一种太阳能前表面反射镜的制造方法.pdf

上传人:000****221 文档编号:12724 上传时间:2018-01-11 格式:PDF 页数:9 大小:594.37KB
返回 下载 相关 举报
摘要
申请专利号:

CN201510260986.0

申请日:

2015.05.20

公开号:

CN104805402A

公开日:

2015.07.29

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):C23C 14/20申请日:20150520|||公开

IPC分类号:

C23C14/20; C23C14/48; C23C14/35; G02B5/08

主分类号:

C23C14/20

申请人:

东莞理工学院

发明人:

徐勇军; 蔡其文; 李海兵; 廖俊旭; 蔡卓弟; 杨晓西

地址:

523000广东省东莞市松山湖大学路1号

优先权:

专利代理机构:

深圳市科吉华烽知识产权事务所(普通合伙)44248

代理人:

朱晓光

PDF下载: PDF下载
内容摘要

本发明公开了一种太阳能前表面反射镜的制造方法,所述方法采用离子注入(MEVVA)技术,解决所述太阳能前表面反射镜的基层与过渡层的连接问题,使基层与过渡层之间形成“相互植根、血肉相连”式的不可分割的牢固结合;所述方法采用磁过滤阴极真空弧沉积(FCVAD)技术,解决所述太阳能前表面反射镜的过渡层与反射层、反射层与保护层的连接问题,并通过解决反射层与保护层沉积的致密度问题,实现提高本发明方法制作的太阳能前表面反射镜的反射率的目的:当反射膜为铝膜时,对太阳光的反射率可达90%~92%;当反射膜为银膜时,对太阳光的反射率为95%~97%;本发明的有益效果还包括质量轻,不易破碎,运输方便,易弯曲,无铅环保、耐磨性良好,且可节约成本20%以上。

权利要求书

1.  一种太阳能前表面反射镜的制造方法,其特征在于:所述方法包括如下步骤:
①首先,制备太阳能前表面反射镜的基层(1),所述太阳能前表面反射镜基层(1)的材料为聚对苯二甲酸乙二酯(简称PET)塑料板,厚度0.2 mm~6.0 mm;在对所述基层(1)实施离子注入(简称MEVVA)工艺操作前,须对其表面进行去污处理,具体工艺要求是:先对所述基层(1)表面进行真空脱气12小时,再用去污剂进行清洗,再用蒸馏水超声波清洗25分钟,最后烘干1分钟并真空保存备用;
②接下来,制备太阳能前表面反射镜的过渡层(2),制作所述过渡层(2)的离子源为铝材,尺寸为Ф10×18 mm,纯度为99.99%;在实施注入操作前,须先对该铝材离子源进行3分钟的预弧光放电,清除该铝材离子源表面残留的氧化物和污染物;设置离子注入(MEVVA)工艺参数:真空室真空度为3.0×10-3 Pa;弧压为70 V,引出高压8KV,触发脉冲输出频率为4HZ,束流1.0~5.0mA;实施离子注入(MEVVA)工艺:将所述备用的基层(1)与所述铝材离子源分别装入离子注入机相应工位,开启离子注入机,向所述基层(1)上注入铝离子,注入库伦数为500~5000mc,注入深度为20~300nm;完成铝离子注入后,所述基层(1)上生成所述过渡层(2),关闭离子注入机;所述基层(1)与所述过渡层(2)之间形成一个相互植根的连接层(22);
③接下来,制备太阳能前表面反射镜的反射层(3),制作所述反射层(3)的阴极靶为铝材,该铝材阴极靶的尺寸为Ф100×40 mm,纯度为99.99%;在实施磁过滤阴极真空弧沉积(简称FCVAD)工艺操作前,须先对该铝材阴极靶进行1分钟的预弧光放电,清除该铝材阴极靶表面残留的氧化物和污染物;设置磁过滤阴极真空弧沉积(FCVAD)工艺参数:真空室真空度为3.0×10-3 Pa;弧流是100 A,负压400V,占空比10%,束流50~170mA;将所述已制备有过渡层(2)的基层(1)与所述铝材阴极靶分别装入磁过滤阴极真空弧沉积机相应工位,开启磁过滤阴极真空弧沉积机,向所过渡层(2)与反射层(3)的结合面(21)上沉积铝离子,沉积库伦数为5000~20000mc,沉积厚度为50~200nm;完成铝离子沉积后,所述过渡层(2)上生成所述反射层(3),立即通入氮气进行冷却钝化,时间为2分钟,以防止反射层及靶材表面被氧化;
④接下来,制备太阳能前表面反射镜的保护层(4),制作所述保护层(4)的阴极靶为硅材,该硅材阴极靶的尺寸为Ф100×40 mm,纯度为99. 5%;为增加保护层的导电性,可掺杂200~600ppm硼元素;设置磁过滤阴极真空弧沉积(FCVAD)工艺参数:工作气体为99.999%高纯氧;将所述硅材阴极靶装入磁过滤阴极真空弧沉积机相应工位,开启磁过滤阴极真空弧沉积机,向所反射层(3)与保护层(4)的结合面(31)上沉积SiO2离子,沉积厚度为50~800 nm;完成SiO2离子沉积后,所述反射层(3)上生成所述保护层(4)。

