无线通信系统中 用于生成报头序列的装置和方法 技术领域
本发明一般涉及在无线通信系统中使用的产生报头序列的装置和方法,并且更具体地,涉及用于产生指示帧同步或数据实体(existence)的报头序列的装置和方法。
背景技术
通常,无线通信系统是指支持无线电通信业务的系统,并且无线通信系统包括用于无线通信的UTRAN(UMTS(通用移动电信系统)地面无线接入网络)和UE(用户设备)。UTRAN和UE使用传输帧执行无线通信,为交换传输帧,要求传输帧彼此同步。为此,UTRAN发送sync(同步)信号,使UE可以识别帧的开始点。接着UE通过接收UTRAN发送的同步信号来检查UTRAN的帧定时。
被UTRAN和UE事先选择特定的报头序列典型地用于同步信号。当指示帧定时的报头序列被基于突发(burst-by-burst)(断续地)不连续地发送时,报头序列的接收性能(能力)依赖于非周期的自相关特性。
此外,为获得帧定时,指示时隙同步的序列用于报头序列。W-CDMA(宽带码分多址接入)UMTS系统、FDD(频分双工)UMTS系统和TDD(时分双工)UMTS系统的每个帧中具有多个时隙。因此,FDD UMTS系统具有指示时隙开始点(同步)的时隙同步信号,而TDD UMTS系统每个时隙中具有用于时隙同步的中置信号。与帧同步信号类似,时隙同步信号和中置信号也是事先由UTRAN和UE选择并断续地发送的。
而且,使用W-CDMA技术地BRAN(宽带无线接入网络)系统(或BRAN超级(hyper)接入系统)通过在时分基础上对帧的分割来将数据发送到多个用户。即使在BRAN系统中,指示帧开始的帧报头码也存在于该帧开始点上的特定时段上。此外,由于各个用户的数据可以在一个帧中无规律地发送,所以指示数据开始点的突发报头码存在于数据的头部。因此,为识别数据的发送开始点,UE应该接收数据报头码。即,为接收数据,UE应该获得数据开始点上的同步。为了同步,在接收数据之前,UE获得每一个系统普遍使用的报头信号。参照图1描述包括报头信号的帧结构。
图1示出了BRAN系统中使用的通常的帧结构。参照图1,帧报头101表示帧的开始点,用在检测来自UTRAN的信号的同步。帧报头101在被发送之前,先经过QPSK(四相相移键控)调制。广播信道(BCH)102用于将BRAN通信过程中所需的系统信息广播到UTRAN覆盖范围中的每一个UE。第一突发报头103表示断续发送的第一突发数据的开始点。第一数据信道104表示发送第一数据的部分。在第一数据信道104上发送的第一数据在被发送之前,先经过QPSK(四相相移键控)、16QAM(16正交调幅)和64QAM(64正交调幅)调制中的任何一种调制。如图1所示的帧格式包括N个突发报头和N个后续的数据信道。
在上文的描述中,根据通信标准,系统使用由UTRAN(发送器)和UE(接收器)事先选择的序列(多种报头序列)指示帧同步、时隙同步或数据实体。由于序列是根据突发而断续发送的,所以序列具有良好的非周期自相关特性。参照图2,将描述一般的报头发送器的结构。
图2说明了UTRAN中的发送报头序列的报头发送器的结构。参照图2,报头生成器200产生复报头信号,并将所产生的复报头信号提供给第一基带滤波器210和第二基带滤波器215。具体地,I(I平面)序列信号,即从报头生成器200产生的报头信号的实分量信号被提供给第一基带滤波器210,而Q(正交平面)序列信号,即报头信号的虚分量信号被提供给第二基带滤波器215。第一基带滤波器210和第二基带滤波器215将来自报头生成器200的I信号和Q信号分别滤波成I(I-arm)基带信号和Q(Q-arm)基带信号。从第一基带滤波器210输出的基带信号提供给乘法器220,同时第二基带滤波器215输出的基带信号提供给乘法器225。乘法器220将从第一基带滤波器210输出的信号乘以载波信号cos(2πfct),并将其输出信号提供给加法器230。而且乘法器225将从第二基带滤波器215输出的信号乘以载波信号sin(2πfct),并将其输出信号提供给加法器230。加法器230将从乘法器220的输出的信号与从乘法器225输出的信号相加,并将相加的输出信号提供给天线(未示出)。在图2的传统的报头发送器中,在经过QPSK调制之后,将其上没有添加任何纠错信息的报头发送。
