液体喷头 【技术领域】
本发明涉及一种通过由于压电振动器变形使压力腔中的液体压力产生波动而从喷嘴口喷射液滴的液体喷头。
背景技术
通过使压力腔中的液体压力产生波动而从喷嘴口喷射液滴的液体喷头包括例如记录头,液晶喷头,颜料喷头等。纪录头安装在图形记录装置如打印机或绘图仪中来将墨水以墨滴形式喷射。液晶喷头用于显示器制造装置可制造液晶显示器。在显示器制造装置中,从液晶喷头中喷射出的液晶被注入到具有很多栅格的显示基片的一个预定栅格中。颜料喷头用于滤光器制造装置用来制造滤色器,可将颜料喷射在滤光板的表面上。
现有不同类型的液体喷头,其中的一种是通过形成在振动板表面上的压电振动器的弯曲和变形来喷射液滴的液体喷头。这种液体喷头,举例来说,由一个包含多个压力腔和多个压电振动器的致动器单元和一个包含多个喷嘴口和一个公共储液室的流体通道单元组成。在此液体喷头中,在振动板上的压电振动器发生变形,由此相应压力腔的体积发生变化以引起储存在压力腔中液体发生压力波动。通过压力波动,液滴将从相应的喷嘴口中喷出。举例来说,压力腔被压缩,由此液体受压将液体从喷嘴口中挤出。
顺便地说,现在有强烈的要求将此液体喷头小型化,因为随着液体喷头小型化后,液体喷头的应用范围将会扩大。举例来说,致动器单元由陶瓷焙烧进行生产。因此,随着致动器单元的小型化,每一批(举例来说,从一个陶瓷片中)生产出的致动器单元的数量会增加,从而使成本降低。
【发明内容】
因此,本发明地目的是提供具有适于小型化的结构的液体喷头。
为了实现上述目的,根据本发明,提供了一种液体喷头,包括:
振动板,形成了压力腔的一部分,所述压力腔与喷嘴口连通,液滴从所述喷嘴口喷射,所述压力腔由沿第一方向延伸的、具有第一尺寸的第一棱边和沿基本垂直于所述第一方向的第二方向延伸的、具有小于所述第一尺寸的第二尺寸的第二棱边所限定;
压电振动器,叠放在所述振动板上,使得与所述压力腔相对,所述压电振动器包括:
驱动电极,延伸出所述第二棱边中的一个棱边;
第一压电层,层叠在所述驱动电极上,以至延伸出所述的第二棱边;以及
第一公共电极,层叠在所述第一压电层上;
以及
驱动端点,电连接到所述驱动电极以向其提供驱动信号,此驱动端点覆盖在所述第一压电层延伸出所述第二棱边的部分之一上,而与所述第一公共电极相远离。
最好,压电振动器还包括:形成在振动板上且与第一公共电极电连接的第二公共电极,和置于第二公共电极和驱动电极之间的第二压电层。
在这样的结构中,由于驱动端点的末端部分被覆盖,压电振动器沿长度方向的尺寸可以相应的减小,所以可以实现喷头的小型化。
【附图说明】
通过参考附图具体地描述优选实施例,本发明的上述目的和优点将更加清楚,其中:
图1是示出根据本发明的一个实施例的记录头结构的分解透视图;
图2是示出记录头中致动器单元和流体通道单元的截面图;
图3是示出记录头中喷嘴板的局部放大图;
图4是从压电振动器侧面观察得到的致动器单元的透视图;
图5和图6是示出压电振动器结构的截面图;
图7是图6中A部分的放大图;
图8是图6中B部分的放大图;
图9是示出记录头的假振动器一个末端部分的结构的视图;以及
图10是示出假振动器另一个末端部分的结构的视图。
【具体实施方式】
现参照附图,将描述本发明的一个优选实施例。在下面的描述中,对于液体喷头,如图1所示,安装在图像记录装置如打印机或绘图仪中的记录头1将作为实例。纪录头1大致由一个流体通道单元2,若干致动器单元3,和一个片状线路板4组成。致动器单元3并排地接合在流体通道单元2的表面上,而线路板4安装在致动器单元3的与流体通道单元2相对的另一表面上。
举例来说,如图7所示,线路板4由基膜4A及在其表面上的导体图案4B和留出的接触端点20构成,在导体图案4B上覆有保护层4C,而接触端点20和分立端点19(在后面描述)焊接以安装线路板4。