2.
  根据权利要求1所述一种太阳能前表面反射镜的制造方法的制造方法,其特征在于:步骤①所述过基层(1)所用材料为聚碳酸酯(简称PC)、聚甲基丙烯酸甲酯(简称PMMA)或聚氯乙烯(简称PVC)等聚合物材料。

3.
  根据权利要求1所述一种太阳能前表面反射镜的制造方法的制造方法,其特征在于:步骤②所述过渡层(2)所用离子源为铜材或铬材,铜离子源或铬离子源的尺寸均为Ф10×18 mm,铜材离子源的纯度为99.99%,铬材离子源的纯度为99.95%。

4.
  根据权利要求1所述一种太阳能前表面反射镜的制造方法的制造方法,其特征在于:步骤③所述反射层(3)所用阴极靶为银材,银材阴极靶的尺寸为Ф100×40 mm,纯度为99.99%;当反射层(3)为银材时,其沉积库伦数为5000mc~15000 mc,其厚度为60~150nm,其他工艺参数与步骤③相同。

5.
  根据权利要求1所述一种太阳能前表面反射镜的制造方法的制造方法,其特征在于:步骤④所述保护层(4)阴极靶的材料为铝材,该铝材阴极靶的尺寸为Ф100×40 mm,纯度为99.99%,工作气体为99.999%高纯氧气,保护层厚度为50~500 nm;按此工艺生成的保护层为Al2O3膜。