下面,参考图3,说明一般的报头接收器的结构。
图3说明了UE中用于检测从发送器发送的报头的报头接收器的结构。在图3中,为方便起见,省略了RF(射频)部分、IF(中频)部分和滤波部分。
参照图3,将接收的RF信号r(t)提供给乘法器320和325。为进行下变换,乘法器320将信号r(t)乘以载波信号cos(2πfct),并将下变换的I分量信号提供给第一基带滤波器310。而且,为进行下变换,乘法器325将信号r(t)乘以载波信号sin(2πfct),并将下变换的Q分量信号提供给第二基带滤波器315。第一基带滤波器310对从乘法器320中输出的信号进行滤波,并将其输出信号作为I分量信号提供给匹配滤波器300。第二基带滤波器315对从乘法器325中输出的信号进行滤波,并将其输出信号作为Q分量信号提供给匹配滤波器300。报头生成器330产生I分量报头信号和Q分量报头信号,并将所产生的报头信号提供给匹配滤波器300。匹配滤波器300检测从第一和第二基带滤波器310和315输出的I和Q分量信号和从报头生成器330输出的I和Q分量报头信号之间的相关性,然后将所检测的相关值提供给决定部分340。决定部分340将从匹配滤波器300输出的相关值和在接收器中事先设置的唯一绝对阈值进行比较。根据比较结果,如果从匹配滤波器300输出的相关值高于或等于阈值,则决定部分340输出报头获得指示信号。否则,如果从匹配滤波器300输出的相关值低于阈值,则决定部分340输出报头获得失败信号。
如上所述的传统接收器,使用相关特性以检测报头。在这种情况中,报头检测性能依赖于报头的非周期自相关性。因此,如上所述,为达到接同步,必须将具有良好非周期自相关性的代码用做报头信号。
如上所述,在BRAN系统中使用的报头分类成指示一个帧的开始点的帧报头和指示突发数据的发送开始点的突发报头。帧报头中的下行链路帧报头信号应该具有至少32比特的长度,并且突发报头中的下行链路突发报头信号应该具有至少16比特的长度。此外突发报头中的上行链路突发报头信号应该具有至少32比特的长度。即,即使相同的系统也需要具有多种长度的报头信号。在产生具有多种长度的报头信号中,最好使用公共的报头生成器,而不使用产生具有不同长度的报头信号的多个分离的报头生成器。
发明内容
因此,本发明的一个目的是提供一种无线通信系统中的用于产生帧报头序列的装置和方法。
本发明的另一个目的是提供一种无线通信系统中用于产生检测同步的报头序列的装置和方法。
本发明的另一个目的是提供一种无线通信系统中用于产生检测数据开始点的突发报头序列的装置和方法。
本发明的另一个目的是提供一种无线通信系统中用于同时产生帧报头序列和突发报头序列的装置和方法。
本发明的另一个目的是提供一种无线通信系统中用于产生具有良好非周期自相关性的报头序列的装置和方法。
为实现上述和其它目的,提供一种通过接收具有给定长度的第一序列产生具有预定长度的非周期回归多路复用(ARM)码的方法。该方法包括步骤:(a)通过将第一序列乘以在+1和-1之间交替的、长度与第一序列相同的第二序列来输出第三序列;(b)通过时分多路复用第一序列和第三序列输出第四序列;(c)当第四序列的长度与预定长度不同时,重新指定第四序列为第一序列,并返回步骤(a);以及(d)当第四序列的长度与预定长度相同时,输出第四序列作为ARM码。第一序列是通过在2比特可能的组合中选择一个来产生的。
而且,为实现上述和其它目的,提供一种通过接收具有给定长度的第一序列产生具有预定长度的非周期回归多路复用(ARM)码的装置。该装置包括:乘法器,用于通过将第一序列乘以在+1和-1之间交替的、长度与第一序列相同的第二序列来输出第三序列;多路复用器,用于时分多路复用第一序列和第三序列;以及控制器,用于重新指定从多路复用器输出的序列为第一序列,并将该重新指定的序列再输入到该乘法器和多路复用器中,直到产生具有预定长度的ARM码为止。
附图说明
通过下面结合附图进行的详细描述,本发明的上述和其他目的、特点和优点将会变得更加清楚,其中:
图1示出了BRAN系统中使用的一般帧格式;
图2示出了UTRAN中用于发送报头的公共报头发送器的结构:
图3示出了在UE中用于检测发送器发送的报头的公共报头接收器的结构;