如图2(截面图)所示,流体通道单元2由供墨端口形成基片7、墨室形成基片9和喷嘴板11组成。供墨端口形成基片7形成有作为供墨端口5一部分和各喷嘴连通端口6一部分的若干通孔,墨室形成基片9形成有作为公共储墨室8和各喷嘴连通端口6一部分的若干通孔,喷嘴板11具有若干沿副扫描方向排列的喷嘴口10,而供墨端口形成基片7、墨室形成基片9和喷嘴板11,举例来说,由不锈钢板材压制而成。
图2示出了对应于一个致动器单元3的流体通道单元2的一部分。在所述实施例中,三个致动器单元3被接合到一个流体通道单元2,因此总共三套的供墨端口5,喷嘴连通端口6,供墨端口形成基片7,公共储墨室8等与三个致动器单元形成一一对应。
为了生产流体通道单元2,喷嘴板11被放置在墨室形成基片9的一个表面(图中的下侧面),而供墨端口形成基片7被放置在墨室形成基片9的相对的另一表面(图中的上侧面),并将供墨端口形成基片7,墨室形成基片9和喷嘴板11,举例来说,用片状的胶粘剂接合起来。
如图3所示,喷嘴口10被制成类似于有预定间距的行。被制成类似于行的喷嘴口10组成了各喷嘴行12。举例来说,92个喷嘴口10组成了一个喷嘴行12。一个致动器单元3对应两个喷嘴行12。所以,一个流体通道单元2上并排地形成有总共6个喷嘴行12。
致动器单元3也被称为主芯片(head chip),是一种压电致动器。如图2所示,此致动器单元3由压力腔形成基片14,振动板15,盖板(lid member)17和压电振动器18组成。压力腔形成基片14形成有若干作为压力腔13的通孔,振动板15用于限定各压力腔13的一部分,盖板17形成有若干作为供墨连通端口16和各喷嘴连通端口6一部分的通孔。对于这些部件的板厚度,最好每个压力腔形成基片14和盖板17为50μm或更厚,更优的为100μm或更厚。最好,振动板15为50μm或更薄,更优的约为3到12μm。
为了生产致动器单元3,盖板17被置于压力腔形成基片14的一个表面上,而振动板15被置于另一相对的表面上,且这些部件形成一个整片。就是说,压力腔形成基片14,振动板15和盖板17由氧化铝和氧化锆等陶瓷制成,并焙烧成一个整片。
举例来说,在生片(未焙烧的片状部件)上进行切割,冲孔等工作来形成所需的通孔等,以分别形成压力腔形成基片14,振动板15和盖板17的片状前驱体。将这些片状前驱体相互叠放并进行焙烧,由此它们被做成一整片,以形成一个陶瓷片。在此情况下,这些片状前驱体被焙烧成一片,因而不需要特殊的粘接处理。这些片状前驱体的接合面也具有优异的密封性能。
一个陶瓷片上形成有多个单元的压力腔13,喷嘴连通端口6等。换句话说,多个致动器单元(主芯片)3可由一个陶瓷片制得。举例来说,多个芯片区在一个陶瓷片中排列成矩阵,每个芯片区形成一个致动器单元3。压电振动器18中的所需部件等都形成在各芯片区中,然后按各芯片区对片状部件(陶瓷片)进行切割,由此可得到多个致动器单元3。
每个压力腔13都是沿垂直于喷嘴行12方向拉长的空腔,与喷嘴口10形成一一对应。就是说,如图3所示,这些压力腔13沿喷嘴行方向排列成行。每个压力腔13在一端通过供墨连通端口16和供墨端口5与公共储墨室8连通。压力腔13在与供墨连通端口16相对的另一端通过喷嘴连通端口6与对应的喷嘴口10连通。另外,压力腔13的一部分(下表面)是由振动板15限定的。
每个压电振动器18都是采用弯曲振动模式的压电振动器18,与压力腔13一一对应地形成在与压力腔13相对的振动板表面上。压电振动器18为沿压力腔长度方向拉长的块状体。它的宽度与压力腔13的宽度大致相等,而长度比压力腔13的长度稍长。另外,压电振动器18的放置使得其两个端部都在长度方向超出了压力腔13的端部。
如图4所示,压电振动器18和压力腔13一一对应,处在与压力腔13相对的振动板表面上。就是说,压电振动器18是按喷嘴行方向进行排列的。在每个振动器行末端的压电振动器18是不参与喷射墨滴的假振动器18a(即,因为没有提供驱动信号而不产生变形)。除了假振动器18a以外的压电振动器18作为参与喷射墨滴的驱动振动器18b(即,当提供驱动信号时发生变形)。