说明书

一种太阳能前表面反射镜的制造方法
技术领域
本发明涉及能源科学技术、表面加工及涂层技术领域,特别是涉及一种太阳能前表面反射镜的制造方法。
背景技术
太阳能是一种把太阳光转换成电能的绿色可再生能源。与其它常规能源相比,具有以下几个特点:一、太阳能取之不尽,用之不竭,据估算,一年之中投射到地球上的太阳能,其能量相当于137万亿吨标准煤所产生的热量,大约为目前全球一年内利用各种能源所产生能量的两万倍;二、在太阳能转换为电能的过程中不会产生危及环境的污染;三、太阳能遍及全球,可以分散地、区域性地开采。我国约有2/3的地区可以交换地利用太阳能资源。
利用太阳能发电有两大类技术:一类是利用太阳光发电,也称作太阳能光发电技术;另一类是利用太阳热发电,也称作太阳能热发电技术。太阳能光发电是将太阳能直接转换成电能的一种发电技术,例如光伏发电技术;而太阳能热发电则是需要先将太阳能转换成热能,再通过汽轮机带动发电机发电的技术。
太阳能热发电主要有槽式热发电、塔式热发电和碟式热发电三种发电系统。这三种发电系统的基本原理是相同的,即通过一套聚光集热装置,用太阳能把水加热生成高温高压蒸汽,再使之推动汽轮机带动发电机发电。
太阳能热发电系统的聚光集热装置中有一个核心部件,就是太阳能反射镜,其性能直接决定了太阳能光热转换效率与热发电的成本,是太阳能热发电能否实现商业化的关键。
现有技术中,太阳能前表面反射镜的基层材料用的是玻璃、不锈钢板、有机玻璃或聚对苯二甲酸乙二酯(简称PET)材料,然后采用蒸镀或磁控溅射技术镀一层银膜或铝膜。蒸镀或磁控溅射技术制作的太阳能反射镜,有两个致命缺陷:一是基层与过渡层之间因材料的膨胀系数不同,在户外使用时较易导致基层与过渡层老化脱落,进而连带反射层与过渡层一起脱落;第二,在基层或过渡层上所形成的反射层金属膜颗粒较大,致密性不够,致使反射层的反射率不够高。
发明内容
为了克服上述现有技术的不足,本发明提供了一种太阳能前表面反射镜的制造方法,所述方法包括如下步骤:
一种太阳能前表面反射镜的制造方法,所述方法包括如下步骤:
①首先,制备太阳能前表面反射镜的基层,所述太阳能前表面反射镜基层的材料为聚对苯二甲酸乙二酯(简称PET)塑料板,厚度0.2mm~6.0mm;在对所述基层实施离子注入(简称MEVVA)工艺操作前,须对其表面进行去污处理,具体工艺要求是:先对所述基层表面进行真空脱气12小时,再用去污剂进行清洗,再用蒸馏水超声波清洗25分钟,最后烘干1分钟并真空保存备用;
②接下来,制备太阳能前表面反射镜的过渡层,制作所述过渡层的离子源为铝材,尺寸为Ф10×18mm,纯度为99.99%;在实施注入操作前,须先对该铝材离子源进行3分钟的预弧光放电,清除该铝材离子源表面残留的氧化物和污染物;设置离子注入(MEVVA)工艺参数:真空室真空度为3.0×10-3Pa;弧压为70V,引出高压8KV,触发脉冲输出频率为4HZ,束流1.0~5.0mA;实施离子注入(MEVVA)工艺:将所述备用的基层与所述铝材离子源分别装入离子注入机相应工位,开启离子注入机,向所述基层上注入铝离子,注入库伦数为500~5000mc,注入深度为20~300nm;完成铝离子注入后,所述基层上生成所述过渡层,关闭离子注入机;所述基层与所述过渡层之间形成一个相互植根的连接层;
③接下来,制备太阳能前表面反射镜的反射层,制作所述反射层的阴极靶为铝材,该铝材阴极靶的尺寸为Ф100×40mm,纯度为99.99%;在实施磁过滤阴极真空弧沉积(简称FCVAD)工艺操作前,须先对该铝材阴极靶进行1分钟的预弧光放电,清除该铝材阴极靶表面残留的氧化物和污染物;设置磁过滤阴极真空弧沉积(FCVAD)工艺参数:真空室真空度为3.0×10-3Pa;弧流是100A,负压400V,占空比10%,束流50~170mA;将所述已制备有过渡层的基层与所述铝材阴极靶分别装入磁过滤阴极真空弧沉积机相应工位,开启磁过滤阴极真空弧沉积机,向所过渡层与反射层的结合面上沉积铝离子,沉积库伦数为5000~20000mc,沉积厚度为50~200nm;完成铝离子沉积后,所述过渡层上生成所述反射层,立即通入氮气进行冷却钝化,时间为2分钟,以防止反射层及靶材表面被氧化;