图4示出了根据本发明实施例的用于产生长度为16的复ARM码的生成器;
图5示出了用于基于突发之上测量从发送器发送的信号的相关性的方法;
图6示出了根据本发明实施例的报头生成装置的基本结构;
图7示出了根据本发明另一个实施例的报头生成装置的基本结构;
图8示出了根据本发明另一个实施例的用于产生长度为32的复ARM码的生成器的结构。
具体实施方式
下文将参考附图,说明本发明的优选实施例。在下面的描述中。由于已知的功能或结构可能在不必要的细节上会混淆本发明,所以对这些已知的功能或结构的细节不进行描述。
根据本发明实施例的报头序列可以在BRAN系统中使用,BRAN系统的通信标准正在草拟过程中。通过本发明实施例新近提出的“报头序列”将称为“非周期回归多路复用(ARM)码”。本发明的实施例提供一种装置和方法,用于产生在检查系统同步、帧同步、时隙同步或数据实体中使用的ARM码。而且,将参照BRAN系统中使用的突发报头或帧报头来描述本发明的实施例。此外,ARM码可以在需要使用具有优良非周期自相关性的序列的任何系统中使用。
此外,对于帧报头或突发报头,BRAN系统使用具有良好相关特性并具有长度为2的次幂的报头信号。这是因为报头信号的获得性能的降低导致了难于检测同步,因而不能在发送器和接收器之间进行无线通信。而且一旦无法检测指示数据实体的突发报头,接收器就不能接收数据。此外,应该注意,报头是基于突发而发送的(断续地),而不是连续地发送。
参照图5,将根据接收器如何测量从发送器方基于突发而发送的报头的相关性来进行说明。图5示出了接收器如何测量从发送器方基于突发而发送的信号的相关性。具体地,图5示出了用于测量发送器方基于突发而发送的报头与接收器接收的从该发送器发送的报头信号没有正确地同步的状态中的相关性的方法。
参照图5,发送器首先将基于突发的报头信号501发送到接收器。在此,由于接收器不知道该发送器发送的报头信号501的开始点,接收器将连续计算从在给定时间点开始的、对应于报头信号501的长度的时间Δintegration中接收的信号和在接收器中事先设置的报头信号之间的相关性。所设置的报头信号是由接收器和发送器之间的协议而事先设置的信号。接收器例如为UE,发送器例如为UTRAN。
即,图5示出了报头信号501的实际发送时段与接收器计算相关的时段不一致的情况。如果报头信号501的实际发送时段和接收器计算相关的时段之间的时间差是Δoffset,则仅在执行在从发送器发送的报头信号和在接收器中产生的所设置的报头信号之间的相关的时段Δintegration中的时段时间Δreal中,接收器计算所接收的报头信号和所设置的报头信号之间的相关。因为在时段Δoffset中没有报头信号从发送器发送,并且时段Δno_signal的长度与时段Δoffset的长度相同,所以不执行发送器发送的报头信号和接收器中产生的设置的报头信号之间的比较。因此,实际相关值等于时段Δintegration中的时间Δreal中的相关值。这可以通过下式表示:
式(1)Cor=ΣΔrealr(t)·s*(t)]]>
在式(1)中,Cor表示相关值,r(t)表示接收的信号,s(t)表示接收机中产生的设置的报头信号,以及s*(t)表示s(t)的共轭复数。
更具体地,如果报头信号的实际发送时段和接收器计算相关的时段之间的时段差Δoffset是τ,则式(1)可以表示为:
式(2)Cor=Σt=0N-τs(t)·s*(t+τ)]]>
在式(2)中,N表示报头的长度,此长度等于时段Δintegratio。
通常,当计算序列s(t)的相关值时,该序列被称为“非周期序列”。当时间偏差Δoffset具有值τ时,用于报头信号的非周期序列是具有低相关值的优良的序列,即,当没有获得同步时,该优良序列具有较低的相关值,并仅当获得同步时,才具有较高的相关值。但是,具有优良性能的非周期序列实际上并不常见。因此,就非周期序列而言,本发明提供一种产生具有优良的代码的方法。该非周期序列,即本发明提供的报头信号,当其长度N为2n(N=2n)时,可以认为是优良的非周期序列。
现在为说明根据本发明的用于产生具有优良属性的非周期序列的方法,将参考非周期序列的几种特性。
通常,具有长度N的非周期序列{ai}的相关Cτ表示为:
式(3)Cτ=Σi=0N-τa(i)·a*(i+τ)]]>
在式(3)中,如果具有长度N的非周期序列是{(-1)i·ai},则{(-1)i·ai}的相关C′τ表示为:
式(4)C′τ=Σi=0N-τ(-1)ia(i)·(-1)i+τa*(i+τ)]]>=Σi=0n-τ(-1)2i+τa(i)·a*(i+τ)]]>=Σi=0N-τ(-1)τa(i)·a*(i+τ)]]>=(-1)τΣi=0N-τa(i)·a*(i+τ)]]>
=(-1)τ·Cτ
在下文中,具有长度N的非周期序列{(-1)i·ai}将称为bi。然后具有长度N的复非周期序列{ai+jbi}的相关Covτ可以表示为:
式(5)Corτ=Σi=0N-τ(a(i)+jb(i))·(a(i+τ))*]]>=Σi=0N-τ(a(i)+j(-1)la(i))·(a(i+τ)+j(-1)i+τa(i+τ))*]]>=Σi=0N-τ(a(i)a(i+τ)+(-1)τa(i)a(i+τ)+jΣi=0N-τ(a(i)a(i+τ)-(-1)τa(i)a(i+τ))(-1)l]]>
式(5)可以通过图6的硬件结构实现。参考图6,将描述根据本发明实施例的报头生成装置的基本结构。
图6示出了根据本发明实施例的报头生成装置的基本结构。参照图6,一旦接收到具有长度N(例如N=16)的序列a(i)(其中i=1,2,…,16),该装置将完整无缺的序列a(i)输出作为I分量。将序列a(i)提供给乘法器610,同时还将具有长度N=16的信号+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1提供给乘法器610。乘法器610逐个元素地将序列a(i)与信号+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1一一相乘,生成输出{(-1)i·a(i)}作为Q分量。
在式(4)中,实部值和虚部值可以分别考虑。为使相关值变得尽可能地小,实部和虚部都应具有其可能的最小值。参考式(4),如果τ是偶数,则虚部变为“0”,而实部不变为“0”。相反,如果τ是奇数,则实部变为“0”,而虚部不变为“0”。实际上,在非周期序列的情况中,实部和虚部都具有“0”相关值是不可能。因此,下面将说明设置实部为可能的最小值的方法。
如果式(5)的实部称为“I”,式(5)可以表示为:
式(6)I=Σi=0N-τa(i)a(i+τ)+(-1)τΣi=0N-τa(i)a(i+τ)]]>
=Cτ+(-1)τCτ在式(6)中,如果指示实际发送时段和接收器计算相关的时段的差Δoffset的τ为奇数,则实部I变为“0”。否则,如果τ为偶数,则I=2Σi=0N-τa(i)a(i+τ)]]>。因此,为使当τ为偶数时的I值变为‘0’,下列处理被重复执行。即,当τ为偶数时,2Σi=0N-τa(i)a(i+τ)]]>变为‘0’这句话意味着当长度为N的具有实值非周期序列具有偶数偏置时,确定的相关为‘0’。因此,使用下面的属性。
用于长度为N/2的非周期序列d(i)的具有实值的a(i)定义为:
式(7)k=0至(N/2)-1在式(7)中,如果τ=2τ′是偶数,实部值可以通过式(8)计算。式(8)I=Σi=0N-τa(i)a(i+τ)]]>=2Σi=0N-2τ′a(i)a(i+2τ′)]]>=2Σk=0(N-τ)/2a(2k)a(2k+2τ′)+2Σk=0(N-τ)/2a(2k+1)a(2k+1+2τ′)]]>=2Σk=0(N-τ)/2d(k)d(k+τ′)+2Σk=0(N-τ)/2(-1)kd(k)(-1)k+τ′d(k+τ′)]]>=2Σk=0(N-τ)/2d(k)d(k+τ′)+2(-1)τ′Σk=0(N-τ)/2d(k)d(k+τ′)]]>在式(8)中,如果τ′=τ/2是偶数,则I值变为‘0’。式(8)可以通过图7的硬件结构实现。参考图7,将描述根据本发明的实施例的报头生成装置的基本结构。