分立端点19沿其长度方向形成在压电振动器18(驱动振动器18a和假振动器18b)的一个侧面,与压电振动器18形成一一对应。前述线路板4中的接触端点20(见图7)电连接到分立端点19。作为公共电极一部分的线状近极公共电极21在压电振动器18的相对另一侧面在其长度方向上沿喷嘴行的方向延伸。
如图5所示,在此实施例中压电振动器18(驱动振动器18b)具有多层结构,包括一个压电层22,一个分支公共电极23,一个驱动电极(分立电极)24等,压电层22被夹在驱动电极24和分支公共电极23之间。驱动信号的提供源(没有示出)通过分立电极19被电连接到驱动电极24,而举例来说,通过近极公共电极21等将分支公共电极23调节至接地。当把驱动信号提供给驱动电极24时,在驱动电极24和分支公共电极23之间将产生一个其强度对电势差敏感的电场。给压电层22施加了电场后,压电层22将响应于所施加电场的强度发生变形。
就是说,驱动电极24的电势越高,压电层22在垂直于电场强度方向上的收缩越大,使振动板15变形以减小压力腔13的体积。另一方面,驱动电极24的电势越低,压电层22在垂直于电场强度方向上的扩张越大,使振动板15变形以增大压力腔13的体积。
致动器单元3和流体通道单元2相互接合到一起。举例来说,将片状胶粘剂置于供墨端口形成基片7和盖板17之间,在这种状态下,将致动器单元3压向流体通道单元2,由此致动器单元3和流体通道单元2被接合。
在所描述的记录头1中,每个墨水流体通道从公共储墨室8开始,经过供墨端口5、供墨连通端口16、压力腔13和喷嘴连通端口6到达喷嘴口10,并和喷嘴口10形成一一对应。在运行的时候,墨水流体通道中灌满墨水。随着压电振动器18发生变形,相应的压力腔13发生收缩或扩张,压力腔13中墨水压力发生波动。由于墨水压力受到控制,墨滴就可以从喷嘴口10中喷出。举例来说,如果压力腔13的静态体积发生一次扩张,然后迅速地收缩,当压力腔13膨胀时压力腔13中充满了墨水,然后因为随后压力腔13的迅速收缩使得压力腔13中的墨水受压而喷射出墨滴。另外,当墨滴从喷嘴口10中喷出后,新的墨水从公共储墨室8供应到墨水流体通道中,所以墨滴可以进行连续地喷射。
为了进行高速纪录,需要在短时间内喷射出大量的液滴。为了满足这个要求,有必要来考虑作为压力腔13一边的界面的振动板15的柔量和压电振动器18的变形量。需要考虑柔量和变形量的原因是因为随着振动板15柔量的增大,对变形的可敏感度下降,在高频下驱动变得困难,而随着振动板15柔量的减小,振动板15变得难以变形而压力腔13的收缩量减少,一滴墨滴的墨量减少。
在此实施例中,多层结构的各压电振动器18被用来减小振动板15的柔量,使在前所未有的高频下喷射出具有所需墨量的墨滴成为可能。分立端点19的末端部分被放在压电振动器18上,以使致动器单元3在其宽度方向上小型化。另外,用来电连接近极公共电极21和分立电极19的连接电极被放置在各假电极18a中。这些将在下面进行讨论:
首先,将讨论驱动振动器18b的结构。如图5所示,压电层22形成沿压力腔长度方向拉长的块状体,并由相互叠放的一个上压电体(外压电体)31和一个下压电体(内压电体)32组成。分支公共电极23由一个上公共电极(外公共电极)33和一个下公共电极(内公共电极)34组成。分支公共电极23和驱动电极24组成了一个电极层。
这里提及的术语“上(外)”或“下(内)”是用来指明以振动板15为参照物的位置关系。就是说,术语“上(外)”用来指明远离振动板15的一侧,而术语“下(内)”用来指明靠近振动板15的一侧。