④接下来,制备太阳能前表面反射镜的保护层,制作所述保护层的阴极靶为硅材,该硅材阴极靶的尺寸为Ф100×40mm,纯度为99.5%;为增加保护层的导电性,可掺杂200~600ppm硼元素;设置磁过滤阴极真空弧沉积(FCVAD)工艺参数:工作气体为99.999%高纯氧;将所述硅材阴极靶装入磁过滤阴极真空弧沉积机相应工位,开启磁过滤阴极真空弧沉积机,向所反射层与保护层的结合面上沉积SiO2离子,沉积厚度为50~800nm;完成SiO2离子沉积后,所述反射层上生成所述保护层。
进一步的,步骤①所述过基层(1)所用材料为聚碳酸酯(简称PC)、聚甲基丙烯酸甲酯(简称PMMA)或聚氯乙烯(简称PVC)等聚合物材料。
进一步的,步骤②所述过渡层(2)所用离子源为铜材或铬材,铜离子源或铬离子源的尺寸均为Ф10×18mm,铜材离子源的纯度为99.99%,铬材离子源的纯度为99.95%。
进一步的,步骤③所述反射层(3)所用阴极靶为银材,银材阴极靶的尺寸为Ф100×40mm,纯度为99.99%;当反射层(3)为银材时,其沉积库伦数为5000mc~15000mc,其厚度为60~150nm,其他工艺参数与步骤③相同。
进一步的,步骤④所述保护层(4)阴极靶的材料为铝材,该铝材阴极靶的尺寸为Ф100×40mm,纯度为99.99%,工作气体为99.999%高纯氧气,保护层厚度为50~500nm;按此工艺生成的保护层为Al2O3膜。
本发明的技术方案是通过转用两项其他技术领域的制造技术实现的,所述两项制造技术分别是:“离子注入技术(简称MEVVA)”和“磁过滤阴极真空弧沉积技术(简称FCVAD)”。
所述“离子注入技术(MEVVA)”是现代集成电路制造中应用的一种非常重要的高新技术,主要是利用离子注入机实现半导体的掺杂,即将特定杂质的气体或金属蒸汽通入电离室电离后形成带电荷的离子,将离子从电离室引出进入高压电场中加速,使其得到很高速度后打入到硅半导体晶体材料内,离子束与材料中的原子或分子发生一系列的物理和化学作用,引起表面成分和结构的变化,并最终停留在材料中,改变其导电特性,形成晶体管结构。
而本发明转用离子注入技术(MEVVA)的作用在于:使过渡层与基层之间形成一个连接层,在该连接层处,所述基层与过渡层以“相互植根、血肉相连”的方式不可分割的牢固结合在一起,进而有效地克服了“基层与过渡层易老化脱落”的缺陷;
根据北京师范大学低能核物理研究所丁剑飞等人撰写的题为“磁过滤阴极真空弧沉积法制备TiAlN薄膜的研究”的学术报告,所述“磁过滤阴极真空弧沉积技术(FCVAD)”是金属切削技术中应用的一项在金属切削刀具表面涂镀TiAlN硬质涂层的高新技术;与金属切削刀具表面涂镀使用的“阴极真空弧沉积技术”和“磁控溅射技术”等现有技术相比,磁过滤阴极真空弧沉积技术的优点是:离化率高、沉积速度快、涂层与工件的结合好、膜层组织致密、表面光滑等。
而本发明转用磁过滤阴极真空弧沉积技术(FCVAD)的作用在于:利用该技术能使薄膜“膜层组织致密、表面光滑”的特性,提高反射层的反 射率以及保护层的功能;应用磁过滤阴极真空弧沉积技术(FCVAD)在金属切削刀具表面形成的TiAlN薄膜,在切削金属材料时所产生的高温、高压工况下都不易脱落,因此,应用磁过滤阴极真空弧沉积技术(FCVAD)制备太阳能前表面反射镜的反射层和保护层,其各层之间所具有的结合力,足以满足太阳能前表面反射镜的常温、常压工况下的要求。
与蒸镀或磁控溅射技术制作太阳能前表面反射镜等现有技术相比,本发明应用“离子注入技术(简称MEVVA)”和“磁过滤阴极真空弧沉积技术(简称FCVAD)”制作太阳能反射镜,在提高各层之间的结合力和反射层的反射率这两方面获得了意想不到的技术效果,并且本发明所获得的总体有益效果是:制备出的太阳能前表面反射镜结构中,柔性基材与过渡层结合力强、无铅环保性好、抗腐蚀性强;因反射层致密度高而使反射率得到有效地提高;质量轻、可弯曲、机械强度高、耐老化、不易破碎、运输方便,并能够降低生产成。
附图说明
图1是按本发明所述一种太阳能前表面反射镜的制造方法制作的太阳能高反射率前表面反射镜示意图。
附图标记说明
1  太阳能前表面反射镜的基层,
11 太阳能前表面反射镜的基层的厚度,
2  太阳能前表面反射镜的过渡层,
21 太阳能前表面反射镜的过渡层与反射层结合面,
22 太阳能前表面反射镜的过渡层注入基层的厚度,
3  太阳能前表面反射镜的反射层,
31 太阳能前表面反射镜的反射面暨与保护层的结合面,
4  太阳能前表面反射镜的保护层,
5  太阳能前表面反射镜反射太阳光示意,