图7示出了根据本发明的报头生成装置的基本结构。参照图7,具有长度为8的输入序列d(i)被提供给多路复用器(MUX)720和乘法器710。同时,具有长度为8的信号+1,-1,+1,-1,+1,-1,+1,-1也提供给乘法器710。乘法器710逐个元素地将长度为8的序列d(i)与具有长度为8的信号+1,-1,+1,-1,+1,-1,+1,-1相乘,然后将其输出{(-1)id(i)}提供给多路复用器720。多路复用器720将输入信号d(i)与从乘法器710的输出{(-1)id(i)}进行时分多路复用。即乘法器710输出式(7)表示的序列a(i)。
如果对d(i)重复执行上述处理,则当τ为偶数时,实部值I变为‘0’。用于以这种方式生成长度为16的复ARM码的生成器在图4中进行说明。
图4示出了根据本发明实施例的用于生成长度为16的复ARM码的生成器。将每一个都是在+1和-1之间进行交替的信号+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1和信号+1,-1,+1,-1,+1,-1,+1,-1分别提供给图6的乘法器610和图7的乘法器710。即使信号中+1和-1的顺序改变,仍能保持各式所表示的属性。
参照图4,选择可能的2比特组合信号{+1,+1},{+1,-1},{-1,+1}和{-1,-1}中的一种被作为输入信号同时提供给第一多路复用器(MUX1)400和乘法器410。同时,从信号生成器420中生成的信号{+1,-1}或{-1,+1}提供给乘法器410。乘法器410将该输入信号与从信号生成器420生成的信号相乘,并将其相乘输出信号提供给第一多路复用器400。第一多路复用器400接着对该输入信号和从乘法器410输出的信号进行时分多路复用,并输出4比特序列。从第一多路复用器400输出的4比特序列被同时提供给第二多路复用器(MUX2)402和乘法器412。同时从信号生成器422中生成的信号{+1,-1,+1,-1}或{-1,+1,-1,+1}提供给乘法器412。乘法器412将由第一多路复用器400输出的4比特序列与从信号生成器422生成的信号相乘,并将其相乘输出信号提供给第二多路复用器402。第二多路复用器402接着对从第一多路复用器400输出的4比特序列和从乘法器412输出的信号进行时分多路复用,并输出8比特序列。从第二多路复用器402输出的8比特序列被同时提供给第三多路复用器(MUX3)404和乘法器414。同时从信号生成器424中生成的信号{+1,-1,+1,-1,+1,-1,+1,-1}或{-1,+1,-1,+1,-1,+1,-1,+1}提供给乘法器414。乘法器414将从第二多路复用器402输出的8比特序列与从信号生成器424生成的信号相乘,并将其相乘输出信号提供给第三多路复用器404。第三多路复用器404接着对从第二多路复用器402输出的8比特序列和从乘法器414输出的信号进行时分多路复用,并输出16比特序列。从第三多路复用器404输出的完整的16比特序列被输出作为I分量。从第三多路复用器404输出的16比特序列还提供给乘法器416。同时从信号生成器426中生成的信号{+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1}或{-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1}提供给乘法器416。乘法器416将从第三多路复用器404输出的16比特序列与从信号生成器426生成的信号相乘,并将其相乘输出作为Q分量。由此,完成了长度为16的复ARM码的产生。
在图4所述的信号生成器的处理中,如果初始2比特输入信号是{+1,+1},则信号生成器420生成信号{+1,-1},信号生成器422生成信号{+1,-1,+1,-1},信号生成器424生成信号{+1,-1,+1,-1,+1,-1,+1,-1},并且信号生成器426生成信号{+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1}。接着该装置产生表1所示的长度为16的复ARM码。
表1 1+j,1-j,1+j,-1+j,1+j,1-j,-1-j,1-j 1+j,1-j,1+j,-1+j,-1-j,-1+j,1+j,-1+j
此外,使用与图7所述的结构一同描述的方法,能够产生长度为32的复ARM码。参照图8将描述用于产生长度为32的复ARM码的生成器的结构。
