR热压器件来执行,或在适当情况下通过分别在图17和图18中图示说明并在此进一步描述的简单压延(calendaring)操作实现。任一实施例的优点在于分别在图13-14和图15-16图示说明的芯片364或内插器323可以在嵌入工艺之前、之中和之后被电耦合到天线的引线上。

    【0083】应该认识到,在任一实施例中,凹槽344可以由芯片364通过对其施加压力、热量或同时施加压力和热量而形成,比如通过前述热压器件进行。同样电磁辐射可以被施加于衬底以便于形成凹槽344。

    【0084】由压缩或挤压操作得到的嵌体结构被分别图示说明于图14和图16中。应该认识到,在图14的倒装晶片实施例中,凹槽344任一侧上的每个天线引线现在各包括两个大致90°的弯曲。因此,应该认识到天线元件312的材料应该表现出充分的延展性以允许这一变形而不发生破裂或断开。从图16可以很明显地看出,在内插器实施例中由这种变形而造成天线引线的破裂或断开的风险被充分降低。

    【0085】在图14中,可以是RFID发射应答器芯片的芯片364被示出安置在凹槽344中并以倒装晶片安装结构被电耦合到天线引线348和352。芯片364到天线引线348和352的电耦合可以通过几种传统机制中的一个或多于一个来实现。举例来说,芯片364可以通过传统的焊接被耦合到天线引线348和352,或者传统的基于ICP、ACP或NCP粘合剂的耦合也可被使用。进一步举例来说,桩撑(或卷曲)操作(未图示)可以被用于将芯片364耦合到天线引线348和352,其中适当伸长的导电结构如芯片凸块(例如,柱形凸块)被形成于或附连到各自的芯片连接焊盘上并在芯片安装之前或过程中被施压进入或甚至穿过天线引线348和352,以此被位于各自的天线部分348和352下面的压缩衬底材料304(例如,聚合的)抓住或夹紧。纯机械直接的或欧姆压力接触也可以被用于将芯片364耦合到天线引线348和352,只要在RFID器件的寿命期间可以保持电接触的质量。这种机械连接可以通过在芯片364和/或连接器与天线引线348和352之间施加压力来实现。这种连接具有不需要任何上述耦合工艺的优点,但作为替代可能需要在芯片触点和天线引线上提供非氧化(例如,电镀稀有金属)的接触表面。

    【0086】应该认识到天线衬底308是非必要的,但是对于一些应用可能是希望的。例如,因为制造原因可能希望与衬底304分开加工天线结构,然后通过将天线层308和可压缩层326结合在一起来组装衬底304,从而在后面的步骤中形成衬底304。另外,在可压缩衬底材料的表面不提供在其上可以以实际方式直接形成或沉积天线元件的理想表面的应用中,天线衬底308可能是希望的。

    【0087】应该认识到衬底304可以包括除了所示的这些层之外的其它层。此外,在一些应用中天线衬底308可以省略且天线元件312可以被直接提供在可压缩衬底层326的表面上。举例来说,某些开孔泡沫材料(例如,可热成形的聚氨酯(“TPU”)泡沫)可以被制成为具有形成于其一面或两面上的薄的无孔“表皮”的薄片形式,而且根据材料与所选择用于制作天线的特殊工艺的兼容性,有可能直接在可压缩衬底本身的表面形成天线结构,从而不需要分离的天线衬底。

    【0088】虽然示例性实施例包括连接到其相对侧设置有焊盘的芯片上的双极天线布置,但依照本发明也可以使用很多不同的天线和/或芯片焊盘结构。

    【0089】参考图17和图18,示出了将芯片364嵌入到衬底304中的示例性装置。该装置369包括上滚筒370和下滚筒372,衬底304和芯片364在二者之间通过。如图所示,上滚筒370和下滚筒372压缩芯片364从而将其嵌入到可压缩衬底304内。应该认识到,根据需要可以直接或间接向衬底304施加热量以软化衬底304。

    【0090】参考图19-26且首先参考图19和图20,将描述依照本发明的附加实施例。在这些实施例中,应该认识到芯片364可以依照前述的方法被嵌入到衬底304中。同样地,例如,芯片364可以利用热压法被嵌入到热塑性衬底304中,或者芯片364可以被插入到通过例如压缩、挤压或冲击卷式衬底304所形成的芯片凹槽内。

    【0091】在图19和图20所描述的实施例中,RFID器件通过将具有接合焊盘384(例如,凸块)的芯片364嵌入到衬底304中并将芯片耦合到平坦化层380上表面上的天线元件部分348和352而形成。在所示的实施例中,接合焊盘384背离衬底304(例如,凸块朝上)。通常,热压可以被施加到组装件(衬底304、芯片364和平坦化层380)上以嵌入芯片364并将芯片364电耦合到天线元件部分348和352。

    【0092】通过参考图20,应该认识到当施加热压时芯片364被嵌入到衬底304中,其中芯片364上的接合焊盘384穿透平坦化层380以形成与平坦化层380上表面上的天线元件部分384和352的接触。应该认识到这里所描述的热压器件根据需要可以被用于施加热压以组装器件。因此,平坦化层380可以是热塑性材料,其在被加热时软化以便于被接合焊盘穿透。接合焊盘可以被定形以增强对平坦化层380的穿透。例如,接合焊盘可以被拉长和/或具有尖端(例如,柱形凸块)以辅助穿透平坦化层380。

    【0093】平坦化层380通常提供所得到的电学器件的平坦上表面,并且也可以用于通过密封或其他方式覆盖芯片364的表面来保护芯片364。平坦化层380也使芯片364与平坦化层380上的天线元件部分348和352电绝缘。