驱动电极24形成在上压电体31和下压电体32之间的界面上。下公共电极34和上公共电极33与近极公共电极21一起组成了公共电极。就是说,公共电极是梳状的,以致形成了从近极公共电极21延伸出来的多个分支共电极23(下公共电极34和上公共电极33)。
下公共电极34形成在下压电体32和振动板15之间,而上公共电极33形成在上压电体31的与下公共电极32相对的另一侧的表面上。那就是说,驱动振动器18b具有多层结构,其中下公共电极34,下压电体32,驱动电极24,上压电体31,和上公共电极33从振动板15一侧开始依次叠放。
在此实施例中,压电层22的厚度约为17μm(上压电体31的厚度加下压电体32的厚度)。包含分支公共电极23的压电振动器18的总厚度约为20μm。具有单层结构的相关技术的压电振动器的总厚度约为15μm。因此,随着压电振动器18厚度的增加,振动板15的柔量相应地减小。
上公共电极33和下公共电极34不管驱动信号如何都被调节至恒定电势,举例来说接地。驱动电极24的电势随着所提供的驱动信号发生变化。因此,当提供驱动信号后,在驱动电极24与上公共电极33之间,以及驱动电极24和下公共电极34之间将产生方向相反的电场。
对于形成电极的材料,可以选择不同的金属单质导体、合金、电绝缘陶瓷和金属的混合物等,但要求在焙烧温度下不发生退化缺陷等。在此实施例中,金用来制备上公共电极33而铂用来制备下公共电极34和驱动电极24。
举例来说,上压电体31和下压电体32都是由主要包含钛酸铅锆(PZT)的压电材料制成。上压电体31和下压电体32的极化方向相反。因此,当提供驱动信号时上压电体31和下压电体32扩张或收缩的方向是相同的,而可以使振动板不受阻碍地发生变形。就是说,当增高驱动电极24的电势时,上压电体31和下压电体32使振动板15产生变形,以减小压力腔13的体积;当降低驱动电极24的电势时,上压电体31和下压电体32使振动板15产生变形,以增大压力腔13的体积。
接下来,将讨论驱动振动器18b一个侧面(公共储墨室8侧)的结构。
在此侧面上,如前所述,形成有分立端点19。驱动振动器18b的分立端点19是用来提供驱动信号(驱动电势)的驱动电势提供端点,且电连接到线路板4的接触端点20。分立端点19被电连接到沿压力腔13长度方向延伸的驱动电极24。就是说,分立端点19的一部分被放在驱动电极24的末端部分。
本实施例的特征是分立端点19的末端部分覆盖在驱动振动器没有叠在压力腔13上的末端部分(上压电体)的表面上,另外,分立端点19和上公共电极33(分支公共电极23)之间是远离的。
就是说,如图6和图7所示,压电振动器18的一个末端部分延伸到了压力腔13的末端部分之外,换句话说,延伸到了压力腔13上的重叠区域以外的非重叠区域。分立端点19在振动器一侧的末端部分被叠放在压电振动器18非重叠区域的上表面上。形成在压电振动器18上的分立端点19的末端部分成为了电连接于线路板4(接触端点20)的电连接(导通)部分,此后将称为导电部分19a。另一方面,上公共电极33的末端部分被形成为分立端点19之前的一点,但从分立端点19开始有一个绝缘区域X,因此它们之间没有电连接。
这样的结构使得致动器单元3的小型化成为了可能。就是说,分立端点19的末端部分被牢固地覆盖在压电振动器18的表面上,所以分立端点19可以作为一个整体斜靠在压电振动器的侧面。所以,对于分立端点19,在电连接所必需的长度(即,连接接触端点20所需长度)被保证时,致动器元件3的宽度,特别是,在压力腔长度方向上的宽度可以减小。
随着致动器元件3的小型化,制造时,在与相关技术面积相同的陶瓷片上可以安排下更多数量的致动器单元3。因此,在与相关技术提供的相同的工艺下,可以制造更多数量的致动器单元3,所以可以提高生产效率。原材料也得到节省。由于可以提高生产效率和节省原材料,降低致动器单元3的成本也成为可能。