图8示出了根据本发明另一个实施例的用于产生长度为32的复ARM码的生成器的结构。在图8中,第一至第三多路复用器400-404、乘法器410-416和信号生成器420-426具有图4所示的相同的操作,所以为简单起见省略它们的详细描述。从第三多路复用器404输出的16比特序列和从乘法器416输出的信号被提供给第四多路复用器406。第四多路复用器406接着对从第三多路复用器404输出的16比特序列和从乘法器416输出的信号进行时分多路复用,并输出32比特序列。从第四多路复用器406输出的完整的32比特序列被输出作为I分量。而且从第四多路复用器406输出的32比特序列被提供给乘法器418。同时从信号生成器428中生成的信号{+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1}或{-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1}提供给乘法器418。乘法器418将从第四多路复用器406输出的32比特序列与从信号生成器428生成的输出信号相乘,并将其相乘输出作为Q分量。由此,完成了长度为32的复ARM码的产生。
在图8所述的信号生成器的处理中,如果初始2比特输入信号是{+1,+1},则信号生成器420生成信号{+1,-1},信号生成器422生成信号{+1,-1,+1,-1},信号生成器424生成信号{+1,-1,+1,-1,+1,-1,+1,-1},信号生成器426生成信号{+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1},以及信号生成器428生成信号{+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1}。接着该装置产生表2所示的长度为32的复ARM码。
表2 1+j,1-j,1+j,-1+j,1+j,1-j,-1-j,1-j 1+j,1-j,1+j,-1+j,-1-j,-1+j,1+j,-1+j 1+j,1-j,1+j,-1+j,1+j,1-j,-1-j,1-j -1-j,-1+j,-1-j,1-j,1+j,1-j,-1-j,1-j
通过根据这种方法生成长度为2的次幂的ARM码,能够生成具有优良的非周期特性的长度为64、128、256……的序列。在上述说明中,UTRAN(发送器)将同步码发送给UE(接收器)。但是,对本领域技术人员来说,根据本发明生成的ARM码也可以用做从UE(发送器)发送到UTRAN(接收器)的报头信号。因此,如果图2所示的传统的发送器(UTRAN或UE)的报头生成器包括由本发明不同实施例中提出的图4或8中所示的结构,则该发送器将使用上述的具有非周期特性的序列。此外,如果图3所示的接收器(UTRAN或UE)的报头生成器包括由本发明不同实施例中提出的图4或8中所示的结构,则该接收器将使用上述的具有非周期特性的序列。
图4和8所述的ARM码生成器包括多个级联的多路复用器。但是在替代实施例中,ARM码生成器可以仅包括一个多路复用器,并将该多路复用器的输出反馈到其输入节点。此外,尽管在图4和8中没有示出,ARM码生成器还包括用于根据ARM码预定长度控制输入、相乘和多路复用操作的控制器。
本发明的上述实施例提供了一种使用图4和8所示的硬件结构产生ARM码的装置和方法。但是,在替代实施例中,能够事先产生由本发明提出的ARM码,并且,为了在系统请求时从存储器中读出ARM码,将所产生的ARM码存储在存储器中。在这种情况中,不需要单独的硬件结构,仅需要一存储器,用来存储由本发明提出的ARM码,以及一控制装置,用于从该存储器中读出所请求的ARM码。
根据本发明的装置和方法通过提供一种具有优良自相关特性的非周期回归多路复用(ARM)码改进了报头序列的特性,由此改进了系统的性能。此外,本发明能够使用简单的硬件结构产生具有可变长度的报头信号,由此提高了硬件的使用效率。从而能够通过使用具有优良自相关特性的报头序列来增加同步获得的可能性。
尽管通过参考本发明的优选实施例,已经示出和描述了本发明,但是对于本领域技术人员来说,在不脱离由所附权利要求书限定的本发明的实质和范围的前提下,可以从本发明中产生各种形式和细节上的变化。