    【0094】作为将芯片364嵌入到衬底304中的替代方案,凹槽可以被形成于衬底304中,芯片364可以被插入到该凹槽内并随后在与平坦化层380层压的过程中被耦合到天线元件部分348和352。

    【0095】参考图21和图22,将描述依照本发明的另一个实施例。在这一实施例中,芯片364被提供嵌入在卷式衬底304中。芯片364可以以任何适当的方式被嵌入到衬底304中,包括之前阐述的方法。卷状物388被提供,具有形成于其上的天线元件部分348和352。卷状物388与衬底304被层压在一起,从而芯片364被连接到其上所形成的天线元件部分348和352。粘合剂392被用于将卷状物388固定到衬底304。粘合剂392可以用作平坦化层以形成所得到的RFID器件的平坦外形。平坦化层可以绝缘芯片364上的电路并可以降低芯片凸块或触点384与天线元件部分348和352之间所需的对准容限。

    【0096】在图23和24中,示出了依照本发明的又一个实施例,其中RFID器件通过将芯片364嵌入到衬底304内并将芯片耦合到卷状物388上的天线元件部分348和352而形成。卷状物388可以是任何适当的材料如PET(聚对苯二甲酸乙二醇酯)。在所示实施例中,接合焊盘384背离衬底304(例如,凸块朝上)。热塑性平坦化层380被提供在芯片364和卷状物388之间。平坦化层380可以是聚氨酯薄膜,如可从密歇根州GrandRapids的Worthen Coated Fabrics公司获得的标签薄膜T-161。该薄膜可以具有任合适当的厚度,例如1.5密耳的标称厚度。当被加热时,该薄膜表现为类似于热融粘合剂以将卷状物388固定到芯片364和/或衬底304。在一些情况下,平坦化层380可以被预热直到发粘以便在器件的组装过程中接收和支撑芯片。通常,依照前述方法,热压可以被施加到包含衬底304、芯片364和平坦化层380的组装件上以嵌入芯片364并将芯片364电耦合到天线元件部分348和352。应该认识到接合焊盘384穿透平坦化层380并以此形成与相应天线元件部分348和352的电连接。

    【0097】参考图25和图26,将描述依照本发明的再一个实施例。在这一实施例中,芯片364被嵌入到具有形成于其上的天线元件部分348和352的卷式衬底304内。芯片364可以依照前面阐述的方法被嵌入到衬底304中。一旦被嵌入到衬底304中,芯片364可以通过印刷导电性油墨或其他方式形成导电引线398以连接芯片364和相应的天线元件部分348和352而被耦合到天线元件部分348和352。

    【0098】由于芯片的同步平坦化和连接,这里所描述的方法和器件允许在组件对准方面具有较不严格的精度的器件组装。此外,因为在组装件被压缩时接合焊盘384直接连接到电元件,因此本发明不需要钻孔或其它形式形成通孔用来沉积导电材料以连接芯片到电元件如天线。

    【0099】还应该认识到依照本发明局部加热衬底的其它方法也可以被使用。例如,超声加热可以被使用而不偏离本发明的范围。另外,加热固化或其它类型的固化如用UV辐射固化等可以被使用。

    【0100】对于本领域技术人员,通过阅读前述说明,可以想到某些修改和改进。应该理解本发明并不局限于任何具体的电学器件类型。对这一申请来说,“耦合”、“被耦合”或“耦合的”希望被广泛地解读为包括直接电耦合和电抗性电耦合。电抗性耦合希望广泛地包括电容性耦合和电感性耦合。本领域技术人员将认识到这些元件可以以不同的方式实现本发明。本发明希望覆盖权利要求书的内容及任何等价物。这里所用的具体实施例是为了帮助理解本发明,而不应被用于以比权利要求及其等价物更窄的方式限制本发明的范围。

    【0101】尽管已经通过某个或某些实施例示出和描述了本发明,但很明显本领域技术人员在阅读和理解本说明书及附图的基础上可以想到等价的替代和修改。特别是对于上述元件(组件、组装件、器件、成分等)所执行的各种功能,除非另外指出,用于描述这些元件的术语(包括提及的“手段”)被认为对应于执行所述元件的具体功能的任何元件(即功能性等价),即使在结构上并不等价于在此处所示的本发明一个或多个示例性实施例中执行该功能的被公开结构。另外,虽然本发明的具体特征可能已在上面仅通过一些所示实施例中的一个或多个被描述,但该特征可以与其它实施例的一个或多于一个其它特征相结合,这对于任何给定或具体的应用可能是需要的和有利的。

RFID标牌薄膜压纹制造技术.pdf_第1页
第1页 / 共37页
RFID标牌薄膜压纹制造技术.pdf_第2页
第2页 / 共37页
RFID标牌薄膜压纹制造技术.pdf_第3页
第3页 / 共37页
点击查看更多>>
资源描述

《RFID标牌薄膜压纹制造技术.pdf》由会员分享,可在线阅读,更多相关《RFID标牌薄膜压纹制造技术.pdf(37页珍藏版)》请在专利查询网上搜索。

一种芯片(20)或其它电组件被嵌入在衬底(32)中。所述衬底(32)可以是热塑性材料,其能够在所述芯片周围变形并至少部分包围所述芯片。电磁辐射如近红外辐射可以被用于加热所述衬底。所述衬底可以包括一可压缩层,该可压缩层可以被压缩和/或按压以形成能够插入所述芯片的凹槽。一旦被嵌入,所述芯片或电组件被所述衬底固定并可以被耦合到另一电组件。一种RFID芯片通过加热和/或加压被嵌入到衬底中,天线结构(52)。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1