在连接线路板4的时候,将线路板4的接触端点20放到分立端点19上之后,一个加热端点(没有示出)从与分立端点19相对的线路板侧表面施压,来焊接分立端点19和接触端点20,如图7所示。在这种情况下,分立端点19的导电部分19a被放置在压电振动器18之上且处于致动器单元3的最高位置,因而可以受到加热端点的最强加压。因此,可以实现可靠的焊接。
另外,导电部分19a形成在压电振动器18上,所以导电部分19a以下的部件增加了和压电振动器18相同的厚度,所以所述部件的刚度增加,也可以可靠地接受来自加热端点的压力。
接下来,将讨论驱动振动器18b相对另一侧面(喷嘴口10侧)的结构。
如图6和图8所示,在驱动振动器18b的所述相对另一侧面上,上公共电极33和下公共电极34在沿压力腔13的长度方向上延伸。就是说,下公共电极34通过振动板15的顶部到达了近极公共电极21的下表面。上公共电极33通过压电层22的侧端面到达了下公共电极34的表面。另外,形成的上公共电极33也到达了近极公共电极21的下表面。因此,上公共电极33和下公共电极34都电连接到近极公共电极21。
接下来,将讨论假电极18a的结构。假电极18a的基本结构和前述的驱动振动器18b是一样的。就是说,如图9和图10所示,假电极18a也具有一个压电层22,包括上压电体31和下压电体32,且形成沿压力腔长度方向伸长的块状体,并形成有一个电极层,在振动板15和下压电体32之间;一个电极层,处在上压电体31和下压电体32之间界面上;和一个电极层,处在与下压电体32相对的上压电体31表面上。
在此实施例中,在振动板15和下压电体32之间的,此后被称为第一连接电极35的电极层,和在上压电体31和下压电体32之间界面上的,此后被称为第二连接电极36的电极层,都沿压力腔13长度方向延伸到压力腔13的两侧以电连接近极公共电极21和分立端点19。
就是说,第一连接电极35从近极公共电极21开始,通过下压电体32的下侧面,到达分立端点19,而第二连接电极36从近极公共电极21开始,通过上压电体31的下侧面,到达分立端点19。在此实施例中,形成连接电极用的电极材料与下公共电极34和驱动电极24相同。
在此结构中,假电极18a上的分立端点19和近极公共电极21通过连接电极35,36电连接,分立端点19可以用来作为一个提供端点来提供公共的电势(举例来说,接地)。由于形成的分立端点19与驱动振动器18b中的分立端点19在同一行,所以致动器单元3可以小型化。为了电连接线路板4和每个分立端点19,假振动器18a的分立端点19和驱动振动器18b的分立端点19可以一起电连接,这样可以提高工作效率。
连接电极被放置在压电层22的下侧面,不会有毛边的部分出现。因此可以在线路板4装配好后,有效地防止因为毛边部分而引起的线路断路和短路等缺陷。因此,故障较少的记录头1的稳定性能可以得到充分地利用。
另外,连接电极35和36被分隔在两层,因而可以保证足够的厚度,这样电极的电阻可以减小到很低的值。此外,形成连接电极35和36用的电极材料与下公共电极34和驱动电极24相同,所以可以和下公共电极34和驱动电极24一起制备。就是说,第一连接电极35可以和下公共电极34同时制备,而第二连接电极36可以和驱动电极24同时制备。这样就不需要进行特别的处理来形成连接电极,可以提高生产效率。
应该理解本发明不限于所述的具体实施例,不偏离本发明所要求的精神和范围,可以这些对部分进行组合和排列。
举例来说,在实施例中,压电振动器18是多层结构的,其中上和下压电体31和32等被叠放,但本发明也可应用到包含单层压电层的单层结构压电振动器。举例来说,对于驱动振动器18b,驱动电极24形成在压电层22和振动板15之间,而上公共电极33和分立端点19形成在压电层与振动板15相对的表面。对于假电极18a,连接电极形成在压电层22和振动板15之间。
尽管以记录头1,一种类型的液体喷头,作为实例对液体喷头进行了描述,但本发明也可用于其它的液体喷头如液晶喷头和颜料喷头。