51 入射光,
52 反射光。
具体实施方式
下面结合实施方式对本发明作进一步详细描述:
实施例一:
①首先,制备太阳能前表面反射镜的基层1,所述太阳能前表面反射镜基层1的材料为聚对苯二甲酸乙二酯(PET)塑料板,厚度0.2mm~6.0mm;在对所述基层1实施离子注入技术(MEVVA)工艺操作前,须对其表面进行去污处理,具体工艺要求是:先对所述基层1表面进行真空脱气12小时,再用去污剂进行清洗,再用蒸馏水超声波清洗25分钟,最后烘干1分钟并真空保存备用;
②接下来,制备太阳能前表面反射镜的过渡层2,制作所述过渡层2的离子源为铝材,尺寸为Ф10×18mm,纯度为99.99%;在实施注入操作前,须先对该铝材离子源进行3分钟的预弧光放电,清除该铝材离子源表面残留的氧化物和污染物;设置离子注入技术(MEVVA)工艺参数:真空室真空度为3.0×10-3Pa;弧压为70V,引出高压8KV,触发脉冲输出频率为4HZ,束流1.0~5.0mA;实施离子注入技术(MEVVA)工艺:将所述备用的基层1与所述铝材离子源分别装入离子注入机相应工位,开启离子注入机,向所述基层1上注入铝离子,注入库伦数为500~5000mc,注入深度为20~300nm;完成铝离子注入后,所述基层1上生成所述过渡层2,关闭离子注入机;所述基层1与所述过渡层2之间形成一个相互植根的连接层22;
③接下来,制备太阳能前表面反射镜的反射层3,制作所述反射层3的阴极靶为铝材,该铝材阴极靶的尺寸为Ф100×40mm,纯度为99.99%;在实施磁过滤阴极真空弧沉积技术(FCVAD)工艺操作前,须先对该铝材阴极靶进行1分钟的预弧光放电,清除该铝材阴极靶表面残留的氧化物和污染物;设置磁过滤阴极真空弧沉积技术(FCVAD)工艺参数:真空室真空度为3.0×10-3Pa;弧流是100A,负压400V,占空比10%,束流50~170mA;将所述已制备有过渡层2的基层1与所述铝材阴极靶分别装入磁过滤阴极 真空弧沉积机相应工位,开启磁过滤阴极真空弧沉积机,向所过渡层2与反射层3的结合面21上沉积铝离子,沉积库伦数为5000~20000mc,沉积厚度为50~200nm;完成铝离子沉积后,所述过渡层2上生成所述反射层3,立即通入氮气进行冷却钝化,时间为2分钟,以防止反射层及靶材表面被氧化;
④接下来,制备太阳能前表面反射镜的保护层4,制作所述保护层4的阴极靶为硅材,该硅材阴极靶的尺寸为Ф100×40mm,纯度为99.5%;为增加保护层的导电性,可掺杂200~600ppm硼元素;设置磁过滤阴极真空弧沉积(FCVAD)工艺参数:工作气体为99.999%高纯氧;将所述硅材阴极靶装入磁过滤阴极真空弧沉积机相应工位,开启磁过滤阴极真空弧沉积机,向所反射层3与保护层4的结合面31上沉积SiO2离子,沉积厚度为50~800nm;完成SiO2离子沉积后,所述反射层3上生成所述保护层4。
实施例二:
步骤①所述过基层1所用材料为聚碳酸酯(简称PC)、聚甲基丙烯酸甲酯(简称PMMA)或聚氯乙烯(简称PVC)等聚合物材料。
实施例三:
步骤②所述过渡层2所用离子源为铜材或铬材,铜离子源或铬离子源的尺寸均为Ф10×18mm,铜材离子源的纯度为99.99%,铬材离子源的纯度为99.95%。
实施例四:
步骤③所述反射层3所用阴极靶为银材,银材阴极靶的尺寸为Ф100×40mm,纯度为99.99%;当反射层(3)为银材时,其沉积库伦数为5000mc~15000mc,其厚度为60~150nm,其他工艺参数与铝材相同。
实施例五:
步骤④所述保护层4阴极靶的材料为铝材,该铝材阴极靶的尺寸为Ф100×40mm,纯度为99.99%,工作气体为99.999%高纯氧气,保护层厚度为50~500nm;按此工艺生成的保护层为Al2O3膜。
广东省东莞理工学院的徐勇军科研团队以玻璃和聚合物PC为基材,以铝材为反射材料,铝膜厚度为70nm,采用拉脱法测试附着力。对“离子注入技术(简称MEVVA)”+“磁过滤阴极真空弧沉积技术(简称FCVAD)”制造的太阳能前表面反射镜和磁控溅射技术制造的太阳能前表面反射镜进行了对比,结果见下表,和磁控溅射技术相比,MEVVA+FCVAD技术的附着力和反射率都有了大幅度提高,特别是采用MEVVA离子注入后,聚合物基材与反射膜的附着力提高非常明显注。
MEVVA+FCVAD和磁控溅射制备的铝膜附着力和反射率测试对照表

由上表可以看出,与蒸镀或磁控溅射技术制作太阳能前表面反射镜等现有技术相比,本发明应用“离子注入技术(简称MEVVA)”和“磁过滤阴极真空弧沉积技术(简称FCVAD)”制作太阳能反射镜,在提高各层之间的结合力和反射层的反射率这两方面获得了意想不到的技术效果;本发明所获得的总体有益效果是:制备出的太阳能前表面反射镜结构中,柔性基材与过渡层结合力强、无铅环保性好、抗腐蚀性强;因反射层致密度高而使反射率得到有效地提高;质量轻、可弯曲、机械强度高、耐老化、不易破碎、运输方便,并能够降低生产成。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

一种太阳能前表面反射镜的制造方法.pdf_第1页
第1页 / 共9页
一种太阳能前表面反射镜的制造方法.pdf_第2页
第2页 / 共9页
一种太阳能前表面反射镜的制造方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《一种太阳能前表面反射镜的制造方法.pdf》由会员分享,可在线阅读,更多相关《一种太阳能前表面反射镜的制造方法.pdf(9页珍藏版)》请在专利查询网上搜索。

本发明公开了一种太阳能前表面反射镜的制造方法,所述方法采用离子注入(MEVVA)技术,解决所述太阳能前表面反射镜的基层与过渡层的连接问题,使基层与过渡层之间形成“相互植根、血肉相连”式的不可分割的牢固结合;所述方法采用磁过滤阴极真空弧沉积(FCVAD)技术,解决所述太阳能前表面反射镜的过渡层与反射层、反射层与保护层的连接问题,并通过解决反射层与保护层沉积的致密度问题,实现提高本发明方法制作的太阳能。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 对金属材料的镀覆;用金属材料对材料的镀覆;表面化学处理;金属材料的扩散处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆;金属材料腐蚀或积垢的一般抑制〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1